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Non-Thermal Radiation Non-thermal processes - recap

Non-thermal radiation:

e Radiation produced out of thermal equilibrium

e Not described by Planck spectrum

e Typically: power-law energy distributions of particles
e Depends on acceleration processes.

e Common in high-energy astrophysics

Produced when particles are accelerated (it is not determined simply by temperature). It arises from physical
processes such as shocks, turbulence, and strong electromagnetic fields




Non-Thermal Radiation Non-thermal processes - recap

Hadronic processes are interactions of hadrons (strongly interacting particles such as protons and
neutrons) that produce secondary particles, gamma rays, and neutrinos

Hadronic processes:
® Proton-proton collisions
® Pion production & decay

e Gamma-ray and neutrino emission




Non-Thermal Radiation

Leptonic processes - definition

What are Leptonic Processes?




Non-Thermal Radiation Leptonic processes - definition

Leptonic processes are interactions of leptons (electrons and positrons) that produce radiation
through electromagnetic mechanisms such as synchrotron emission or inverse Compton
scattering

Leptonic processes:
® Synchrotron emission
® |nverse Compton scattering

e Non-thermal bremsstrahlung




Non-Thermal Radiation Leptonic processes - definition

Leptonic processes* = interactions of relativistic electrons and positrons with matter

*Distinct from leptonic processes (driven by protons/neutrons)




Non-Thermal Radiation Leptonic processes - definition

Leptonic processes* = interactions of relativistic electrons and positrons with matter

— leptonic interactions are a natural source of broadband radiation (from radio to y-rays)

PSR B1509-58, Chandra X-ray Observatory. Credit: NASA/CXC/SAO/P.Slane, et al.

*Distinct from leptonic processes (driven by protons/neutrons)




Non-Thermal Radiation

Leptonic processes - definition

Leptonic processes* = interactions of relativistic electrons and positrons with matter

— leptonic interactions are a natural source of broadband radiation (from radio to y-rays)

Importance:

Relativistic electrons are common in astrophysical sources

Electrons radiate very efficiently (short cooling times)

Produce synchrotron emission — explains radio to X-rays

Produce inverse Compton y-rays — often seen in PWNe, AGN jets,

SNR shocks, GRN afterglows

Generate bremsstrahlung y-rays in dense environments

e Reveal conditions in sources: magnetic fields, ambient radiation, gas
density

® Provide diagnostics complementary to hadronic channels (spectral

slopes, polarization, cooling breaks)

*Distinct from leptonic processes (driven by protons/neutrons)
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Non-Thermal Radiation Particle energy distribution

In non-thermal radiation we need to describe how particles are distributed in energy because that distribution
controls the emitted radiation

From Momentum distribution to Energy Distribution: f(p) — N(E)
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In non-thermal radiation we need to describe how particles are distributed in energy because that distribution
controls the emitted radiation

From Momentum distribution to Energy Distribution: f(p) — N(E)

Spectrum is determined by the underlying energy distribution of the particles
=> particle (electron) energy distribution
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\» Number of electrons per unit volume in [y,y+dy]




Non-Thermal Radiation Particle energy distribution

In non-thermal radiation we need to describe how particles are distributed in energy because that distribution
controls the emitted radiation

From Momentum distribution to Energy Distribution: f(p) — N(E)

Spectrum is determined by the underlying energy distribution of the particles
=> particle energy distribution
Ne(7) dv

\» Number of electrons per unit volume in [y,y+dy]
Why electron energy distribution?




Non-Thermal Radiation Particle energy distribution

In non-thermal radiation we need to describe how particles are distributed in energy because that distribution
controls the emitted radiation

From Momentum distribution to Energy Distribution: f(p) — N(E)

Spectrum is determined by the underlying energy distribution of the particles

=> particle energy distribution
Ne(v) dy

\» Number of electrons per unit volume in [y,y+dy]
Why electron energy distribution?

e Formally: particle/lepton distribution (electrons + positrons)

e |n astrophysical environments, e dominate in number

e Radiative processes (synchrotron, IC, bremsstrahlung) depends on square of the charge (¢°) is the same for ¢ and " with
the same y and emit identical radiation

e Differences only appear in specific channels (e.g. pair annihilation e’e)




Non-Thermal Radiation Particle energy distribution

In non-thermal radiation we need to describe how particles are distributed in energy because that distribution
controls the emitted radiation

From Momentum distribution to Energy Distribution: f(p) — N(E)

Spectrum is determined by the underlying energy distribution of the particles
=> particle (electron) energy distribution

Ne(v) dy
\» Number of electrons per unit volume in [y,y+dy]

Non-thermal distributions are power laws, controlled
by acceleration physics

Typical power-law distribution: N.(y) = K.y? AYmin < Y < Ymax




Non-Thermal Radiation Particle energy distribution

From Momentum distribution to Energy Distribution: f(p) —— N(E) ----- -
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Non-Thermal Radiation

Particle energy distribution

From Momentum distribution to Energy Distribution:

Z0.0

-1.0
-0.5
e 0.5
R ' 1.0
15 1.5

Shell volume:  dV, = 4np’ dp

Isotropic momentum distribution f ( p)

f(p) — N(E)

""" > Ne(7)




Non-Thermal Radiation

Particle energy distribution

From Momentum distribution to Energy Distribution:

Z0.0

=1.5

-1.0
-0.5
e 0.5
R ' 1.0
15 1.5

Shell volume:  dV, = 4np’ dp

f(p) — N(E)
Isotropic momentum distribution f ( p)

Number of particles per unit volume in [p,p + dp]:

dn = f(p) dV, = 4xp’ f (p) dp




Non-Thermal Radiation Particle energy distribution

From Momentum distribution to Energy Distribution: f(p) —— N(E)

Isotropic momentum distribution f ( p)

Number of particles per unit volume in [p,p + dp]:

dn = f(p) dV, = 4xp’ f (p) dp

1.5
1.0
35 Change variable to Lorentz factor v:
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Non-Thermal Radiation

Particle energy distribution

From Momentum distribution to Energy Distribution:
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Shell volume:  dV, = 4np’ dp

f(p) — N(E)

Isotropic momentum distribution f ( p)

Number of particles per unit volume in [p,p + dp]:

dn = f(p) dV, = 4xp’ f (p) dp

Change variable to Lorentz factor v:

\Measures how relativistic a particle is




Non-Thermal Radiation

Particle energy distribution

From Momentum distribution to Energy Distribution:
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Non-Thermal Radiation

Particle energy distribution

From Momentum distribution to Energy Distribution:
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e 0.5
R ' 1.0
15 1.5

Shell volume:  dV, = 4np’ dp

f(p) — N(E)

Isotropic momentum distribution f ( p)

Number of particles per unit volume in [p,p + dp]:

dn = f(p) dV, = 4xp’ f (p) dp

Change variable to Lorentz factor v:

1

= 1—v%/c?

If v < c:y=1: The particle is almost non-relativistic

If v = c:y> 1t The particle is ultra-relativistic




Non-Thermal Radiation Particle energy distribution

From Momentum distribution to Energy Distribution: f(p) —— N(E)

Isotropic momentum distribution f ( p)

Number of particles per unit volume in [p,p + dp]:

dn = f(p) dV, = 4xp’ f (p) dp

1.5
1.0
35 Change variable to Lorentz factor v:
Z0.0
-0.5
= 1
~1.0 -15 T A2
10 1-—9v?/c
-1.5
=1.5 . . T
-0 o5 PX If v < c:y=1: The particle is almost non-relativistic
~ 00 : sy L.
py 05 1.0 fov—scy>1: The particle is ultra-relativistic
1.0 15 15
Shell volume: dV, = 4np* dp &Almost all leptonic radiation comes

from e with y>>1




Non-Thermal Radiation Particle energy distribution

From Momentum distribution to Energy Distribution:

f(p) — N(E)
Isotropic momentum distribution f ( p)

Number of particles per unit volume in [p,p + dp]:

1.5 dn = f(p) dv, = 47Tp2f(p) dp

0.5

Change variable to Lorentz factor v:
Z0.0

_ 1
T 1—v%/c?
-15 '

If v < c:y=1: The particle is almost non-relativistic

1.0

If v — c:y> 1: The particle is ultra-relativistic
15 15

Shell volume:  dV, = 4np’ dp

In astrophysics, 7 is the natural variable to connect relativistic
particles with the radiation they produce




Non-Thermal Radiation Particle energy distribution

From Momentum distribution to Energy Distribution: f(p) —— N(E)

Isotropic momentum distribution f ( p)

Number of particles per unit volume in [p,p + dp]:

dn = f(p) dV, = 4xp’ f (p) dp

1.5

1.0

35 Change variable to Lorentz factor v:
Z0.0

-0.5

1
-1.0 -15 v= — 3
10 1-—9v?/c
-1.5
-5 0.0
S-S o o5 P Hadronic processes expressed in terms of E (not y) — why?
py 05 1.0

1.0 15 15

Shell volume:  dV, = 4np’ dp




Non-Thermal Radiation Particle energy distribution

From Momentum distribution to Energy Distribution: f(p) —— N(E)

Isotropic momentum distribution f ( p)

Number of particles per unit volume in [p,p + dp]:

dn = f(p) dV, = 4xp’ f (p) dp

15
1.0
35 Change variable to Lorentz factor v:
Z20.0
o5 ® Protons are much heavier than e” => not always ultra-relativistic
- e In astrophysical collisions (GeV-TeV), protons are relativistic but not as ultra-relativistic
_15 as e — It is more natural to work with their kinetic or total energy
1o e Nuclear physics cross sections are tabulated as functions of proton lab energy Ep, noty
Py S, Nyl E ® Proton synchrotron radiation is negligible compared to e — What matters is energy

available to produce pions, best described by Ep or Tp
Shell volume:  dV, = 4np’ dp

=> hadronic interactions are conventionally expressed in terms of proton energy




Non-Thermal Radiation

Particle energy distribution

From Momentum distribution to Energy Distribution: f(p) —— N(E)

1.5

1.0

0.5
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0.0

py 0.5

1.0 15 15

Shell volume:  dV, = 4np’ dp

Isotropic momentum distribution f ( p)

Number of particles per unit volume in [p,p + dp]:

dn = f(p) dV, = 4xp’ f (p) dp

Change variable to Lorentz factor v:

_ 1
T 1—v%/c?

If v < c:y=1: The particle is almost non-relativistic

If v — c:y> 1: The particle is ultra-relativistic

In terms of energy:

y measures the total energy in units

_ 2
E = ymec of the rest energy m ¢’




Non-Thermal Radiation

Particle energy distribution

From Momentum distribution to Energy Distribution:

1.5
1.0
0.5
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-1.0
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e 0.5
R ' 1.0
15 1.5

Shell volume:  dV, = 4np’ dp

f(p) — N(E)

Isotropic momentum distribution f ( p)

Number of particles per unit volume in [p,p + dp]:

dn = f(p) dV, = 4xp’ f (p) dp

Change variable to Lorentz factor y => energy and momentum for a

relativistic electron:

E = 7mecz7 b ="mev




Non-Thermal Radiation

Particle energy distribution

From Momentum distribution to Energy Distribution:

1.5
1.0
0.5

Z0.0

-1.0
-0.5
e 0.5
R ' 1.0
15 1.5

Shell volume:  dV, = 4np’ dp

f(p) — N(E)
Isotropic momentum distribution f ( p)

Number of particles per unit volume in [p,p + dp]:

dn = f(p) dV, = 4xp’ f (p) dp

Change variable to Lorentz factor y => energy and momentum for a
relativistic electron:

E = 7mecz7 b ="yYmev
Relativistic energy—momentum relation:

E* = (pc)” + (mec?)”




Non-Thermal Radiation Particle energy distribution

From Momentum distribution to Energy Distribution:

f(p) — N(E)
Isotropic momentum distribution f ( p)

Number of particles per unit volume in [p,p + dp]:

15 dn = f(p) dV;} = 47Tp2f(p) dp
1.0
05

Change variable to Lorentz factor y => energy and momentum for a
Z0.0

relativistic electron:

E = 7mecz7 b ="mev

-1.0

Relativistic energy—momentum relation:
-0.5

0.5
0.0
2 2 212
e )
15 15
Shell volume:  dV, = 4np® dp

(’szacz)2 = (pC)2 + (mec2)2 = pc=m.*y/y2 -1




Non-Thermal Radiation Particle energy distribution

From Momentum distribution to Energy Distribution:

f(p) — N(E)
Isotropic momentum distribution f ( p)

Number of particles per unit volume in [p,p + dp]:

15 dn = f(p) dV;) = 47Tp2f(p) dp
1.0
05

Change variable to Lorentz factor y => energy and momentum for a
Z0.0

relativistic electron:

E = 7mecz7 b ="mev

-1.0

Relativistic energy—momentum relation:
-0.5

0.5
0.0
2 2 212
e )
15 15
Shell volume:  dV, = 4np® dp

(ymec?)? = (pe)? + (mec®)? = pec=m.?/y2—1 =>|p(7) =mecy/7?2 -1




Non-Thermal Radiation Particle energy distribution

Differentiate to get the Jacobian dp/dy:




Non-Thermal Radiation

Particle energy distribution

Differentiate to get the Jacobian dp/dy:

Ultra-relativistic simplifications:

o If y>1,then /72 —-1~4, so:




Non-Thermal Radiation

Particle energy distribution

Differentiate to get the Jacobian dp/dy:

Ultra-relativistic simplifications:

o If y>1,then /72 —-1~4, so:

dp Y
dvy 42— 1
dp
p(y) ~ mecy — >~ mec




Non-Thermal Radiation

Particle energy distribution

Differentiate to get the Jacobian dp/dy:

dp
dy
Ultra-relativistic simplifications:
e If y>1,then /42 —1~4, so: p(y) ~ mecy

In the ultra-relativistic limit (E >m ¢, v=c):

E = 'ymecz, P = Ymev




Non-Thermal Radiation Particle energy distribution

Differentiate to get the Jacobian dp/dy:

4 _ e ¥
{4
dvy 42— 1
Ultra-relativistic simplifications:
dp
e If y>1,then /42 —1~4, so: p(y) ~ mecy o ~ mec
Y
In the ultra-relativistic limit (E >m ¢, v=c):
E
E =ym.c?, p=ym. E ~ pc vy =




Non-Thermal Radiation Particle energy distribution

Differentiate to get the Jacobian dp/dy:

ap _ e
e
dvy 42— 1
Ultra-relativistic simplifications:
dp
e If y>1,then /42 —1~4, so: p(y) ~ mecy o ~ mec
Y
In the ultra-relativistic limit (E >m ¢, v=c):
E
E = ym.c?, = Ym,v E ~ pc =
Y p=7 D o —

If we want the number density of particles/electrons between [y,y+dy/, we define:

Ne(y)dy =dn




Non-Thermal Radiation Particle energy distribution

Differentiate to get the Jacobian dp/dy:

ap _ e
e
dvy 42— 1
Ultra-relativistic simplifications:
dp
e If y>1,then /42 —1~4, so: p(y) ~ mecy o ~ mec
Y
In the ultra-relativistic limit (E >m ¢, v=c):
E
E = ym.c?, = Ym,v E ~ pc =
Y p=7 D o —

If we want the number density of particles/electrons between [y,y+dy/, we define:
Ne(y)dy =dn
Using:

dn = f(p) dV, = 4mp*f(p) dp




Non-Thermal Radiation

Particle energy distribution

Therefore:




Non-Thermal Radiation Particle energy distribution

Therefore:
N(y) = dmp*f (p) 2
dry
Using:
b =meryT 1 L =me— ]




Non-Thermal Radiation Particle energy distribution

Therefore:
N.(y) = dnp?f(p) 2
dvy
Using:
dp Y
p(y) = mecy/7?2 — 1 By~ e o

We obtain (general equation):

Ne(7y) = 4m [mec/72 — 1}2 f(mec /72 —1) [mec %]




Non-Thermal Radiation Particle energy distribution

Therefore:
N.(7) = mp?f (p) 2
dvy
Using:
dp Y
p(y) =mecy/y2 -1 a—mc -1

We obtain (general equation):

N.(y) =4n [mec V2 — 1]2 f(mec /72 —1) [mec %]

Ultra-relativistic simplification:

d
p(y) ~ mecy % ~ me.c




Non-Thermal Radiation

Particle energy distribution

Therefore:
N.(7) = mp?f (p) 2
dvy
Using:
dp Y
p(y) =mecy/y2 -1 a—mc -1

We obtain (general equation):

N.(y) =4n [mec V2 — 1]2 f(mec /72 —1) [mec %]

Ultra-relativistic simplification:

de

p(7) = mecy & ome —— | N()= 4m(mec)®




Non-Thermal Radiation Particle energy distribution

Therefore:
N.(7) = mp?f (p) 2
dvy
Using:
dp Y
p(y) = mecy/7? -1 dy " 1

We obtain (general equation):

N.(y) =4n [mec V2 — 1]2 f(mec /72 —1) [mec %]

Ultra-relativistic simplification:

dp
p(7) = mecy gy = e N N.(v) = 4n(mec)® ¥ f (ymec)

BUT: this is a general relation: no spectral shape yet! —+ Power law distribution




Non-Thermal Radiation Particle energy distribution

Shock acceleration (Diffusive Shock Acceleration), DSA* results in:

f(p) xp




Non-Thermal Radiation Particle energy distribution

Shock acceleration (Diffusive Shock Acceleration), DSA* results in: DSA is the standard mechanism for accelerating charged

particles at astrophysical shocks:

o - ) e Particles scatter on magnetic turbulence and cross the
f( ) X —8 <«————— spectral index in momentum and, it is determined
p p by the shock compression ratio shock multiple times
Each crossing gives a systematic energy gain

. Produces power-law energy distributions
with s~4 for strong shocks

\—/\/W

Upstream plasma DowhnStream plasma
(incoming flow) o (slowed, compressed)

T

/\x Particle trajectory

Shock front

Particles gain energy by repeatedly crossing the shock
- Diffusive Shock Acceleration (DSA) —» power-law spectrum

for relativistic particles (E=pc):

N(E)dE « f(p)4mp’dp <« EPdE where: p=s§—2
for s=4:

NE)xE?, p~2




Non-Thermal Radiation

Particle energy distribution

Shock acceleration (Diffusive Shock Acceleration), DSA* results in:

—8 <«————— spectral index in momentum and, it is determined

f (p) X p by the shock compression ratio

with s~4 for strong shocks

*DSA is the standard mechanism for accelerating charged
particles at astrophysical shocks:

e Particles scatter on magnetic turbulence and cross the
shock multiple times
Each crossing gives a systematic energy gain
Produces power-law energy distributions

Upstream plasma
(incoming flow)

Shock front

Particles gain energy by repeatedly crossing the shock
- Diffusive Shock Acceleration (DSA) —» power-law spectrum
for relativistic particles (E=pc):
N(E)dE « f(p)4mp’dp <« EPdE where: p=s§—2
for s=4:

NE)xE?, p~2




Non-Thermal Radiation

Particle energy distribution

Shock acceleration (Diffusive Shock Acceleration), DSA* results in:

—8 <«————— spectral index in momentum and, it is determined

f (p) X p by the shock compression ratio

with s~4 for strong shocks
In the ultra-relativistic regime: p = ym ¢

2—s

2 — _
Ne(y) o< v* (ymee) ™% ox (p—s—2
spectral index in energy/Lorentz factor

*DSA is the standard mechanism for accelerating charged

particles at astrophysical shocks:

e Particles scatter on magnetic turbulence and cross the

shock multiple times
Each crossing gives a systematic energy gain
Produces power-law energy distributions

\—/\/W

Upstream plasma Dow|
(incoming flow) o (slowed,

T

ream plasma
compressed)

/\x Particle trajectory

Shock front

Particles gain energy by repeatedly crossing the shock

- Diffusive Shock Acceleration (DSA) —» power-law spectrum

for relativistic particles (E=pc):

N(E)dE « f(p)4mp’dp <« EPdE where: p=s§—2

for s=4:
NE)xE?, p~2




Non-Thermal Radiation Particle energy distribution

Shock acceleration (Diffusive Shock Acceleration), DSA* results in: DSA is the standard mechanism for accelerating charged

particles at astrophysical shocks:

o - ) e Particles scatter on magnetic turbulence and cross the
f( ) X —8 <«————— spectral index in momentum and, it is determined
p p by the shock compression ratio shock multiple times
Each crossing gives a systematic energy gain

. Produces power-law energy distributions
with s~4 for strong shocks

\—/\/W

In the ultra-relativistic regime: p = ym ¢ T—— @ream plasma
(incoming flow) o (slowed, compressed)

> s N

2 —s _
=s—2
N, (7) Xy (Vmec) Xy (p Particle trajectory
spectral index in energy/Lorentz factor /\

Power-law electrons distribution:

Shock front

p Particles gain energy by repeatedly crossing the shock
_ = - Diffusive Shock Acceleration (DSA) —» power-law spectrum
Ne(y) = Key
for relativistic particles (E=pc):
N(E)dE « f(p)4mp’dp <« EPdE where: p=s§—2
for s=4:

“Ymin S v S “Ymax

NE)xE?, p~2




Non-Thermal Radiation Particle energy distribution

Shock acceleration (Diffusive Shock Acceleration), DSA* results in:

—8 <«————— spectral index in momentum and, it is determined

f (p) X p by the shock compression ratio

with s~4 for strong shocks

In the ultra-relativistic regime: p = ym ¢

Ne(v) o< ¥* (ymee) * o > (P =52
spectral index in energy/Lorentz factor
Power-law electrons distribution: -
Shock acceleration predicts p ~ 2; in real
No(y) = K. v? sources, spectra are steeper p~ 2.2— 3

— due to energy losses and particle escape

min S S max .
L L and propagation




Non-Thermal Radiation Particle energy distribution

Shock acceleration (Diffusive Shock Acceleration), DSA* results in:

—8 <«————— spectral index in momentum and, it is determined

f (p) X p by the shock compression ratio

with s~4 for strong shocks
In the ultra-relativistic regime: p = ym ¢

2—s

2 —s —
Ne(y) o< v* (ymee) ™% ox (p_s—2
spectral index in energy/Lorentz factor

Power-law electrons distribution:
e . . .
e Energy distribution depends on slope:

N (v) = Kev*
—_— < o forp>2 low-energy particles dominate

“Ymin S v S “Ymax

o Forp<2 high-energy particles dominate




Non-Thermal Radiation Particle energy distribution

When we have a power-law spectrum:

e The shape of the spectrum (its slope) is determined by the spectral index in energy/Lorentz
factor p
e K fixesthe overall scale, and is determined by the total number (or energy) of particles

— The normalization constant Ke must be determined!




Non-Thermal Radiation

Normalization

There are two common ways:

e Normalize to the total number density of particles n

e Normalize to the total energy density U




Non-Thermal Radiation

Normalization

There are two common ways:

e Normalize to the total number density of particles n

e Normalize to the total energy density U




Non-Thermal Radiation

Normalization

If we integrate over all Lorentz factors, we get the total number density of electrons:

Ne —

’Ymax

Ne(v) dvy

“Ymin




Non-Thermal Radiation

Normalization

If we integrate over all Lorentz factors, we get the total number density of electrons:

Substituting N.(y) = K.y ?

Ne —

’Ymax

Ne(v) dvy

“Ymin




Non-Thermal Radiation Normalization

If we integrate over all Lorentz factors, we get the total number density of electrons:

’Ymax

e = Ne(v) dvy
“Ymin
Substituting N.(y) = K.y ?
’Ymax
ne = Ke/ ’Y_p d’)/

“Ymin




Non-Thermal Radiation

Normalization

If we integrate over all Lorentz factors, we get the total number density of electrons:

Ne —

’YIIIaX

Ne(v) dvy

“Ymin

Substituting N.(y) = K.y ?

ne = K,

Evaluating the integral for (p # 1):

’Ymax
/ v P dy
“Ymin




Non-Thermal Radiation

Normalization

If we integrate over all Lorentz factors, we get the total number density of electrons:

’Ymax
e = Ne(v) dvy
“Ymin
Substituting N.(y) = K.y ?
’Ymax
ne = Ke/ ’Y_p d’)/

“Ymin

Evaluating the integral for (p # 1):




Non-Thermal Radiation Normalization

’Ymax
ne = Ke/ ’7_p d7

“Ymin

If p<1:theintegral diverges at the high-energy end (y — ), unless we impose a finite Y

If p=1:the low-energy end dominates, requiring a finite Y i




Non-Thermal Radiation

Normalization

There are two common ways:

e Normalize to the total number density of particles n

e Normalize to the total energy density U
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If instead of knowing the number of particles, what we know is how much energy is available to
accelerate them — total energy density:

v. = | " B(y) No(y) dy

Ymin




Non-Thermal Radiation Normalization

If instead of knowing the number of particles, what we know is how much energy is available to
accelerate them — total energy density:

7max
U, = / E(y) N(v) dv
7min

Substituting the energy of a particle characterized by the Lorentz factor y: E(y) = ym.c?

we obtain: Vanax
Ue = / (ymec?®) Ne(y) dy

“Ymin




Non-Thermal Radiation Normalization

If instead of knowing the number of particles, what we know is how much energy is available to
accelerate them — total energy density:

7max
U, = / E(y) N(v) dv
7min

Substituting the energy of a particle characterized by the Lorentz factor y: E(y) = ym.c?

we obtain: Vanax
U, = / (ymec?®) Ne(y) dy

“Ymin




Non-Thermal Radiation Normalization

If instead of knowing the number of particles, what we know is how much energy is available to
accelerate them — total energy density:

7max

v. = [ BNy
Ymin

Substituting the energy of a particle characterized by the Lorentz factor y: E(y) = ym.c?

we obtain:

“Ymax
U, = / (ymec?®) Ne(v) dy

“Ymin

And the power law N,(y) = K.y ?:

7max
U, = mec2Ke/ AP dy

Ymin




Non-Thermal Radiation

Normalization

e Evaluating the integral for p # 2:

U, =m.* K,

2—p 2—p
Ymax — Vmin

2—p




Non-Thermal Radiation Normalization

e Evaluating the integral for p # 2:

_ 2—
U.=m C2 K 7n21a£ T ’Yminp
e e e 9 _ D

e Evaluating the integral for p = 2:

U, =m.? K, ln<7max)

“Ymin




Non-Thermal Radiation

Normalization

e Evaluating the integral for p # 2:

_ 2—
U.=m C2 K 71?1&)? T ’Yminp
e e e 9 _ D

we can solve for Ke:

2—p

2-p 2-p
mec2 ('Ymax — Ymin )

e Evaluating the integral for p = 2:

U, =m.? K, ln<7max)

“Ymin




Non-Thermal Radiation

Normalization

e Evaluating the integral for p # 2:

2—p 2—p
0 — Vi
Ue = m, C2 Ke max min

2—p

we can solve for Ke:

e Evaluating the integral for p = 2:

U, =m.? K, ln<7max)

Ymin
we can solve for Ke:

Ue
mMe c2 ln(')’max / 'Ymin)

K, =




Non-Thermal Radiation Normalization

’Ymax
L, = mec2Ke/ AP dy

Ymin

ifp <2:

e Theintegrand y/ 7 gives more weight to high-energy
electrons

e The total energy is dominated by particles close to
ymax

® Wemustseta finitey ., physically determined by the
balance between acceleration and energy losses




Non-Thermal Radiation

Normalization

’Ymax
L, = mec2Ke/ AP dy

ifp <2:

e Theintegrand y/ 7 gives more weight to high-energy
electrons

e The total energy is dominated by particles close to
ymax

® Wemustseta finitey ., physically determined by the
balance between acceleration and energy losses

Ymin

if p>2

e Theintegrand y'? is dominated by low-energy
electrons
The total energy is concentrated near y .

e  We must impose a finite 7. linked to the injection
physics (where thermal electrons transition into the
non-thermal power-law population)




Non-Thermal Radiation Normalization

’Ymax
L, = mec2Ke/ AP dy

Ymin
ifp<2: if p>2
. 1_p . . _
e Theintegrand y"p gives more weight to high-energy ® Theintegrand y"*is dominated by low-energy
electrons electrons
e The total energy is dominated by particles close to ®  The total energy is concentrated near y .
Y max e  We mustimpose a finite y__, linked to the injection
® Wemustsetafinitey ., physically determined by the physics (where thermal electrons transition into the
balance between acceleration and energy losses non-thermal power-law population)

ifp=2:

e the contribution comes equally from both y . and
7. 81Ving a logarithmic dependence In(ymwjy

min)
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Emissivity

We study electron distributions N (¥), but in astrophysics we observe radiation: photon spectra
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Non-Thermal Radiation

Emissivity

We study electron distributions N (¥), but in astrophysics we observe radiation: photon spectra

Electron spectrum: N.(v) =

[D==) emission process

Ke 7_p ) “Ymin S vy S “Ymax




Non-Thermal Radiation Emissivity

We study electron distributions N (¥), but in astrophysics we observe radiation: photon spectra

[D==) emission process

Electron spectrum:  N.(v) = K.v? Ymin <Y < Ymax

’

® Emissivity jy : Defined as the energy radiated per unit time, per unit volume, per unit frequency,
and per unit solid angle:

dE

v = Qv dt dv d)




Non-Thermal Radiation Emissivity

We study electron distributions N (¥), but in astrophysics we observe radiation: photon spectra

[D==) emission process

Electron spectrum:  N.(v) = K.v? Ymin <Y < Ymax

’

® Emissivity jy : Defined as the energy radiated per unit time, per unit volume, per unit frequency,
and per unit solid angle:

dE

v = Qv dt dv d)

e A relativistic electron with Lorentz factor y radiates a power spectrum at frequency v:

P,(v,7)




Non-Thermal Radiation

Emissivity

e The electron population is described by the differential number density Ne(y) in yand y+dy:

Ne(v) dy




Non-Thermal Radiation

Emissivity

e The electron population is described by the differential number density Ne(y) in yand y+dy:

Ne(v) dy

e Summing (integrating) over all electron Lorentz factors gives the total emissivity:

7ma.x
G = / N.(v) P.(v, ) dy

“Ymin




Non-Thermal Radiation Emissivity

e The electron population is described by the differential number density Ne(y) in yand y+dy:

Ne(v) dy

e Summing (integrating) over all electron Lorentz factors gives the total emissivity:

7ma.x
G = / N.(v) P.(v, ) dy

“Ymin

If electrons radiated at a single frequency, the photon spectrum would directly follow N (y). Each
electron radiates over a broad frequency range (synchrotron, IC, bremsstrahlung®*), so the observed
spectrum is a convolution of the electron distribution and the single-particle emission physics

*Synchrotron emission spreads over many frequencies, IC scatters photons into a wide energy range, and bremsstrahlung also covers a spectrum. This means the photon spectrum we measure is not just N,(y), but the result of combining it with the physics of the emission mechanism




Non-Thermal Radiation Emissivity

’Ymax
Jv = / Ne(7)PV(V77)d7
“Ymin

It tells us that the observed photon spectrum is the result of combining the electron
distribution N (y) with the single-particle emission spectrum P (v,y)




Non-Thermal Radiation Emissivity

’Ymax
Jv = / Ne(7)PV(V77)d7
“Ymin

It tells us that the observed photon spectrum is the result of combining the electron
distribution N (y) with the single-particle emission spectrum P (v,y)

Non-thermal leptonic sources often produce photon spectra that follow
power laws, directly reflecting the underlying electron distribution




Non-Thermal Radiation

e Non-Thermal radiation: hadronic processes (recap) vs. leptonic processes
e Electron distributions & normalizations

® |leptonic processes:

o Synchrotron emission
o Inverse Compton scattering

o  Non-thermal bremsstrahlung




Non-Thermal Radiation

e Non-Thermal radiation: hadronic processes (recap) vs. leptonic processes
e Electron distributions & normalizations

® |leptonic processes:

o Synchrotron emission
o Inverse Compton scattering

o  Non-thermal bremsstrahlung




Synchrotron emission

Non-Thermal Radiation

Synchrotron emission is one of the key leptonic processes in astrophysics

e Produced by relativistic electrons (or positrons) spiraling
around magnetic field lines

Synchrotron radiation

Spiraling electron
DN

OCFENWN U




Synchrotron emission

Non-Thermal Radiation

Synchrotron emission is one of the key leptonic processes in astrophysics

e Produced by relativistic electrons (or positrons) spiraling
around magnetic field lines

e Motion is spiral-shaped: velocity component parallel to B, i
circular motion perpendicular to B a.mgemm
‘ .

Synchrotron radiation

oHNUU-hU‘Icn\‘




Non-Thermal Radiation Synchrotron emission

Synchrotron emission is one of the key leptonic processes in astrophysics

e Produced by relativistic electrons (or positrons) spiraling
around magnetic field lines
Synchrotron radiation

e Motion is spiral-shaped: velocity component parallel to B, i
circular motion perpendicular to B a.mgemm
‘ .

e Radiation is strongly beamed in the instantaneous direction of
motion (narrow cone, opening angle ~1/y)

oHNUU-hU‘Icn\‘

N




Non-Thermal Radiation Synchrotron emission

Synchrotron emission is one of the key leptonic processes in astrophysics

e Produced by relativistic electrons (or positrons) spiraling
around magnetic field lines
Synchrotron radiation

e Motion is spiral-shaped: velocity component parallel to B,

circular motion perpendicular to B a.mgemm
(0 <

e Radiation is strongly beamed in the instantaneous direction of
motion (narrow cone, opening angle ~1/y)

OCFENWN U

® Broad-band emission: from radio up to X-rays or even y-rays =
Depending on the electron energy (y) and the magnetic field

strength (B)

N




Non-Thermal Radiation

Synchrotron emission

Synchrotron emission is one of the key leptonic processes in astrophysics

e Produced by relativistic electrons (or positrons) spiraling
around magnetic field lines
Synchrotron radiation

e Motion is spiral-shaped: velocity component parallel to B,

circular motion perpendicular to B a.mgemm
(0 <

e Radiation is strongly beamed in the instantaneous direction of
motion (narrow cone, opening angle ~1/y)

® Broad-band emission: from radio up to X-rays or even y-rays =
Depending on the electron energy (y) and the magnetic field
strength (B)

e Very common in SNRs, AGN jets, pulsar wind nebulae

OCFENWN U

N
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Synchrotron emission

Single electron spectrum

What is the spectral shape of the radiation from a single electron?
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Synchrotron emission

Single electron spectrum

What is the spectral shape of the radiation from a single electron?

e Asingle relativistic electron emits over a broad range of frequencies
® The characteristic frequency depends on:

o  Electron Lorentz factor y

o  Magnetic field strength B
e Strong efficiency: electrons radiate much faster than protons
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Single electron spectrum

What is the spectral shape of the radiation from a single electron?

e Asingle relativistic electron emits over a broad range of frequencies
® The characteristic frequency depends on:

o  Electron Lorentz factor y

o  Magnetic field strength B
e Strong efficiency: electrons radiate much faster than protons

Let’s derive the expression for the synchrotron characteristic frequency v _:
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Single electron spectrum

What is the spectral shape of the radiation from a single electron?

e Asingle relativistic electron emits over a broad range of frequencies
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Why define a synchrotron characteristic frequency (v )?




Non-Thermal Radiation

Synchrotron emission

Single electron spectrum

What is the spectral shape of the radiation from a single electron?

e Asingle relativistic electron emits over a broad range of frequencies

® The characteristic frequency depends on:
o  Electron Lorentz factor y
o  Magnetic field strength B

e Strong efficiency: electrons radiate much faster than protons

Why define a synchrotron characteristic frequency (v )?

® The exact synchrotron spectrum of one electron is mathematically complex (involves Bessel
functions)

e However, most of the emitted power is concentrated around a typical frequency, v,

°

In astrophysics, we first define v _: it provides the characteristic scale of emission before dealing with
the full spectrum




Non-Thermal Radiation Synchrotron emission

Single electron spectrum

What is the spectral shape of the radiation from a single electron?

e Asingle relativistic electron emits over a broad range of frequencies
® The characteristic frequency depends on:

o  Electron Lorentz factor y

o  Magnetic field strength B

For a relativistic electron with Lorentz factor y spiraling in a magnetic field B, most of the synchrotron
power is emitted around the characteristic frequency v

Let’s derive the expression for the synchrotron characteristic frequency v,




Non-Thermal Radiation Synchrotron emission

In the classical (cyclotron) regime, an electron spiraling in a magnetic field B emits radiation at the
frequency v,

Classical (Cyclotron):

e Non-relativistic electrons (v <c¢)
e Narrow emission line
e Radiation at a single frequency (the gyrofrequency):

eB

2Tmec

VB




Non-Thermal Radiation Synchrotron emission

In the classical (cyclotron) regime, an electron spiraling in a magnetic field B emits radiation at the
frequency v,

Classical (Cyclotron):

e Non-relativistic electrons (v <c¢)
e Narrow emission line
e Radiation at a single frequency (the gyrofrequency):

eB

2Tmec

VB

Relativistic (Synchrotron):

e Ultra-relativistic electrons (y > 1)
e Emission spread over a broad frequency range
® Most power peaks around the characteristic frequency:

3

vV, = i 72 Vg sina = sin & <— a: pitch angle (between velocity and B)

3 ,eB
™

mecC




Non-Thermal Radiation Synchrotron emission

In the classical (cyclotron) regime, an electron spiraling in a magnetic field B emits radiation at the
frequency v,

Classical (Cyclotron): Cyclotron vs Synchrotron Emission
I 107} i
e Non-relativistic electrons (v <c¢) n
T 7 107 '
e Narrow emission line 5 i
. . . % 1094 L
e Radiation at a single frequency (the gyrofrequency): £ i
S 107128f o
8 [
eB gloflﬁﬁ— {' l:
VB= s 2 } 1
27'('777,60 g 1072921 I: :I
e o e 3 1
Relativistic (Synchrotron): 2 107 | ‘.
1
L. . 107%7° - Cyclotron (narrow line atE!E) |
e Ultra-relativistic electrons (y > 1) = oncpusloon fopslepectjn: kst B , |
.. 1075 1073 101 10! 10°
e Emission spread over a broad frequency range Photon energy [eV]
® Most power peaks around the characteristic frequency:
3 5 ) 3 ,eB .
V.= -~ vgsina = — v —— sina
2 T meC




Non-Thermal Radiation Synchrotron emission

Single electron spectrum

Once the characteristic frequency v is defined, the next step is to compute the single-electron
spectrum P (v,y)




Non-Thermal Radiation Synchrotron emission

Single electron spectrum

Once the characteristic frequency v is defined, the next step is to compute the single-electron
spectrum P (v,y)

Synchrotron spectrum P (v,y) comes from classical electrodynamics:

e Start with Liénard—Wiechert fields — radiation from an accelerated relativistic charge
e Motion in magnetic field — curved trajectory, strong beaming

e Fourier transform of the radiated pulse

[ J

Angle-average over pitch angles




Non-Thermal Radiation Synchrotron emission

Single electron spectrum

Once the characteristic frequency v is defined, the next step is to compute the single-electron
spectrum P (v,y)

Synchrotron spectrum P (v,y) comes from classical electrodynamics:

Start with Liénard—Wiechert fields — radiation from an accelerated relativistic charge
Motion in magnetic field — curved trajectory, strong beaming

[ J
[ J
e Fourier transform of the radiated pulse
[ J

Angle-average over pitch angles

oo

_), F(z) :x/ Ks/3(y) dy

. . \ Modified Bessel function of
Universal function

the second kind of order 5/3




Non-Thermal Radiation

Synchrotron emission

Single-electron synchrotron spectrum:

PV(V7'7) =

V3e’B

mMec>

]—'(V
VC

) , Flz)= w/xooKs/?,(y)dy

® Broad emission: not a line but a continuum, with the maximum power near v = 0.29v




Non-Thermal Radiation Synchrotron emission

Single-electron synchrotron spectrum:

P,(v,v) = v3e'B f(y> , Flz)= w/:) Ks/3(y) dy

mMec> v,

® Broad emission: not a line but a continuum, with the maximum power near v = 0.29v

e Low-frequency slope : P, OC 15 for v & v,




Non-Thermal Radiation Synchrotron emission

Single-electron synchrotron spectrum:

63
P,(v,v) = V3B f(

mMec>

v

Ve

) , Flz)= m/xooK5/3(y)dy

® Broad emission: not a line but a continuum, with the maximum power near v = 0.29v

e Low-frequency slope : P, OC 15 for v & v,

Fllog(x)]

e High-frequency cut-off: P, o exp(—v/v ) for v > v,




Non-Thermal Radiation

Synchrotron emission

Single-electron synchrotron spectrum:

P,(v,v) = v3e'B f(y> , Flz)= w/:) Ks/3(y) dy

mMec> v,

® Broad emission: not a line but a continuum, with the maximum power near v = 0.29v

e Low-frequency slope : P, OC 15 for v & v,

e High-frequency cut-off: P, o exp(—v/v ) for v > v,

A single electron produces a spectrum — rising as v

'3 at low frequencies, peaking around 0.3v,, and

falling exponentially at high frequencies




Non-Thermal Radiation

Synchrotron emission

From single electron to an electron distribution
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Synchrotron emission

From single electron to an electron distribution

We have the spectrum of one electron:




Non-Thermal Radiation Synchrotron emission

From single electron to an electron distribution

We have the spectrum of one electron:

P,(v,7)
The distribution of electrons is given by:

N, () dy = number of electrons with Lorentz factor in [y,y+dy]




Non-Thermal Radiation Synchrotron emission

From single electron to an electron distribution

We have the spectrum of one electron:

P,(v,7)
The distribution of electrons is given by:

N, () dy = number of electrons with Lorentz factor in [y,y+dy]

Total synchrotron emissivity is obtained by integrating over all electrons:

“Ymax
o = / Ne(7) Py (v,7) dy

“Ymin




Non-Thermal Radiation

Synchrotron emission

For large ranges in y, the integral yields:

—1
Goooc v, a=7t "

2
— A power-law electron spectrum produces a power-law synchrotron spectrum

— Photon spectral index a is directly linked to electron index p




Non-Thermal Radiation Synchrotron emission

For large ranges in y, the integral yields:

—1
Goooc v, a=7t "

2
— A power-law electron spectrum produces a power-law synchrotron spectrum

— Photon spectral index a is directly linked to electron index p

e With telescopes, we measure the photon spectral index a (the slope of the spectrum in
radio/X/y)
e From acceleration theory (e.g. DSA), we predict the electron index p

Supernova remnants: p~2 — radio spectra with a~0.5

Radio galaxies/jets: p~2.5-3 — steeper spectra with a~0.8-1
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Synchrotron emission

Synchrotron cooling (radiative losses)

Relativistic electrons lose energy continuously as they radiate synchrotron emission
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Synchrotron emission

Synchrotron cooling (radiative losses)

Relativistic electrons lose energy continuously as they radiate synchrotron emission

Energy loss rate (single electron):

dE 9 19
== —~2B
(dt>synoc !

— |osses increase with both Lorentz factor y and magnetic field strength B




Non-Thermal Radiation

Synchrotron cooling (radiative losses)

Relativistic electrons lose energy continuously as they radiate synchrotron emission

Energy loss rate (single electron):

dE 9 19
== —~2B
(dt>synoc !

— |osses increase with both Lorentz factor y and magnetic field strength B

Cooling timescale:

fovin = & X 1
W2 " dE/dt| © yB?

— higher-energy electrons cool much faster

Synchrotron emission




Non-Thermal Radiation

Synchrotron cooling (radiative losses)

Relativistic electrons lose energy continuously as they radiate synchrotron emission

Energy loss rate (single electron):

dE 9 19
== —~2B
(dt>synoc !

— |osses increase with both Lorentz factor y and magnetic field strength B

Cooling timescale:

fovin = & X 1
W2 " dE/dt| © yB?

— higher-energy electrons cool much faster

Synchrotron emission

= Cooling modifies the electron spectrum over time, producing cooling breaks in the observed synchrotron

spectrum (a change in slope between low and high frequencies)




Non-Thermal Radiation Synchrotron emission
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