Nataly Ospina (Istituto Nazionale di Fisica Nucleare)

- Non-Thermal Radiation
- Thermal radiation vs Non-Thermal radiation
- Hadronic Processes:
 - Proton-proton collisions
 - Pion production & decay
 - Gamma-ray and neutrino emission

Thermal radiation:

- Electromagnetic emission produced by matter in (global or local) thermodynamic equilibrium
- Spectrum depends only on **temperature**
- Characterized by **blackbody radiation**

Thermal radiation:

- Electromagnetic emission produced by matter in (global or local) thermodynamic equilibrium
- Spectrum depends only on temperature
- Characterized by **blackbody radiation**

Stars

Accretion disks around BHs or young stars

CMB radiation

Dust emission in IR/sub-mm

Planck spectrum:

$$B_{\nu}(T) = \frac{2}{c^2} \frac{h \, \nu^3}{e^{\frac{h\nu}{k_B T}} - 1}$$

$$B_{\lambda}(T) = 2c^{2} \frac{h/\lambda^{5}}{e^{\frac{hc}{\lambda k_{B}T}} - 1}$$

Planck spectrum:

$$B_{\nu}(T) = \frac{2}{c^2} \frac{h \nu^3}{\rho \frac{h \nu}{k_B T} - 1}$$

$$B_{\lambda}(T) = 2c^{2} \frac{h/\lambda^{5}}{e^{\frac{hc}{\lambda k_{B}T}} - 1}$$

Integrating over frequency => **Stefan–Boltzmann law**:

energy density:
$$u(T) = \frac{4}{c} \sigma_B T^4$$

 $B(T) = \frac{1}{\pi} \sigma_B T^4$ integrated density:

emergent flux:
$$F(T) = \sigma_B T^4$$

Planck spectrum:

$$B_{\nu}(T) = \frac{2}{c^2} \frac{h \nu^3}{\rho \frac{h \nu}{k_B T} - 1}$$

$$B_{\lambda}(T) = 2c^{2} \frac{h/\lambda^{5}}{e^{\frac{hc}{\lambda k_{B}T}} - 1}$$

Integrating over frequency => **Stefan–Boltzmann law:**

energy density:

$$u(T) = \frac{4}{c}\sigma_B T^4$$

integrated density:

$$B(T) = \frac{1}{\pi} \sigma_B T^4$$

emergent flux: F(T)

$$F(T) = \sigma_B T^4$$

Wien's displacement law:

The peak wavelength of radiation emitted by a BB is inversely proportional to its T

$$\lambda_{max}T = 0.290 \ cm \ K$$

$$h\nu_{max} = 2.82 k_B T$$

$$\lambda_{max} \propto \frac{1}{T}$$

$$\lambda \gg \lambda_{max}$$
: Rayleigh-Jeans law

$$\lambda \ll \lambda_{max}$$
: Wien law

- Non-Thermal Radiation
- Thermal radiation vs Non-Thermal radiation
- Hadronic Processes:
 - Proton-proton collisions
 - Pion production & decay
 - Gamma-ray and neutrino emission

- Non-Thermal Radiation
- Thermal radiation vs Non-Thermal radiation
- Hadronic Processes:
 - Proton-proton collisions
 - Pion production & decay
 - Gamma-ray and neutrino emission

Non-Thermal Radiation		Non-Thermal radiation - definition
What	is Non-Thermal Radiat	ion?

• Radiation produced out of thermal equilibrium

- Radiation produced **out of thermal equilibrium**
- Not described by Planck spectrum

- Radiation produced out of thermal equilibrium
- Not described by Planck spectrum
- Typically: **power-law energy distributions** of particles

- Radiation produced out of thermal equilibrium
- Not described by Planck spectrum
- Typically: **power-law energy distributions** of particles
- Depends on acceleration processes

- Radiation produced out of thermal equilibrium
- Not described by Planck spectrum
- Typically: **power-law energy distributions** of particles
- Depends on acceleration processes
- Common in high-energy astrophysics

- Radiation produced out of thermal equilibrium
- Not described by Planck spectrum
- Typically: **power-law energy distributions** of particles
- Depends on acceleration processes.
- Common in high-energy astrophysics

Produced when particles are accelerated (it is not determined simply by temperature). It arises from physical processes such as shocks, turbulence, and strong electromagnetic fields

Hadronic processes:

- Proton-proton collisions
- Pion production & decay
- Gamma-ray and neutrino emission

Hadronic processes:

- Proton-proton collisions
- Pion production & decay
- Gamma-ray and neutrino emission

Hadronic processes are interactions of hadrons (strongly interacting particles such as protons and neutrons) that produce secondary particles, gamma rays, and neutrinos

Hadronic processes:

- Proton-proton collisions
- Pion production & decay
- Gamma-ray and neutrino emission

Leptonic processes:

- Synchrotron emission
- Inverse Compton scattering
- Non-thermal bremsstrahlung

Leptonic processes are interactions of leptons (electrons and positrons) that produce radiation through electromagnetic mechanisms such as synchrotron emission or inverse Compton scattering

Leptonic processes:

- Synchrotron emission
- Inverse Compton scattering
- Non-thermal bremsstrahlung

- Non-Thermal Radiation
- Thermal radiation vs Non-Thermal radiation
- Hadronic Processes:
 - Proton-proton collisions
 - Pion production & decay
 - Gamma-ray and neutrino emission

- Non-Thermal Radiation
- Thermal radiation vs Non-Thermal radiation
- Hadronic Processes:
 - Proton-proton collisions
 - Pion production & decay
 - Gamma-ray and neutrino emission

Thermal radiation

- Equilibrium
- Planck spectrum:

$$B_{\nu}(T) = \frac{2}{c^2} \frac{h \, \nu^3}{e^{\frac{h\nu}{k_B T}} - 1}$$

 Radiation spectrum depends only on temperature

Non-thermal radiation

- Out of equilibrium
- Power-law spectrum

$$F_
u \propto
u^{-lpha}, \quad lpha = rac{p-1}{2}.$$

 Radiation spectrum depends on acceleration mechanisms

Thermal radiation

- Equilibrium
- Planck spectrum:

$$B_{\nu}(T) = \frac{2}{c^2} \frac{h \, \nu^3}{e^{\frac{h\nu}{k_B T}} - 1}$$

 Radiation spectrum depends only on temperature

Non-thermal radiation

- Out of equilibrium
- Power-law spectrum

$$F_
u \propto
u^{-lpha}, \quad lpha = rac{p-1}{2}.$$

 Radiation spectrum depends on acceleration mechanisms

Spectrum is determined by the underlying energy distribution of the particles

=> particle energy distribution

N(E)

Thermal radiation

- Equilibrium
- Planck spectrum:

$$B_{\nu}(T) = \frac{2}{c^2} \frac{h \, \nu^3}{e^{\frac{h\nu}{k_B T}} - 1}$$

- Radiation spectrum depends only on temperature
- Probes equilibrium properties (temperature, density)

- Out of equilibrium
- Power-law spectrum

$$F_
u \propto
u^{-lpha}, \quad lpha = rac{p-1}{2}.$$

- Radiation spectrum depends on acceleration mechanisms
- Probes acceleration physics
 (shocks, turbulence, magnetic
 fields)

In *non-thermal* radiation we need to describe how particles are distributed in energy because that distribution controls the emitted radiation.

From Momentum distribution to Energy Distribution: $f(p) \longrightarrow N(E)$

Isotropic momentum distribution f(p)

Isotropic momentum distribution f(p)

Number of particles per unit volume in [p, p + dp]:

$$dn = 4\pi p^2 f(p) dp$$

Isotropic momentum distribution f(p)

Number of particles per unit volume in [p, p + dp]:

$$dn = 4\pi p^2 f(p) dp$$

If we want the number of particles per unit energy, we define N(E):

$$N(E) dE = dn$$

Isotropic momentum distribution f(p)

Number of particles per unit volume in [p, p + dp]:

$$dn = 4\pi p^2 f(p) dp$$

If we want the number of particles per unit energy, we define N(E):

$$N(E) dE = dn$$

$$N(E) dE = 4\pi p^2 f(p) \frac{dp}{dE} dE$$

From Momentum distribution to Energy Distribution: $f(p) \longrightarrow N(E)$

Isotropic momentum distribution f(p)

Number of particles per unit volume in [p, p + dp]:

$$dn = 4\pi p^2 f(p) dp$$

If we want the number of particles per unit energy, we define N(E):

$$N(E) dE = dn$$

$$N(E) dE = 4\pi p^2 f(p) \frac{dp}{dE} dE$$

$$N(E) = 4\pi p^2 f(p) \frac{dp}{dE}$$

Energy distribution

From Momentum distribution to Energy Distribution: $f(p) \longrightarrow N(E)$

Isotropic momentum distribution f(p)

Number of particles per unit volume in [p, p + dp]:

$$dn = 4\pi p^2 f(p) dp$$

If we want the number of particles per unit energy, we define N(E):

$$N(E) dE = dn$$

$$N(E) dE = 4\pi p^2 f(p) \frac{dp}{dE} dE$$

$$N(E) = 4\pi p^2 f(p) \frac{dp}{dE}$$

Energy distribution

For *non-thermal*, we assume the relativistic limit since the emitting particles are highly relativistic:

From Momentum distribution to Energy Distribution: $f(p) \longrightarrow N(E)$

For *non-thermal*, we assume the relativistic limit since the emitting particles are highly relativistic:

Isotropic momentum distribution f(p)

Number of particles per unit volume in [p, p + dp]:

$$dn = 4\pi p^2 f(p) dp$$

If we want the number of particles per unit energy, we define N(E):

$$N(E) dE = dn$$

$$N(E) dE = 4\pi p^2 f(p) \frac{dp}{dE} dE$$

$$N(E) = 4\pi p^2 f(p) \frac{dp}{dE}$$

Energy distribution

if
$$E \simeq pc$$
: $dp/dE = 1/c$ \Rightarrow $N(E) = \frac{4\pi}{c^3} E^2 f(E/c)$

Thermal radiation:

Particle distribution is determined by *T* and the relevant quantum statistics. For *non-relativistic*, this reduces to the Maxwell–Boltzmann distribution:

$$N(E) \propto e^{-E/kT}$$

Thermal radiation:

Particle distribution is determined by *T* and the relevant quantum statistics. For *non-relativistic*, this reduces to the Maxwell–Boltzmann distribution:

$$N(E) \propto e^{-E/kT}$$

Thermal distributions always have an exponential cutoff at high *E*

Non-Thermal Radiation

Thermal radiation:

Particle distribution is determined by *T* and the relevant quantum statistics. For *non-relativistic*, this reduces to the Maxwell–Boltzmann distribution:

$$N(E) \propto e^{-E/kT}$$

Non-Thermal radiation:

Particle distribution is not determined by T given there is not an unique T scale. Instead, the shape of N(E) results by acceleration processes (shocks, turbulence, ...).

Thermal radiation:

Particle distribution is determined by *T* and the relevant quantum statistics. For *non-relativistic*, this reduces to the Maxwell–Boltzmann distribution:

$$N(E) \propto e^{-E/kT}$$

Non-Thermal radiation:

Particle distribution is not determined by T given there is not an unique T scale. Instead, the shape of N(E) results by acceleration processes (shocks, turbulence, ...).

$$N(E) = KE^{-p}$$

Thermal radiation:

Particle distribution is determined by *T* and the relevant quantum statistics. For *non-relativistic*, this reduces to the Maxwell–Boltzmann distribution:

$$N(E) \propto e^{-E/kT}$$

Non-Thermal radiation:

Particle distribution is not determined by T given there is not an unic $\underbrace{\widehat{\mathbb{P}}}_{10^{-3}}$ acceleration processes (shocks, turbulence, ...).

$$N(E) = KE^{-p}$$

Non-Thermal Radiation

Thermal radiation:

Particle distribution is determined by *T* and the relevant quantum statistics. For *non-relativistic*, this reduces to the Maxwell–Boltzmann distribution:

$$N(E) \propto e^{-E/kT}$$

Non-Thermal radiation:

Particle distribution is not determined by T given there is not an unique T scale. Instead, the shape of N(E) results by acceleration processes (shocks, turbulence, ...).

$$N(E) = KE^{-p}$$

$$E_{\min} \leq E \leq E_{\max}$$

Thermal radiation:

Particle distribution is determined by *T* and the relevant quantum statistics. For *non-relativistic*, this reduces to the Maxwell–Boltzmann distribution:

$$N(E) \propto e^{-E/kT}$$

Thermal distributions are exponential and controlled by T

Non-Thermal radiation:

Particle distribution is not determined by T given there is not an unique T scale. Instead, the shape of N(E) results by acceleration processes (shocks, turbulence, ...).

$$N(E) = KE^{-p}$$

Non-thermal distributions are power laws, controlled by acceleration physics

$$E_{\min} \leq E \leq E_{\max}$$

$$N(E)=KE^{-p}$$

number of particles or the energy density

normalization constant, fixed by the total number of particles or the energy density

→ crucial property of power laws is that they are *scale-free*

$$E_{\min} \leq E \leq E_{\max}$$

number of particles or the energy density

 \rightarrow crucial property of power laws is that they are scale-free

$$E_{\min} \leq E \leq E_{\max}$$

Shock acceleration predicts $p \simeq 2$; in real sources, spectra are steeper $p \sim 2.2 - 3$

number of particles or the energy density

 \rightarrow crucial property of power laws is that they are scale-free

$$E_{\min} \leq E \leq E_{\max}$$

Shock acceleration predicts $p \simeq 2$; in real sources, spectra are steeper $p \sim 2.2 - 3$

→ due to energy losses and particle escape and propagation

 \rightarrow crucial property of power laws is that they are scale-free

$$E_{\min} \leq E \leq E_{\max}$$

Shock acceleration predicts $p \simeq 2$; in real sources, spectra are steeper $p \sim 2.2 - 3$

→ due to energy losses and particle escape and propagation

$$N(E)=KE^{-p}$$
 spectral index normalization constant, fixed by the total number of particles or the energy density

→ crucial property of power laws is that they are *scale-free*

$$E_{\min} \leq E \leq E_{\max}$$

Shock acceleration predicts $p \simeq 2$; in real sources, spectra are steeper $p \sim 2.2 - 3$

 \rightarrow due to energy losses and particle escape and propagation

- Energy distribution depends on slope:
 - o for p > 2 low-energy particles dominate
 - \circ For p < 2 high-energy particles dominate

- Energy distribution depends on slope:
 - o for p > 2 low-energy particles dominate
 - \circ For p < 2 high-energy particles dominate

When we have a power-law spectrum:

- The shape of the spectrum (its slope) is determined by *p*
- K fixes the overall scale, and is determined by the *total number (or energy) of particles*

- Energy distribution depends on slope:
 - o for p > 2 low-energy particles dominate
 - \circ For p < 2 high-energy particles dominate

When we have a power-law spectrum:

- The shape of the spectrum (its slope) is determined by p
- K fixes the overall scale, and is determined by the total number (or energy) of particles

→ The normalization constant K must be determined!

There are two common ways:

- Normalize to the total number density of particles n
- Normalize to the *total energy density U*

There are two common ways:

- Normalize to the *total number density* of particles *n*
- Normalize to the *total energy density U*

$$n = \int N(E) \, dE$$

$$n = \int N(E) \, dE$$

Substituting $\ N(E)=KE^{-p}$

$$n=\int N(E)\,dE$$

Substituting $N(E)=KE^{-p}$

$$n=K\int_{E_{
m min}}^{E_{
m max}} E^{-p}\,dE$$

$$n=\int N(E)\,dE$$

Substituting $N(E)=KE^{-p}$

$$n=K\int_{E_{
m min}}^{E_{
m max}} E^{-p}\,dE$$

if $p \neq 1$ integral gives:

$$n=rac{K}{1-p}\Big(E_{
m max}^{1-p}-E_{
m min}^{1-p}\Big).$$

$$n=\int N(E)\,dE$$

Substituting $N(E)=KE^{-p}$

$$n=K\int_{E_{
m min}}^{E_{
m max}} E^{-p}\,dE$$

if $p \neq 1$ integral gives:

$$n=rac{K}{1-p}\Big(E_{
m max}^{1-p}-E_{
m min}^{1-p}\Big).$$

This allows us to solve for K: $K=n\,rac{1-p}{E_{\max}^{1-p}-E_{--}^{1-p}}$

Non-Thermal Radiation

$$n=K\int_{E_{
m min}}^{E_{
m max}} E^{-p}\,dE$$

If $p \le 1$: the integral becomes *infinite* at the lower limit

If $p \ge 1$: the *high-energy* part can dominate unless we impose a finite E_{max}

$$n=K\int_{E_{
m min}}^{E_{
m max}} E^{-p}\,dE$$

If $p \le 1$: the integral becomes *infinite* at the lower limit

If $p \ge 1$: the *high-energy* part can dominate unless we impose a finite E_{max}

- \bullet Lower cutoff $E_{\it min}$: set by $\it injection$ particles need a minimum energy to enter the acceleration process
- ullet Upper cutoff E_{max} : set by **losses & finite time** particles cannot be accelerated indefinitely
 - Radiative losses (synchrotron, inverse Compton)
 - Escape from the acceleration region
 - Limited source lifetime

There are two common ways:

- Normalize to the total number density of particles n
- Normalize to the *total energy density U*

There are two common ways:

- Normalize to the total number density of particles n
- Normalize to the total energy density U

If instead of knowing the number of particles, what we know is how much *energy* is available to accelerate them \rightarrow *total energy density:*

$$U = \int E \, N(E) \, dE$$

If instead of knowing the number of particles, what we know is how much *energy* is available to accelerate them \rightarrow *total energy density:*

$$U = \int E \, N(E) \, dE$$

Substituting the power law: $N(E) = KE^{-p}$

we obtain:

$$U=K\int_{E_{
m min}}^{E_{
m max}} E^{1-p}\,dE$$

Non-Thermal Radiation

If instead of knowing the number of particles, what we know is how much *energy* is available to accelerate them \rightarrow *total energy density*:

$$U = \int E \, N(E) \, dE$$
 .

Substituting the power law: $N(E) = KE^{-p}$

we obtain:

$$U=K\int_{E_{
m min}}^{E_{
m max}} E^{1-p}\,dE$$

Evaluating the integral for p
eq 2: $U = rac{K}{2-p} \Big(E_{
m max}^{2-p} - E_{
m min}^{2-p} \Big)$

Non-Thermal Radiation

If instead of knowing the number of particles, what we know is how much energy is available to accelerate them \rightarrow *total energy density:*

$$U=\int E\,N(E)\,dE$$
 .

Substituting the power law: $N(E) = KE^{-p}$

we obtain:

$$U=K\int_{E_{
m min}}^{E_{
m max}} E^{1-p}\,dE$$

Evaluating the integral for p
eq 2: $U = rac{K}{2-p} \Big(E_{
m max}^{2-p} - E_{
m min}^{2-p} \Big)$

$$U=rac{K}{2-p}\Big(E_{
m max}^{2-p}-E_{
m min}^{2-p}\Big)$$

we can solve for K:

$$K=U\,rac{2-p}{E_{
m max}^{2-p}-E_{
m min}^{2-p}}$$

$$U=K\int_{E_{
m min}}^{E_{
m max}} E^{1-p}\,dE$$

if *p* < 2:

- The integrand E^{1-p} decreases too slowly at high energies
- \bullet \quad As $E_{\mbox{\it max}}$ grows, the energy integral keeps increasing

$$U=K\int_{E_{
m min}}^{E_{
m max}} E^{1-p}\,dE$$

if *p* < 2:

- The integrand E^{1-p} decreases too slowly at high energies
- As E_{max} grows, the energy integral keeps increasing

if p>2

- The integrand E^{1-p} grows rapidly towards *low energies*
- \bullet As E_{min} approaches zero, the energy integral becomes arbitrarily large

$$U=K\int_{E_{
m min}}^{E_{
m max}} E^{1-p}\,dE$$

if *p* < 2:

- The integrand E^{1-p} decreases too slowly at high energies
- \bullet \quad As E_{max} grows, the energy integral keeps increasing

high-energy particles dominate the energy budget

 \rightarrow A finite E_{max} is required

if p>2

- The integrand E^{1-p} grows rapidly towards *low energies*
- \bullet As E_{min} approaches zero, the energy integral becomes arbitrarily large

low-energy particles dominate the energy budget

ightarrowA finite $E_{\it min}$ is required

Non-Thermal Radiation Mean energy

The *mean energy* provides:

- A characteristic value for the particle population
- Links the *total energy* to the *particle number*
- Indicates whether the energy budget is dominated by low- or high-energy particles

The *mean energy* provides:

- A characteristic value for the particle population
- Links the *total energy* to the *particle number*
- Indicates whether the energy budget is dominated by low- or high-energy particles

It is defined as the ratio between the *total energy density U* and the *number density n*:

$$\langle E
angle = rac{U}{n}$$

The *mean energy* provides:

- A characteristic value for the particle population
- Links the *total energy* to the *particle number*
- Indicates whether the energy budget is dominated by low- or high-energy particles

It is defined as the ratio between the total energy density U and the number density n:

$$\langle E
angle = rac{U}{n}$$

where:

$$U = \int E \, N(E) \, dE$$
 ; $n = \int N(E) \, dE$

The *mean energy* provides:

- A characteristic value for the particle population
- Links the *total energy* to the *particle number*
- Indicates whether the energy budget is dominated by low- or high-energy particles

It is defined as the ratio between the total energy density U and the number density n:

$$\langle E
angle = rac{U}{n}$$

where:

$$U=\int E\,N(E)\,dE$$
 ; $n=\int N(E)\,dE$

$$\langle E
angle = rac{U}{n} = rac{\int E \, N(E) \, dE}{\int N(E) \, dE}$$

Substituting for the power law distribution $N(E)=KE^{-p}$:

$$\langle E
angle = rac{\int_{E_{
m min}}^{E_{
m max}} E^{1-p} \, dE}{\int_{E_{
m min}}^{E_{
m max}} E^{-p} \, dE}$$

Substituting for the power law distribution $N(E)=KE^{-p}$:

$$\langle E
angle = rac{\int_{E_{
m min}}^{E_{
m max}} E^{1-p} \, dE}{\int_{E_{
m min}}^{E_{
m max}} E^{-p} \, dE}$$

When we compute the *mean energy* of a power-law distribution, the integral only makes sense if we restrict the energy range.

Convergence conditions:

- ullet Finite E_{min} required if $p \geq 2 \rightarrow$ limits the influence of low-energy particles
- Finite E_{max} required if $p \le 2 \rightarrow$ limits the influence of high-energy particles

Substituting for the power law distribution $N(E)=KE^{-p}$:

$$\langle E
angle = rac{\int_{E_{
m min}}^{E_{
m max}} E^{1-p} \, dE}{\int_{E_{
m min}}^{E_{
m max}} E^{-p} \, dE}$$

When we compute the *mean energy* of a power-law distribution, the integral only makes sense if we restrict the energy range.

Special cases:

- At exactly p=2, the mean energy depends logarithmically on the ratio $\ln \left(\frac{E_{max}}{E_{min}} \right)$, meaning both energy limits are important
- For p>2, most of the energy is carried by the low-energy particles, so $\langle {\it E} \rangle$ is close to E_{min}
- For p<2, a few very energetic particles dominate, so $\langle {\rm E} \rangle$ is close to E_{max}

Substituting for the power law distribution $N(E)=KE^{-p}$:

$$\langle E
angle = rac{\int_{E_{
m min}}^{E_{
m max}} E^{1-p} \, dE}{\int_{E_{
m min}}^{E_{
m max}} E^{-p} \, dE}$$

When we compute the *mean energy* of a power-law distribution, the integral only makes sense if we restrict the energy range.

This result shows which particles control the source energetics: either the low-energy ones or the few very energetic ones

emission process

emission process

$$N(E) = KE^{-p}$$

Particle spectrum: $N(E)=KE^{-p}$, $E_{\min} \leq E \leq E_{\max}$

emission process

Particle spectrum: $N(E)=KE^{-p}$, $E_{\min} \leq E \leq E_{\max}$

ullet Emissivity $j_
u$: Defined as the energy emitted per unit time, per unit volume, per unit frequency, and per unit solid angle:

$$j_{
u} \; = \; rac{dE}{dV \, dt \, d
u \, d\Omega}$$

emission process

Particle spectrum: $N(E)=KE^{-p}$, $E_{\min} \leq E \leq E_{\max}$

ullet Emissivity $j_
u$: Defined as the energy emitted per unit time, per unit volume, per unit frequency, and per unit solid angle:

$$j_{
u} \; = \; rac{dE}{dV \, dt \, d
u \, d\Omega}$$

• A particle with energy *E* radiates a power spectrum at frequency *V*:

$$P(\nu, E)$$

• The particle population is described by the differential number density N(E) in E and E+dE:

N(E) dE

• The particle population is described by the differential number density N(E) in E and E+dE:

• Summing (integrating) over all particle energies gives the total emissivity:

$$j_
u \ = \ \int_{E_{
m min}}^{E_{
m max}} N(E) \, P(
u,E) \, dE$$

• The particle population is described by the differential number density N(E) in E and E+dE:

• Summing (integrating) over all particle energies gives the total emissivity:

$$j_{
u} \; = \; \int_{E_{
m min}}^{E_{
m max}} N(E) \, P(
u, E) \, dE \; .$$

If particles radiated at a single frequency, the spectrum would copy N(E). In reality, each particle radiates over a frequency range, so the observed spectrum is a mixture of particle distribution and emission physics

$$j_
u \ = \ \int_{E_{
m min}}^{E_{
m max}} N(E) \, P(
u,E) \, dE$$

It tells us that the observed photon spectrum is the convolution of the particle distribution with the single-particle emission physics

$$j_
u \ = \ \int_{E_{
m min}}^{E_{
m max}} N(E) \, P(
u,E) \, dE$$

It tells us that the observed photon spectrum is the convolution of the particle distribution with the single-particle emission physics

Non-thermal sources often show photon spectra as power laws, reflecting the **underlying particle distribution**

- Non-Thermal Radiation
- Thermal radiation vs Non-Thermal radiation
- Hadronic Processes:
 - Proton-proton collisions
 - Pion production & decay
 - Gamma-ray and neutrino emission

- Non-Thermal Radiation
- Thermal radiation vs Non-Thermal radiation

• Hadronic Processes:

- Proton-proton collisions
- Pion production & decay
- Gamma-ray and neutrino emission

Non-Thermal Radiation	Hadronic processes
What are Hadronic Processes?	

Hadronic processes* = interactions of relativistic protons and atomic nuclei with matter

^{*}Distinct from leptonic processes (driven by electrons/positrons)

Hadronic processes* = interactions of relativistic protons and atomic nuclei with matter

→ hadronic interactions are a natural source of *gamma rays* and *neutrinos*

Hadronic processes* = interactions of relativistic protons and atomic nuclei with matter

→ hadronic interactions are a natural source of *gamma rays* and *neutrinos*

Importance:

- Cosmic rays are mostly protons (~90%)
- Protons can reach ultra-high energies (>10²⁰ eV)
- When collide → generate secondary particles
- Explain observed high-energy y-rays
- Produce astrophysical neutrinos (multi-messenger signals)
- Reveal cosmic-ray acceleration in sources (SNRs, AGN, starbursts)

- Proton-proton (pp):
 - Dominant channel in astrophysics (ISM, molecular clouds)
 - Inelastic collisions:

$$p+p \;
ightarrow \; p+p+\pi^0, \pi^\pm + \dots$$

- Proton-proton (pp):
 - Dominant channel in astrophysics (ISM, molecular clouds)
 - Inelastic collisions:

$$p+p \;
ightarrow \; p+p+\pi^0, \pi^\pm + \dots$$

- Proton-nucleus (p-A):
 - CR protons collide with heavier nuclei (C, O, Fe)
 - Higher pion multiplicity

- Proton-proton (pp):
 - Dominant channel in astrophysics (ISM, molecular clouds)
 - Inelastic collisions:

$$p+p \;
ightarrow \; p+p+\pi^0, \pi^\pm + \dots$$

- Proton-nucleus (p-A):
 - CR protons collide with heavier nuclei (C, O, Fe)
 - Higher pion multiplicity
- Nucleus-nucleus (A-A):
 - Collisions of CR nuclei with other nuclei
 - Important at ultra-high energies

- Proton-proton (pp):
 - Dominant channel in astrophysics (ISM, molecular clouds)
 - Inelastic collisions:

$$p+p \;
ightarrow \; p+p+\pi^0, \pi^\pm + \dots$$

- Proton-nucleus (p-A):
 - CR protons collide with heavier nuclei (C, O, Fe)
 - Higher pion multiplicity
- Nucleus-nucleus (A-A):
 - Collisions of CR nuclei with other nuclei
 - Important at ultra-high energies
- Proton–photon (p–γ, photohadronic):
 - Relativistic proton + photon radiation field
 - \circ Via Δ + resonance
 - Relevant in GRBs and AGN jets

- Non-Thermal Radiation
- Thermal radiation vs Non-Thermal radiation
- Hadronic Processes:
 - Proton-proton collisions
 - Pion production & decay
 - Gamma-ray and neutrino emission

- Non-Thermal Radiation
- Thermal radiation vs Non-Thermal radiation
- Hadronic Processes:
 - Proton-proton collisions
 - Pion production & decay
 - Gamma-ray and neutrino emission

Basic process: $p+p \longrightarrow p+p+\pi^0, \quad p+p+\pi^\pm, \quad \dots$

Basic process: $p+p \longrightarrow p+p+\pi^0, \quad p+p+\pi^\pm, \quad \dots$

Basic process: $p+p \longrightarrow p+p+\pi^0, \quad p+p+\pi^\pm, \quad \dots$

Inelastic: part of the kinetic energy converted into new particles => **non-thermal** radiation via pion production **Elastic scattering**: no new particle, only momentum redistribution => **no** non-thermal radiation, only scattering

Relativistic cosmic-ray protons collide with medium (cold) protons → pion production

Importance: pions decay into γ rays and neutrinos \rightarrow key to non-thermal signatures

Threshold Energy for Pion Production

- Defines the *minimum proton energy* to produce pions
- Below threshold \rightarrow no π^0 , $\pi^{\pm} \rightarrow$ no hadronic γ , ν
- Sets the lower integration limit in all emissivity calculations for hadronic γ -ray and neutrino production

Threshold Energy for Pion Production

- Defines the *minimum proton energy* to produce pions
- Below threshold \rightarrow no π^0 , $\pi^{\pm} \rightarrow$ no hadronic γ , ν
- Sets the lower integration limit in all emissivity calculations for hadronic γ -ray and neutrino production

Minimum kinetic energy that an incoming proton must have in the *lab frame* for pion production in a p-p collision to be kinematically allowed

Threshold Energy for Pion Production

Mandelstam invariant (s):

It is a relativistic invariant: its value is the same in any reference frame, which makes it ideal to connect the lab frame and the center-of-mass frame.

$$s \equiv (p_1 + p_2)^2$$
 square of the total 4-momentum of the system

with p_{p} , p_{2} = 4-momenta of the colliding particles

 \sqrt{s} = total energy available in the center-of-mass frame

Threshold Energy for Pion Production

Mandelstam invariant (s):

It is a relativistic invariant: its value is the same in any reference frame, which makes it ideal to connect the lab frame and the center-of-mass frame.

$$s \equiv (p_1 + p_2)^2$$
 square of the total 4-momentum of the system

with p_p , p_2 = 4-momenta of the colliding particles

$$\sqrt{s}$$
 = total energy available in the center-of-mass frame

If an *incident* proton (CR) collides with a *target* proton at rest (ISM/CSM):

$$s = (p_{
m inc} + p_{
m tar})^2 = 2 m_p^2 c^4 + 2 m_p c^2 E_p^{
m lab}$$

 $[T_p = \text{kinetic energy of the incident proton (lab frame)}]$

Threshold condition (c.m. frame):

$$\sqrt{s_{
m thr}}=2m_pc^2+m_\pi c^2$$

Solving for incident energy:

$$E_p^{
m lab} = m_p c^2 + T_p^{
m thr}$$

$$T_p^{
m thr} = 2 m_\pi c^2 + rac{m_\pi^2 c^4}{2 m_p c^2}$$

Threshold condition (c.m. frame):

$$\sqrt{s_{
m thr}}=2m_pc^2+m_\pi c^2$$

Solving for incident energy:

$$E_p^{
m lab} = m_p c^2 + T_p^{
m thr}$$

$$T_p^{
m thr} = 2 m_\pi c^2 + rac{m_\pi^2 c^4}{2 m_n c^2}.$$

Solving for π^0 :

$$T_p^{
m thr}~pprox~280~{
m MeV}$$

- Only CRs with energies above this value can produce pions!
 - It sets the lower integration limit in all emissivity calculations for hadronic γ-ray and neutrino production

→ Once we know the process is possible, the next question is its probability of occurrence

 $\sigma_{pp}^{
m inel}(E)$: effective area measuring probability of pion production in a proton–proton collision

→ Once we know the process is possible, the next question is its probability of occurrence

 $\sigma_{pp}^{
m inel}(E)$: effective area measuring probability of pion production in a proton–proton collision

Kelner, Aharonian & Bugayov 2006:

$$\sigma_{pp}^{
m inel}(E_p) \; \simeq \; \left(34.3 + 1.88\,L + 0.25\,L^2
ight) \left[1 - \left(rac{E_{
m thr}}{E_p}
ight)^4
ight]^2 \quad {
m mb}$$

→ Once we know the process is possible, the next question is its probability of occurrence

$$\sigma_{pp}^{
m inel}(E)\,$$
 : effective area measuring probability of pion production in a proton–proton collision

Kelner, Aharonian & Bugayov 2006:

$$\sigma_{pp}^{
m inel}(E_p) \; \simeq \; \left(34.3 + 1.88\,L + 0.25\,L^2
ight) \left[1 - \left(rac{E_{
m thr}}{E_p}
ight)^4
ight]^2 \quad {
m mb}$$

$$L = \ln\!\left(rac{E_p}{1\,{
m TeV}}
ight)$$

 E_n : proton total energy in the lab frame

 $E_{\it thr} \approx$ 1.22 GeV : threshold for pion production

→ Once we know the process is possible, the next question is its probability of occurrence

$$\sigma_{pp}^{
m inel}(E)$$
 : effective area measuring probability of pion production in a proton–proton collision

Kelner, Aharonian & Bugayov 2006:

$$\sigma_{pp}^{
m inel}(E_p) \; \simeq \; \left(34.3 + 1.88\,L + 0.25\,L^2
ight) \left[1 - \left(rac{E_{
m thr}}{E_p}
ight)^4
ight]^2 \quad {
m mb}$$

$$L = \ln\!\left(rac{E_p}{1\,{
m TeV}}
ight)$$

 E_n : proton total energy in the lab frame

 $E_{\it thr} pprox$ 1.22 GeV : threshold for pion production

 $T_p^{
m thr} pprox 280~{
m MeV}$: kinetic energy of the incident proton in the lab frame

 $E_{\it thr}$ \thickapprox 1.22 GeV : total energy (rest + kinetic) of the same proton

Cross Section

Energy dependence:

- ullet $\sigma_{pp}^{
 m inel} pprox 0$ for $E_p < E_{
 m thr}$
- Rapid rise above threshold
- Plateau at ~30–50 mb for $E_p \gtrsim 10~{
 m GeV}$

- At **threshold**: when the incident proton has enough energy, only **one pion** can be produced, either neutral (π^0) or charged (π^+)
- Channels: Cross section was 0 until 280 MeV $T_n!$

$$pp \;
ightarrow \; pp + \pi^0 \hspace{1cm} pp \;
ightarrow \; pn + \pi^+$$

- At **threshold**: when the incident proton has enough energy, only **one pion** can be produced, either neutral (π^0) or charged (π^+)
- Channels: Cross section was 0 until 280 MeV $T_p!$

$$pp
ightarrow pp + \pi^0 \hspace{1cm} pp
ightarrow pn + \pi^+$$

As we increase the proton energy, more and more energy is available

 \Rightarrow Instead of increasing the chance of one pion \rightarrow the same cross section now allows the production of several pions per collision

- At **threshold**: when the incident proton has enough energy, only **one pion** can be produced, either neutral (π^0) or charged (π^+)
- Channels: Cross section was 0 until 280 MeV $T_n!$

$$pp \;
ightarrow \; pp + \pi^0 \hspace{1cm} pp \;
ightarrow \; pn + \pi^+$$

As we increase the proton energy, more and more energy is available

 \Rightarrow Instead of increasing the chance of one pion \rightarrow the same cross section now allows the production of several pions per collision

Pion multiplicity

- At **threshold**: when the incident proton has enough energy, only **one pion** can be produced, either neutral (π^0) or charged (π^+)
- Cross section was 0 until 280 MeV $T_n!$ Channels:

$$pp
ightarrow pp + \pi^0 \qquad pp
ightarrow pn + \pi^+$$

- **Above threshold** (higher energies): Multiple pions are produced per collision
- The average multiplicity grows slowly with proton energy
- Roughly:

$$\langle n_\pi
angle \ pprox \ a + b \, \ln igg(rac{E_p}{E_0} igg)$$

where:

- E_p = incident proton energy (lab) $E_0 \sim m_p c^2$ = reference scale a,b = constants (order unity)

• Neutral vs charged pions

Neutral pions (π⁰)

• Neutral vs charged pions

Neutral pions (π^0)

★ Produced abundantly in pp collisions

• Neutral vs charged pions

Neutral pions (π^0)

★ Produced abundantly in pp collisions

 \star Very short lifetime (~10⁻¹⁶ s)

• Neutral vs charged pions

Neutral pions (π^0)

- ★ Produced abundantly in pp collisions
- \star Very short lifetime (~10⁻¹⁶ s)
- ★ Decay almost exclusively into two gamma-ray photons:

$$\pi^0 \rightarrow \gamma + \gamma$$

• Neutral vs charged pions

Neutral pions (π^0)

★ Produced abundantly in pp collisions

 \bigstar Very short lifetime (~10⁻¹⁶ s)

★ Decay almost exclusively into two gamma-ray photons:

$$\Pi^0 \rightarrow \gamma + \gamma$$

★ Photons typically MeV-TeV energies, detected by Fermi-LAT (GeV), CTA (TeV)

• Neutral vs charged pions

Neutral pions (π^0)

★ Produced abundantly in pp collisions

 \star Very short lifetime (~10⁻¹⁶ s)

★ Decay almost exclusively into two gamma-ray photons:

$$\Pi^0 \rightarrow \gamma + \gamma$$

★ Photons typically MeV-TeV energies, detected by Fermi-LAT (GeV), CTA (TeV)

 \star π^0 decay is the direct source of hadronic gamma-ray emission

• Neutral vs charged pions

Neutral pions (π^0)

★ Produced abundantly in pp collisions

 \bigstar Very short lifetime (~10⁻¹⁶ s)

★ Decay almost exclusively into two gamma-ray photons:

$$\Pi^0 \rightarrow \gamma + \gamma$$

★ Photons typically MeV—TeV energies, detected by Fermi-LAT (GeV), CTA (TeV)

 \star π^0 decay is the direct source of hadronic gamma-ray emission

Charged pions (π^{\pm})

• Neutral vs charged pions

Neutral pions (π^0)

★ Produced abundantly in pp collisions

 \star Very short lifetime (~10⁻¹⁶ s)

★ Decay almost exclusively into two gamma-ray photons:

$$\Pi^0 \rightarrow \gamma + \gamma$$

★ Photons typically MeV-TeV energies, detected by Fermi-LAT (GeV), CTA (TeV)

 \star π^0 decay is the direct source of hadronic gamma-ray emission

Charged pions (π^{\pm})

 \bigstar Longer lifetime (~10⁻⁸ s)

• Neutral vs charged pions

Neutral pions (π^0)

- ★ Produced abundantly in pp collisions
- \bigstar Very short lifetime (~10⁻¹⁶ s)
- ★ Decay almost exclusively into two gamma-ray photons:

$$\Pi^0 \rightarrow \gamma + \gamma$$

- ★ Photons typically MeV-TeV energies, detected by Fermi-LAT (GeV), CTA (TeV)
- \star π^0 decay is the direct source of hadronic gamma-ray emission

Charged pions (π^{\pm})

- ★ Longer lifetime (~10⁻⁸ s)
- ★ Decay primarily into muons + muon neutrinos:

$$\pi^+ \,
ightarrow \, \mu^+ +
u_\mu, \quad \pi^- \,
ightarrow \, \mu^- + ar
u_\mu$$

• Neutral vs charged pions

Neutral pions (π^0)

- ★ Produced abundantly in pp collisions
- \star Very short lifetime (~10⁻¹⁶ s)
- ★ Decay almost exclusively into two gamma-ray photons:

$$\Pi^0 \rightarrow V+V$$

- ★ Photons typically MeV-TeV energies, detected by Fermi-LAT (GeV), CTA (TeV)
- \star π^0 decay is the direct source of hadronic gamma-ray emission

Charged pions (π^{\pm})

- ★ Longer lifetime (~10⁻⁸ s)
- ★ Decay primarily into muons + muon neutrinos:

$$\pi^+ \,
ightarrow \, \mu^+ +
u_\mu, \quad \pi^- \,
ightarrow \, \mu^- + ar{
u}_\mu$$

★ Muons then decay further:

$$\mu^+ \,
ightarrow \, e^+ +
u_e + ar
u_\mu, \quad \mu^- \,
ightarrow \, e^- + ar
u_e +
u_\mu$$

• Neutral vs charged pions

Neutral pions (π^0)

- ★ Produced abundantly in pp collisions
- \star Very short lifetime (~10⁻¹⁶ s)
- ★ Decay almost exclusively into two gamma-ray photons:

$$\Pi^0 \rightarrow V+V$$

- ★ Photons typically MeV-TeV energies, detected by Fermi-LAT (GeV), CTA (TeV)
- \star π^0 decay is the direct source of hadronic gamma-ray emission

Charged pions (π^{\pm})

- ★ Longer lifetime (~10⁻⁸ s)
- ★ Decay primarily into muons + muon neutrinos:

$$\pi^+ \,
ightarrow \, \mu^+ +
u_\mu, \quad \pi^- \,
ightarrow \, \mu^- + ar{
u}_\mu$$

★ Muons then decay further:

$$\mu^+
ightarrow e^+ +
u_e + ar
u_\mu, \quad \mu^-
ightarrow e^- + ar
u_e +
u_\mu$$

★ Final products: neutrinos of several flavors + secondary electrons/positrons

• Neutral vs charged pions

Neutral pions (π^0)

- ★ Produced abundantly in pp collisions
- \bigstar Very short lifetime (~10⁻¹⁶ s)
- ★ Decay almost exclusively into two gamma-ray photons:

$$\Pi^0 \rightarrow \gamma + \gamma$$

- ★ Photons typically MeV-TeV energies, detected by Fermi-LAT (GeV), CTA (TeV)
- \star π^0 decay is the direct source of hadronic gamma-ray emission

Charged pions (π^{\pm})

- ★ Longer lifetime (~10⁻⁸ s)
- ★ Decay primarily into muons + muon neutrinos:

$$\pi^+ \,
ightarrow \, \mu^+ +
u_\mu, \quad \pi^- \,
ightarrow \, \mu^- + ar{
u}_\mu$$

★ Muons then decay further:

$$\mu^+
ightarrow e^+ +
u_e + ar
u_\mu, \quad \mu^-
ightarrow e^- + ar
u_e +
u_\mu$$

- ★ Final products: neutrinos of several flavors + secondary electrons/positrons
- * π± are the main channel for astrophysical neutrino production

- Neutral vs charged pions
- ightharpoonup Each pp collision produces a mixture of π^0 and π^{\pm}
- Outcomes:
 - Gamma rays (from π^0)
 - Neutrinos (from π^{\pm})
 - Secondary e[±] (from muon decay)

- Neutral vs charged pions
- \triangleright Each pp collision produces a mixture of π^0 and π^{\pm}
- Outcomes:
 - \circ Gamma rays (from π^0)
 - \circ Neutrinos (from π^{\pm})
 - Secondary e[±] (from muon decay)

pp collisions are factories of pions \rightarrow sources of **multi-messenger** emission ($\gamma + v + e^{\pm}$)

from the *pion physics* \rightarrow observable *photon spectrum*

from the *pion physics* \rightarrow observable *photon spectrum*

Proton population follows a power-law distribution:

$$N_p(E_p) = K\,E_p^{-p}$$

$$E_{p, ext{min}} \leq E_{p} \leq E_{p, ext{max}}$$

from the *pion physics* \rightarrow observable *photon spectrum*

Proton population follows a power-law distribution:

$$N_p(E_p) = K\,E_p^{-p} \qquad \qquad E_{p, ext{min}} \leq E_p \leq E_{p, ext{max}}$$

Production rate of gamma rays per unit volume and energy is the emissivity:

$$q_{\gamma}(E_{\gamma})$$

from the pion physics \rightarrow observable photon spectrum

Proton population follows a power-law distribution:

$$N_p(E_p) = K \, E_p^{-p} \qquad \qquad E_{p, ext{min}} \leq E_p \leq E_{p, ext{max}}$$

Production rate of gamma rays per unit volume and energy is the emissivity:

$$q_{\gamma}(E_{\gamma})$$

How do we calculate the hadronic γ -ray emissivity?

from the *pion physics* → observable *photon spectrum*

Proton population follows a power-law distribution:

$$N_p(E_p) = K\,E_p^{-p} \qquad \qquad E_{p, ext{min}} \leq E_p \leq E_{p, ext{max}}$$

Production rate of gamma rays per unit volume and energy is the emissivity:

$$q_{\gamma}(E_{\gamma})$$

 \rightarrow It is obtained by integrating the proton distribution weighted by the differential cross section for pp collisions producing π^0

Proton spectrum:

$$N_p(E_p) \ [{
m cm}^{-3} \, {
m GeV}^{-1}]$$

Proton spectrum:

$$N_p(E_p) \ [{
m cm}^{-3} \, {
m GeV}^{-1}]$$

Interaction rate per proton energy:

$$d\dot{n}_{
m int}(E_p) = n_{
m H}\,N_p(E_p)\,c\,\sigma_{pp}^{
m inel}(E_p)\,dE_p$$
 — Number of pp interactions per unit volume and per unit time contributed by protons with energies in [Ep, Ep+dEp]

Proton spectrum:

$$N_p(E_p) \ [{
m cm}^{-3} \, {
m GeV}^{-1}]$$

Interaction rate per proton energy:

$$d\dot{n}_{
m int}(E_p) = n_{
m H}\,N_p(E_p)\,c\,\sigma_{pp}^{
m inel}(E_p)\,dE_p$$
 — Number of pp interactions per unit volume and per unit time contributed by protons with energies in [Ep, Ep+dEp]

Differential photon production cross section:

Number of pp interactions per unit

volume and per unit time contributed by protons with energies in [Ep, Ep+dEp]

Proton spectrum:

$$N_p(E_p) \ [{
m cm}^{-3} \, {
m GeV}^{-1}]$$

Interaction rate per proton energy:

$$d\dot{n}_{
m int}(E_p) = n_{
m H}\,N_p(E_p)\,c\,\sigma_{pp}^{
m inel}(E_p)\,dE_p$$

Differential photon production cross section:

Photon emissivity (per $E\gamma$):

$$q_{\gamma}(E_{\gamma}) = n_{
m H}\, c \int_{E_{n\,
m thr}}^{\infty} N_p(E_p) \, rac{d\sigma_{pp
ightarrow\gamma}(E_p,E_{\gamma})}{dE_{\gamma}} \, dE_p$$

 γ -ray emissivity is the convolution of the proton spectrum with the differential cross section, weighted by the target density and c

$$q_{\gamma}(E_{\gamma}) \; = \; n_{
m H} \, c \int N_p(E_p) \, rac{d\sigma_{pp
ightarrow\pi^0
ightarrow\gamma}(E_p,E_{\gamma})}{dE_{\gamma}} \, dE_p$$

$$q_{\gamma}(E_{\gamma}) \; = \; n_{
m H} \, c \int N_p(E_p) \, rac{d\sigma_{pp
ightarrow\pi^0
ightarrow\gamma}(E_p,E_{\gamma})}{dE_{\gamma}} \, dE_p \; ,$$

- proton spectrum and the detailed photon production cross section
- The *differential cross section* $\frac{d\sigma}{dE_{\gamma}}$, which comes from complex nuclear physics. In principle, this cross section is difficult to compute and contains many details.

$$q_{\gamma}(E_{\gamma}) \; = \; n_{
m H} \, c \int N_p(E_p) \, rac{d\sigma_{pp
ightarrow\pi^0
ightarrow\gamma}(E_p,E_{\gamma})}{dE_{\gamma}} \, dE_p \, ,$$

- proton spectrum and the detailed photon production cross section
- The *differential cross section* $\frac{d\sigma}{dE_{\gamma}}$, which comes from complex nuclear physics. In principle, this cross section is difficult to compute and contains many details.

However, accelerator data and phenomenological models show:

At high energies, the differential cross section has only a weak dependence on proton energy \rightarrow it scales approximately with the ratio $x=E_{\gamma}/E_{p}$ \leftarrow **Scaling approximation**

$$q_{\gamma}(E_{\gamma}) \; = \; n_{
m H} \, c \int N_p(E_p) \, rac{d\sigma_{pp
ightarrow\pi^0
ightarrow\gamma}(E_p,E_{\gamma})}{dE_{\gamma}} \, dE_p \; ,$$

- proton spectrum and the detailed photon production cross section
- The *differential cross section* $\frac{d\sigma}{dE_{\gamma}}$, which comes from complex nuclear physics. In principle, this cross section is difficult to compute and contains many details.

However, accelerator data and phenomenological models show:

At high energies, the differential cross section has only a weak dependence on proton energy \rightarrow it scales approximately with the ratio $x=E_{\gamma}/E_{p}$ \leftarrow **Scaling approximation**

With the scaling approximation, the **photon** spectrum directly reflects the **slope** of the **proton** spectrum: $N_p(E_p) \propto E_p^{-p}$

$$q_{\gamma}(E_{\gamma}) \; = \; n_{
m H} \, c \int N_p(E_p) \, rac{d\sigma_{pp
ightarrow\pi^0
ightarrow\gamma}(E_p,E_{\gamma})}{dE_{\gamma}} \, dE_p \, ,$$

- proton spectrum and the detailed photon production cross section
- The **differential cross section** $\frac{d\sigma}{dE_{\gamma}}$, which comes from complex nuclear physics. In principle, this cross section is difficult to compute and contains many details.

However, accelerator data and phenomenological models show:

- At high energies, the differential cross section has only a weak dependence on proton energy \rightarrow it scales approximately with the ratio $x=E_{\gamma}/E_{p}$ \leftarrow **Scaling approximation**

With the scaling approximation, the photon spectrum directly inherits the slope of the proton spectrum: $N_p(E_p) \propto E_p^{-p}$

Thus, if cosmic-ray protons follow a power law with slope p, the produced γ -rays will also follow a power law with the same slope p.

$$q_{\gamma}(E_{\gamma}) \; = \; n_{
m H} \, c \int N_p(E_p) \, rac{d\sigma_{pp
ightarrow \pi^0
ightarrow \gamma}(E_p,E_{\gamma})}{dE_{\gamma}} \, dE_p \; ,$$

This is a fundamental result for HE astrophysics:

By measuring the *hadronic y-ray spectrum*, we can directly infer the slope of the underlying proton population — a bridge between what we cannot see (CR protons) and what we can observe (photons)

Observational Signatures: the pion bump

Hadronic models predict a very specific spectral feature: *pion bump* around **100 MeV**.

Observational Signatures: the pion bump

Hadronic models predict a very specific spectral feature: pion bump around 100 MeV.

This comes directly from neutral pions decay: $\pi^0
ightarrow \gamma + \gamma$

Observational Signatures: the pion bump

Hadronic models predict a very specific spectral feature: pion bump around 100 MeV.

This comes directly from neutral pions decay: $\pi^0 \rightarrow \gamma + \gamma$

The π^0 has a rest mass of:

135 MeV/c²

Observational Signatures: the pion bump

Hadronic models predict a very specific spectral feature: *pion bump* around **100 MeV**.

This comes directly from neutral pions decay: $\pi^0
ightarrow \gamma + \gamma$

The π^0 has a rest mass of:

In the pion rest frame, each photon has:

$$E_{\gamma}~pprox~rac{m_{\pi^0}c^2}{2}~pprox~67.5\,{
m MeV}$$

Observational Signatures: the pion bump

Hadronic models predict a very specific spectral feature: pion bump around 100 MeV.

This comes directly from neutral pions decay: $\pi^0 \rightarrow \gamma + \gamma$

The π^0 has a rest mass of:

In the pion rest frame, each photon has:

$$E_{\gamma}~pprox~rac{m_{\pi^0}c^2}{2}~pprox~67.5\,{
m MeV}$$

If the pion is moving (e.g. in a SNR), this value is **broadened** by relativistic effects (Doppler, boosting), and in the spectrum it appears as the **pion bump** around 100 MeV.

Observational Signatures: the pion bump

Hadronic models predict a very specific spectral feature: pion bump around 100 MeV.

This comes directly from neutral pions decay: $~\pi^0 ~ o ~\gamma + \gamma$

The π^0 has a rest mass of:

In the pion rest frame, each photon has:

$$E_{\gamma}~pprox~rac{m_{\pi^0}c^2}{2}~pprox~67.5\,{
m MeV}$$

2013: Fermi-LAT detected this spectral shape in IC443 and W44, and it was considered the *first direct evidence* that *SNRs* produce gamma rays through hadronic collisions!

The pion bump is considered a **smoking-gun signature of hadronic emission**

Observational Signatures: the pion bump

Hadronic models predict a very specific spectral feature: pion bump around 100 MeV.

This comes directly from neutral pions decay: $\pi^0
ightarrow \gamma + \gamma$

The π^0 has a rest mass of:

In the pion rest frame, each photon has:

$$E_{\gamma}~pprox~rac{m_{\pi^0}c^2}{2}~pprox~67.5\,{
m MeV}$$

No *leptonic process* (bremsstrahlung, synchrotron, inverse Compton) produces such a pronounced feature around 100 MeV

The pion bump is considered a **smoking-gun signature of hadronic emission**

$$pp$$
 collision $\pi^0 \, o \, \gamma + \gamma$

For every γ -ray from π^0 , we expect a comparable flux of neutrinos from π^{\pm}

Both originate from the same hadronic process (pp or $p\gamma$). Therefore, the γ -ray and neutrino spectra are linked

Each π[±] produces **3 neutrinos**:

- 2 muon-type
- 1 electron-type

For every γ -ray from π^0 , we expect a comparable flux of neutrinos from π^\pm

Each π^{\pm} produces **3 neutrinos**:

- 2 muon-type
- 1 electron-type
- Detecting γ-rays alone does not guarantee a hadronic origin (they may also be leptonic)
- **Detecting γ + v simultaneously** = unambiguous evidence of hadronic processes.
- Neutrinos travel unaffected by magnetic fields → direct tracers of acceleration sites → MM

Nataly Ospina (Istituto Nazionale di Fisica Nucleare)

"IT'S DOWN. THE PARTICLES ARE SUPPOSED TO COLLIDE WITH OTHER PARTICLES, NOT WITH THE PHYSICISTS."

- Cosmic ray definition
- Production of Cosmic rays
- Cosmic ray propagation in the Galaxy

- Cosmic ray definition
- Production of Cosmic rays
- Cosmic ray propagation in the Galaxy

First discovered by Victor Hess (1912, balloon experiments)

- First discovered by Victor Hess (1912, balloon experiments)
- Relativistic charged particles traveling at relativistic velocities
- Composition:
 - ~ 90% protons
 - ~ 9% helium nuclei (α-particles)
 - ~ 1% heavier nuclei (C, O, Fe, ...)
 - < 1% electrons and positrons</p>
- Energy range:

$$E\sim 10^9\,\mathrm{eV}~\mathrm{(GeV)}~\mathrm{to}~> 10^{20}\,\mathrm{eV}$$
 UHE

Cosmic rays have a non-thermal power-law energy spectrum

Composition

- ~ 90% protons
- \circ ~ 9% helium nuclei (α -particles)
- ~ 1% heavier nuclei (C, O, Fe, ...)
- < 1% electrons and positrons</p>

- Cosmic-ray composition is similar to the solar
- There is an overabundance of Li, Be, and
 B. These arise from spallation reactions
- This detail connects CR physics with nuclear processes in the ISM.

Primary Cosmic Rays (p, He, C, O, ...):

Primary CRs carry information about their original spectra and propagation

⇒When the primary CRs from the outer space hits the upper atmosphere, produces a *shower of other particles*. Particles in the shower are called secondary CRs.

Secondary Cosmic Rays (Li, Be, B, ...):

Secondary CRs carry information about propagation of primaries, secondaries and interactions in the ISM.

- → Creating:
- Electromagnetic shower: mainly γ-rays
- Hadronic shower: mainly muons and neutrinos

Energy Spectrum

One of the most remarkable features of CRs is their energy spectrum:

It extends over ~14 orders of magnitude, from GeV energies up to 10²⁰ eV

$$E \sim 10^9 \, {
m eV} \ ({
m GeV}) \ \
ightarrow \ > 10^{20} \, {
m eV}$$

The flux is usually expressed as a differential intensity, J(E), which follows a power law:

$$J(E) \, \propto \, E^{-\gamma}$$

The slope, or spectral index γ , is not constant:

• At energies below the **knee** ($^{3}\times10^{15}$ eV), the spectrum has slope 2 2.7

The slope, or spectral index γ , is not constant:

- At energies below the **knee** ($^{\sim}3\times10^{15}$ eV), the spectrum has slope $\gamma\approx2.7$
- After the knee, the spectrum steepens to γ≈3.0.
 This break is thought to mark the limit of Galactic accelerators such as SNRs

The slope, or spectral index γ , is not constant:

- At energies below the **knee** ($^{\sim}3\times10^{15}$ eV), the spectrum has slope $\gamma\approx2.7$
- After the knee, the spectrum steepens to γ≈3.0.
 This break is thought to mark the limit of Galactic accelerators such as SNRs
- At even higher energies, above the ankle (~10^{18.5} eV), the spectrum flattens back to γ≈2.7, interpreted as the transition to an extragalactic component

The slope, or spectral index γ , is not constant:

- At energies below the **knee** ($^{\sim}3\times10^{15}$ eV), the spectrum has slope $\gamma\approx2.7$
- After the knee, the spectrum steepens to γ≈3.0.
 This break is thought to mark the limit of Galactic accelerators such as SNRs
- At even higher energies, above the ankle (~10^{18.5} eV), the spectrum flattens back to γ≈2.7, interpreted as the transition to an extragalactic component
- Finally, above 5×10¹⁹ eV, we observe a suppression known as the GZK cutoff, due to interactions of UHE CRs with the CMB

Energy Spectrum

Direct measurements (space-based/balloon-borne):

- © Particle identification
- Weight/size constraints: limits in the energy range

Indirect measurements (ground-based):

- Extended energy range
- Particle identification: dependence on models about atmospheric interactions

Direct & Indirect Measurements
Provide Complementary Information

(Some) open questions in CRs physics

- 1. Energy spectrum: the ankle and the suppression
- 2. Mass composition of UHECRs

(Some) open questions in CRs physics

- 1. Energy spectrum: the ankle and the suppression
- 2. Mass composition of UHECRs
- 3. Galactic-Extragalactic transition
- 4. Sources of high energy CRs

(Some) open questions in CRs physics

- 1. Energy spectrum: the ankle and the suppression
- 2. Mass composition of UHECRs
- 3. Galactic-Extragalactic transition
- 4. Sources of high energy CRs
- 5. Characterization of the knee and second knee

(Some) open questions in CRs physics

- 1.Energy spectrum: the ankle and the suppression
- 2. Mass composition of UHECRs
- 3. Galactic-Extragalactic transition
- 4. Sources of high energy CRs
- 5. Characterization of the knee and second knee
- 6. Propagation of GCRs in the Galaxy
- 7. Energy spectrum of GCRs
- 8. Antimatter in CRs and indirect search for DM

Importance of Cosmic Rays

Energetics:

- Energy density of CRs in the ISM is comparable to that of magnetic fields and thermal gas
- Contribute significantly to the pressure balance in galaxies

Importance of Cosmic Rays

Energetics:

- Energy density of CRs in the ISM is comparable to that of magnetic fields and thermal gas
- Contribute significantly to the pressure balance in galaxies

Non-thermal messengers:

- CR interactions produce γ -rays ($\pi^0 \rightarrow 2\gamma$)
- Produce **neutrinos** $(\pi^{\pm} \rightarrow \mu^{\pm} \rightarrow e^{\pm} + V)$
- Essential for multi-messenger astrophysics

Importance of Cosmic Rays

Energetics:

- Energy density of CRs in the ISM is comparable to that of magnetic fields and thermal gas
- Contribute significantly to the pressure balance in galaxies

Non-thermal messengers:

- CR interactions produce γ -rays ($\pi^0 \rightarrow 2\gamma$)
- Produce **neutrinos** $(\pi^{\pm} \rightarrow \mu^{\pm} \rightarrow e^{\pm} + V)$
- Essential for multi-messenger astrophysics

Astrophysical laboratories:

- Probe *acceleration physics* (shocks, turbulence, magnetic reconnection).
- Extend particle physics beyond accelerator energies (>10^20 eV).

Importance of Cosmic Rays

Energetics:

- Energy density of CRs in the ISM is comparable to that of magnetic fields and thermal gas
- Contribute significantly to the pressure balance in galaxies

Non-thermal messengers:

- CR interactions produce γ -rays ($\pi^0 \rightarrow 2\gamma$)
- Produce **neutrinos** $(\pi^{\pm} \rightarrow \mu^{\pm} \rightarrow e^{\pm} + V)$
- Essential for multi-messenger astrophysics

Astrophysical laboratories:

- Probe *acceleration physics* (shocks, turbulence, magnetic reconnection).
- Extend particle physics beyond accelerator energies (>10^20 eV).

Astrobiological/space relevance:

- CRs ionize the interstellar medium, affecting chemistry.
- Radiation hazard for space exploration.

- Cosmic ray definition
- Production of Cosmic rays
- Cosmic ray propagation in the Galaxy

- Cosmic ray definition
- Production of Cosmic rays
- Cosmic ray propagation in the Galaxy

CRs must be accelerated somewhere in the Universe. Several classes of astrophysical objects are candidates:

CRs must be accelerated somewhere in the Universe. Several classes of astrophysical objects are candidates:

Supernova remnants (SNRs):

- Shocks accelerate particles up to PeV ("PeVatrons")
- Likely sources of Galactic CRs below the knee

CRs must be accelerated somewhere in the Universe. Several classes of astrophysical objects are candidates:

Supernova remnants (SNRs):

- Shocks accelerate particles up to PeV ("PeVatrons")
- Likely sources of Galactic CRs below the knee

Active Galactic Nuclei (AGN) jets:

- Relativistic outflows powered by SMBHs
- Candidates for ultra-high-energy cosmic rays (UHECRs)

CRs must be accelerated somewhere in the Universe. Several classes of astrophysical objects are candidates:

Supernova remnants (SNRs):

- Shocks accelerate particles up to PeV ("PeVatrons")
- Likely sources of Galactic CRs below the knee

Active Galactic Nuclei (AGN) jets:

- Relativistic outflows powered by SMBHs
- Candidates for ultra-high-energy cosmic rays (UHECRs)

Pulsars & magnetars:

- Rotational/magnetic energy extraction
- Produce leptons (e±) and possibly nuclei

CRs must be accelerated somewhere in the Universe. Several classes of astrophysical objects are candidates:

Supernova remnants (SNRs):

- Shocks accelerate particles up to PeV ("PeVatrons")
- Likely sources of Galactic CRs below the knee

Active Galactic Nuclei (AGN) jets:

- Relativistic outflows powered by SMBHs
- Candidates for ultra-high-energy cosmic rays (UHECRs)

Pulsars & magnetars:

- Rotational/magnetic energy extraction
- Produce leptons (e±) and possibly nuclei

Gamma-ray bursts (GRBs):

- Short-lived ultra-relativistic shocks
- Possible sources of highest-energy CRs (>10¹⁹ eV)

Different types of sources are responsible at different *E* ranges, and the observed spectrum is a superposition of these contributions

CRs might be accelerated, how this acceleration happen?

The most widely accepted mechanism is *Diffusive Shock Acceleration (DSA)*

- Let's imagine a charged particle near a shock wave, like in a SNR
- Magnetic turbulence on both sides of the shock scatters the particle
- The particle crosses the shock back and forth many times
- Each time it crosses, it gains a small fraction of its energy, proportional to the shock speed over the speed of light

$$(\Delta E/E \sim u_s/c)$$

CRs might be accelerated, how this acceleration happen?

The most widely accepted mechanism is *Diffusive Shock Acceleration (DSA)*

- Let's imagine a charged particle near a shock wave, like in a SNR
- Magnetic turbulence on both sides of the shock scatters the particle
- The particle crosses the shock back and forth many times
- Each time it crosses, it gains a small fraction of its energy, proportional to the shock speed over the speed of light

$$(\Delta E/E \sim u_s/c)$$

After many such cycles, the particle distribution becomes a *power law in energy*

We can derive the slope p from the shock compression ratio r. For a strong, non-relativistic shock, r=4.

This gives:

$$p=rac{r+2}{r-1}=rac{6}{3}=2$$
 So, theory predicts a particle spectrum: $N(E)\propto E^{-2}$

CRs might be accelerated, how this acceleration happen?

The most widely accepted mechanism is **Diffusive Shock Acceleration (DSA)**

- Let's imagine a charged particle near a shock wave, like in a SNR
- Magnetic turbulence on both sides of the shock scatters the particle
- The particle crosses the shock back and forth many times
- Each time it crosses, it gains a small fraction of its energy, proportional to the shock speed over the speed of light

$$(\Delta E/E \sim u_s/c)$$

After many such cycles, the particle distribution becomes a *power law in energy*

We can derive the slope p from the shock compression ratio r. For a strong, non-relativistic shock, r=4.

This gives:

$$p=rac{r+2}{r-1}=rac{6}{3}=2$$
 So, theory predicts a particle spectrum: $N(E)\propto E^{-2}$

Non-thermal distribution!

Candidate accelerators:

- SNRs: main sources below the "knee" (10¹⁵ eV)
- AGN jets, GRBs: plausible for ultra-high-energy CRs (> 10¹⁸ eV)
- Pulsars/magnetars: contribute mainly leptons (electrones y positrones)

Acceleration mechanism:

- Diffusive Shock Acceleration (DSA):
 - Particles scatter across shocks, gaining energy
 - ullet Predicts a power-law spectrum $N(E) \propto E^{-p}$ with $p{\sim}2$
- The *spectrum* observed *at Earth is softer* ($p \approx 2.7$) because propagation in the Galaxy alters the slope produced at the sources ($p \approx 2.0-2.2$)

- Cosmic ray definition
- Production of Cosmic rays
- Cosmic ray propagation in the Galaxy

- Cosmic ray definition
- Production of Cosmic rays
- Cosmic ray propagation in the Galaxy

Propagation of Cosmic Rays in the Galaxy

After acceleration, CRs do not propagate directly to Earth

Propagation of Cosmic Rays in the Galaxy

After acceleration, CRs do not propagate directly to Earth

Instead, they remain confined in the Galaxy for millions of years, undergoing repeated scattering in

turbulent magnetic fields ← this process is described as *diffusion*

Propagation of Cosmic Rays in the Galaxy

After acceleration, CRs do not propagate directly to Earth

Instead, they remain confined in the Galaxy for millions of years, undergoing repeated scattering in

turbulent magnetic fields ← this process is described as *diffusion*

The confinement time depends on *energy*:

- Lower-energy cosmic rays remain longer in the Galaxy
- Higher-energy ones escape more quickly

Propagation of Cosmic Rays in the Galaxy

After acceleration, CRs do not propagate directly to Earth

Instead, they remain confined in the Galaxy for millions of years, undergoing repeated scattering in

turbulent magnetic fields ← this process is described as *diffusion*

The confinement time depends on *energy*:

- Lower-energy cosmic rays remain longer in the Galaxy
- Higher-energy ones escape more quickly
 - ⇒ This is why the spectrum we observe at Earth is **softer** than the source spectrum

Interactions with gas and radiation produce γ -rays and neutrinos

Interactions with gas and radiation produce γ-rays and neutrinos

- With gas (pp collisions):
 - Production of neutral pions:

$$\pi^0 \rightarrow 2\gamma \rightarrow \text{hadronic } \gamma\text{-rays}$$

Production of charged pions:

$$\pi^\pm o \mu^\pm o e^\pm +
u$$
 o neutrinos + e^\pm pairs

- With photons ($p\gamma$ interactions):
 - \circ Processes via Δ^+ resonance \to also neutral and charged pions $\to \gamma$ -rays + neutrinos

CRs diffuse through the Galaxy with an energy-dependent escape time. During propagation they interact with gas and radiation, producing γ -rays, neutrinos, and secondary nuclei (e.g. Li, Be, B)