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Abstract. A method has been developed for calculating
radial wave functions by numerical integration of the Dirac
equation. These wave functions are then used to obtain
oscillator strengths. The idea is to use a one-electron ra-
dial symmetric potential gained from a modified Thomas-
Fermi ionic charge distribution. The potential is produced
by the core protons and the inner electrons. This charge
cloud can be described by an effective core charge and is
scaled in order to match the binding-energy of this ’one-
electron’ system with the experimental ionisation poten-
tial.

1. Thomas-Fermi model

The aim of my diploma thesis is to calculate oscillator
strengths which are (in first order perturbation theory)
directly connected to the radial matrix element:
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Therefore one needs to solve the Dirac equation in or-
der to retrieve the correct radial wave function:
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In earlier publications (Bates & Damgaard 1949,
Seaton 1958) only the asymptotic behaviour of the wave
function in the outer parts (large r) was taken into ac-
count. This is improved using the complete solution of
the Dirac equation. Therefore the potential energy of the
ion has to be approximated in a realistic way. This is going
to be achieved using the Thomas-Fermi atom model:

A single electron is expected to move in the central

field produced by the remaining N, — 1 inner electrons
and the Zcore core protons:
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(Zyest = Zcore — (Ne — 1) the rest charge where N, is the
total number of electrons.)

If we treat the N, — 1 electrons as a free, degenerate
electron gas at the temperature of zero Kelvin the poten-
tial of this continuous ”charge cloud” can be calculated
with quantum statistical methods and is described in a

haviour of the potential can be quantified using an effec-
tive core charge:
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This charge distribution function Zeg(r) can be di-
rectly connected to the Thomas-Fermi function ¢(r) which
calculation is a problem that can only be solved numerical
and is discussed in the thesis, too.

2. Dirac equation

Now that we have an expression for the potential (based
on quantum statistics) the Dirac equations are given as
follows:
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The energy E of this electron system is fixed: the ex-
perimental determined value is used; the scaling factor «
is varied instead which means that the potential is ad-
justed in order to reproduce the correct energy level. The
solution of this coupled differential equations is achieved
numerical. In the outer parts of the atom (for large r) it
is possible to derive analytical solutions which are then
matched to wave functions based on an outward integra-
tion started at the origin. This again is a separate part of
the thesis: a power law expansion ansatz has to be used
for achieving the correct behaviour near the origin. This
analytical solutions are then used as starting points for
the Runge-Kutta-Merson integration scheme.

3. Discussion

A semi empirical method for -calculating oscillator
strengths under the assumption of a spherical symmetric
charge distribution has been introduced. This procedure
for computing radial wave functions using the Dirac equa-
tions works best for atoms with alkali-like configuration:
one electron moves in the (central) field produced by the
core and the inner electrons just as can be found for e.g.
CI\/, NV and OVI-
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