- Open source (compiles with GNU compilers)
- Modular design
 - Each function can have multiple implementations, selected by input parameter.
 - "Node" can have arbitrary number of components (e.g. DM halo, disk, spheroid), all with multiple implementations
- Combination of smooth (ODE) evolution and instantaneous events (e.g. mergers)

- New implementation of function easily added:
 - Write a class containing the implementation
 - Add directives indicating that this function is for, e.g., disk star formation timescale calculations
 - Recompile build system automatically finds this new module and works out how to compile it into the code
- Modules are self-contained and independent
- Self-initializing and recursive

- Component could be, e.g. disk (exponential)
- Stores various types of data:
 - Scalars
 - Vectors
 - Orbits
 - Elemental abundances
 - Time Series
 - Stellar populations
- Allows for multiple components of each type

- Defining a component:
 - Set of ODEs giving rates of change of properties (can access properties of other components/nodes as needed)
 - Responses to events (merging, becoming satellite etc.)
 - Handling of various tasks (e.g. computing quantities need to determine size)
 - Specify properties to be output
 - Definition is via XML boilerplate functions are auto-generated

Node evolution

- Repeatedly walk tree find nodes that to evolve:
 - Cannot evolve if have children
 - Can't evolve beyond their satellites
 - Limit on timestep
 - Arbitrary other factors can be included

Node evolution

- All component properties fed into ODE solver
- Evaluate derivatives evolve forward in time
- No need for fixed timesteps or analytic solutions
 - Makes implementing, for example, Kennicutt-Schmidt law trivial (just add new star formation timescale function)
- Evolution can be interrupted as needed (e.g. when galaxy merges)

Merger Trees

- Assumptions
 - * Host halo not in merger tree file?
 - → Host descendent is same as that of hosted subhald
 - * Hosting loop? (2 halos are each others hosts)
 - Reset more massive to be unhosted
 - * Subhalo-Subhalo mergers
 - \rightarrow Allowed
 - * Subhalo becomes non-subhalo
 - \rightarrow Allowed
 - * Halo mass decreases with time
 - \rightarrow Allowed (optional)
 - * Subhalo jumps between branches
 - \rightarrow Allowed

Advantages

- Modularity makes it highly flexible:
 - Add new star formation rule in 5 minutes
 - Change in cooling model confined to few modules which compute cooling time and rate
- Unified ODE solver makes new features simple:
 - Timestepping handled automatically
 - No need for analytic solutions
 - Implemented noninstantaneous recycling in one afternoon rather than two months!

Physics Included – IGM Accretion

- Simple model:
 - Assume accretion at universal fraction for any smooth accretion
 - Also get hot gas from ram pressure stripping of satellites
 - Accretion from IGM shut off post-reionization in low circular velocity halos

Physics Included – Cooling/Inflow

- Cooling:
 - Calculate cooling radius assuming isothermal (virial temperature) gas, beta-profile density distribution, CIE cooling curves (metal dependent)
 - Rate of growth of cooling radius gives cooling rate
- Infall:
 - Compute rate of growth of freefall radius in the halo gives and infal rate
- Take the smaller of the two rates

Physics Included – Star Formation

- Lots of star formation rules available for disks
 - Default option is Krumholtz, McKee, Tumlinson
- For spheroids, simple timescale argument based on spheroid dynamical time

Physics Included – Feedback

- Typically use an empirical model
 - Outflow rate proportional to star formation rate
 - Proportionality factor scales with characteristic velocity of system
- Outflowed gas returns to the hot halo on a timescale of order the dynamical time of the halo

Physics Included – Metal Enrichment

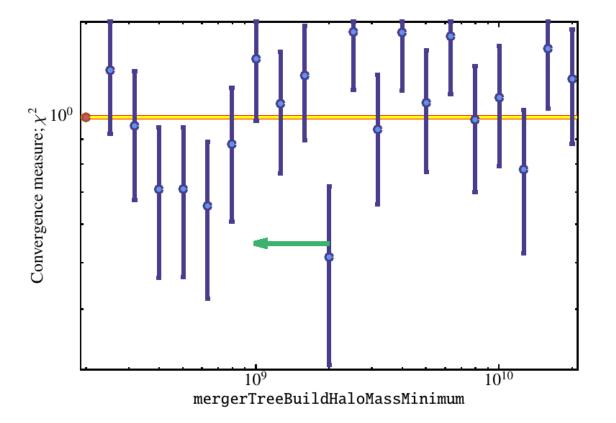
- Typically assume instantaneous recycling
 - Tracks only total metals
 - Assume a fixed yield and recycled fraction
- Can also do non-instantaneous recycling
 - Slower
 - Allows tracking of individual elements

Physics Included – Merging

- Merging timescales taken from N-body dynamics
 - Can add on some delay time for sub-resolution evolution
- Mergers classified as minor/major based on simple rules
 - Major mergers lead to destruction of disks, formation of spheroid
- Spheroids can also be formed via disk instabilities

Physics Included – Sizes

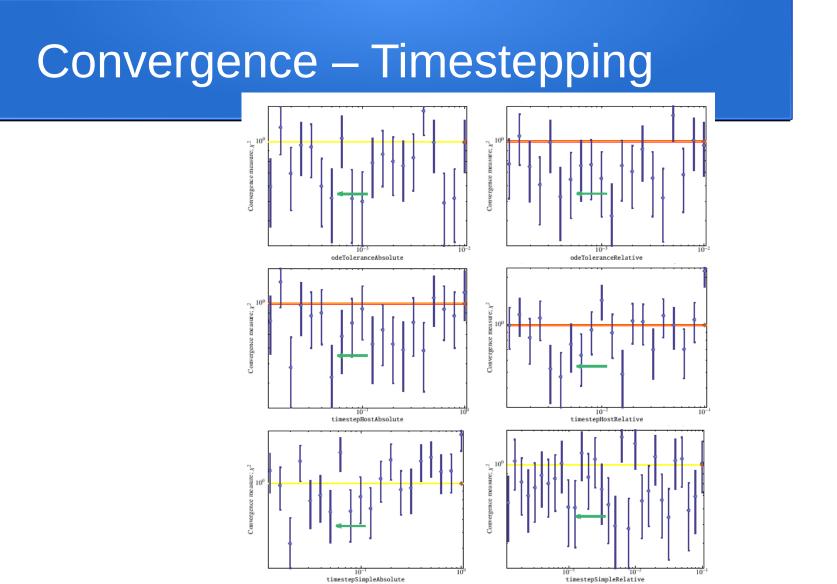
- Disks
 - Angular momentum content of disk from cooling model, ultimately from halo spin
 - Solve for scale length of disk assuming flat rotation curve
 - Include adiabatic contraction
- Spheroids
 - Energy conservation argument based on internal and orbital energies of merging galaxies


Physics Included – Black Holes

- Grow from spheroid and hot halo gas
 - Bondi-Hoyle accretion with some fudge factor
 - Spin also tracked (Benson & Babul approach)
- Merging
 - Normally assume instant merging when galaxies merge
 - Can also track migration through disk, ejection, etc.
- Feedback
 - Jet power computed from accretion rate and spin
 - Used to offset cooling rate in hot halo and drive gas out of halo

Physics Included – Luminosities

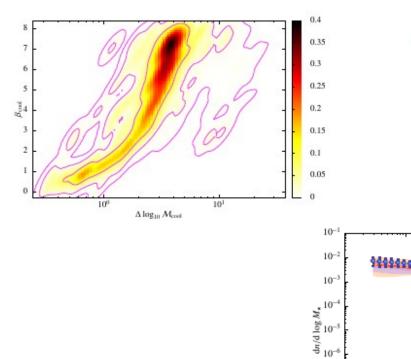
- Typically assume fixed IMF
- Luminosities in any filters found by convolving star formation history with stellar population library
- Effects of dust applied in post-processing
 - Various models available

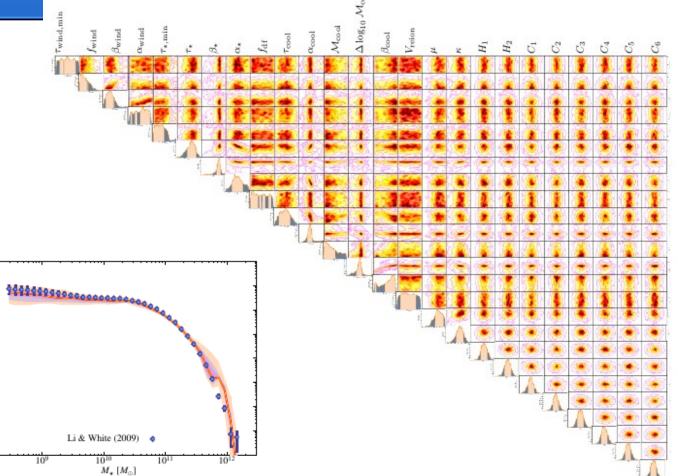

Convergence – Minimum Halo Mass

Limiting physics:

Pre-reionization: cooling function

Post-reionization: IGM temperature


Parameter Sensitivities


- Complex problem
 - SNe feedback is often the dominant effect
 - But highly problem-specific

Parameter Sensitivities

10⁻⁷

10-9

