nIFTy Cosmology Workshop

ySAM

Yonsei University Sukyoung K.Yi & Jaehyun Lee nIFTy Cosmology Workshop

ySAM

Yonsei or 'Yi' Semi-Analytic Model

Yonsei University Sukyoung K.Yi & Jaehyun Lee

- ySAM has been developed by Sukyoung Yi and Jaehyun Lee since 2010 using IDL
- The code is mainly motivated by Sadegh Khochfar, Julien Devriendt, Rachel Somerville, and Darren Croton's models
- Unique prescriptions of ySAM
 - Rigorous stellar evolution and mass loss
 - Additional processes for tracing subhalo properties

- Treatments for halo merger trees in ySAM
 - Cases Not allowed

I) Disappear without any descendant before merger

- Treatments for halo merger trees in ySAM
 - Cases Not allowed

I) Disappear without any descendant before merger

- Treatments for halo merger trees in ySAM
 - Cases Not allowed

I) Disappear without any descendant before merger

- Treatments for halo merger trees in ySAM
 - Cases Not allowed

2) Disappear as subhaloes leaving no descendent

- Treatments for halo merger trees in ySAM
 - Cases Not allowed

2) Disappear as subhaloes leaving no descendent

- Treatments for halo merger trees in ySAM
 - Cases Not allowed

3) Identified as subhaloes with no progenitor

- Treatments for halo merger trees in ySAM
 - Cases Not allowed

3) Identified as subhaloes with no progenitor

- Additional processes for orphan subhaloes
 - If subhaloes disappear before reaching very central regions (<0.1R_{vir}), ySAM additionally calculates their merging timescales, orbits and mass.
 - Merging timescale

$$t_{\rm merge}({\rm Gyr}) = \frac{0.94\epsilon^{0.60} + 0.60}{2C} \frac{M_{\rm host}}{M_{\rm sat}} \frac{1}{\ln[1 + (M_{\rm host}/M_{\rm sat})]} \frac{R_{\rm vir}}{V_c}$$
Jiang+08

• Dynamical friction

$$\frac{\mathrm{d}\vec{v}}{\mathrm{d}t_{\,\mathrm{dynf}}} = -\frac{GM_{\mathrm{sat}}(t)}{r^2} \ln\Lambda\left(\frac{V_c}{v}\right)^2 \left\{ \mathrm{erf}\left(\frac{v}{V_c}\right) - \frac{\sqrt{\pi}}{2}\left(\frac{v}{V_c}\right) \exp\left[-\left(\frac{v}{V_c}\right)^2\right] \right\} \vec{e_v}, \qquad \text{Binney+08}$$

• Sphere of Influence - Subhaloes hold particles within the radii

$$r_{\rm soi} \sim r \left[\left(\frac{M_{\rm sat,tot}}{M_{\rm host}(< r)} \right)^{-0.4} (1 + 3\cos^2 \theta)^{0.1} + 0.4\cos \theta \left(\frac{1 + 6\cos^2 \theta}{1 + 3\cos^2 \theta} \right) \right]^{-1}$$

Battin 87

- Prescriptions governing baryonic physics
 - Gas cooling White & Frenk (1991), Sutherland & Dopita (1993)
 - Star formation Kauffmann et al. (1993)
 - Merger-induced starburst Somerville et al. (2008), Cox et al. (2008)
 - Tidal stripping of hot gas Kimm et al. (2011)
 - Ram pressure stripping of hot gas Font et al. (2008), McCarthy et al. (2008)
 - AGN feedback
 - QSO mode Kauffmann & Haehnelt (2000)
 - Radio mode Croton et al. (2006)
 - Supernova feedback Somerville et al. (2008)
 - Chemical evolution gradual mass loss of stellar populations, Lee & Yi (2013)

- Stellar mass growth and mass loss history in galaxies
 - Massive galaxies have more than several thousands of stellar populations

• Stellar mass growth and mass loss history in galaxies

- Stellar mass growth and mass loss history of galaxies
 - ySAM rigorously calculates evolution of each stellar population in galaxies.

- Stellar mass growth and mass loss history of galaxies
 - ySAM rigorously calculates evolution of each stellar population in galaxies.

Galaxy I

Galaxy 2

and galaxies

- Free parameters tuned for calibration in ySAM
 - Star formation efficiency ε_{sf} (~0.02)
 - Stellar mass fraction scattered by mergers f_{scatter} (0.2-0.5)
 - QSO mode AGN feedback efficiency f_{BH} (0.005-0.04)
 - Radio mode AGN feedback efficiency κ_{AGN} (0.00001-0.0004)
 - Supernova feedback efficiency ε_{SN} (1.0-3.0), α_{rh} (2.0-3.5)

- What can ySAM provide?
 - Stellar mass (bulge, disk, and components born outside, in-situ, merger-induced starburst, and scattered by mergers)
 - Cold and hot gas mass
 - Metallicity (bulge, disk, cold and hot gas)
 - Host-satellite relations between galaxies
 - SMBH mass
 - M₂₀₀, R₂₀₀, velocity, and position of orphan subhaloes
 - Star formation rates in bulge and disk
 - Luminosity in L_{\odot}
 - Galaxy merger histories