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Molecular spectroscopy: Energy levels and transitions

Spectrum

IA

A

A

Energy levels

Quantum Mechanics: Molecules have discrete energy levels

Radiative transitions between them create the spectrum of the molecule



Molecular spectroscopy: Energy levels and transitions
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Organization of this lesson

Electronic Electronic

Vibrational Levels » Vibrational Spectrum

Rotational Rotational



Electronic levels of molecules



Let’s consider a system of 2 nuclei and 1 electron (the simplest molecule: H,*)

We aim to solve the quantum mechanics to get the energies of the quantum levels




Let’s consider a system of 2 protons and 1 electron (the simplest molecule: H,*)
We aim to solve the quantum mechanics to get the energies of the quantum levels
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Our friend: the Schrodinger equation
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Born-Oppen heimer protons are 1836 times heavier than electrons
nuclei are slow and electrons are fast

approxim ation nuclei can be assumed to be static compared with the motion of electrons



Let’s consider a system of 2 nuclei and 1 electron (the simplest molecule: H,*)
We aim to solve the quantum mechanics to get the energies of the quantum levels
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Potential energy curves for H,"

Electronic energy of the system as a function of the separation between the 2 nuclei

unbound state
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bound state R/a,

These are the electronic states of the molecule



Potential energy curves for H,
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Molecular orbitals for H,
(shown as probability density functions of electrons)

In W* the electron density has a maximum between the two nuclei 2 chemical bond
In W- the electron density is concentrated around each nuclei



Potential energy curves of CN
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Motion of nuclei



We come back to our system of 2 protons and 1 electron (H,*)
We now focus on the motion of nuclei
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In an electronic bound state, the motion of nuclei are not completely independent:
There are 3 types of degrees of freedom that describe the motion of nuclei:

* translation (not quantized)
* vibration ]_vibrationa/ and rotational energies, as electronic energy,

* rotation are quantized (only discrete energies are possible)



Born-Oppenheimer approximation: separation of electronic and nuclear motions
(justified due to the very different time scales at which electrons and nuclei move)

H(R,,R,,r,P, P, p)=

s+ 4>+ B>

FIT=FIe +Hn

The same approximation can be done for vibrational and rotational motions because
vibrations are much faster than rotations

N N N

H.=Hp + H o

The energy of a molecule can be presented as sum of electronic energy, vibrational energy,

and rotational energy. This allows to treat each phenomenon (electronic, vibrational, and
rotational) independently
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Hi=H, +H,, +H



Vibrational levels of molecules



Vibration in a diatomic molecule: the simple harmonic oscillator
Scheme from Franck Houwing Lectures

Let’s consider a diatomic molecule r A
as two masses connected by a < > <—>

massless spring obeying Hook’s law !
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According to classical mechanics, there is only one discrete oscillation frequency,
but the energy, related to the amplitude of the vibration, can take any value

\E

Vix)
1 [k
VOSC — _
27\ 1

T kA°
L, -
Eclas :Ek/l

where x=r-r,

A 0 4 - F



Vibration in a diatomic molecule: the simple harmonic oscillator
Scheme from Franck Houwing Lectures

In quantum mechanics, one must write the Schrodinger equation

Hamiltonian VY =FEY
. . _hz d2
Kinetic energy operator__. ——
2u dx”
Potential operator + % kx?
Eigenvalue E
Eigenfunction Y

The vibrational energy is discretized according to the quantum number v

E, = (v+ %) hv, v=0,1,2,3, ..




Vibration in a diatomic molecule: the simple harmonic oscillator

FACTS:

Vibrational energy is discretized according to quantum numberv:  E, = (v+ %) hv .
v=0, 1,2, 3, ..

In the ground vibrational state (v=0) the energy is not zero

Energy separation between adjacent levels is constant: E,..-E,=hv,

Selection rule: Av=%1

All lines are coincident. Pure vibrational spectrum consists of one single line.
...but reality is not like that
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Reality of vibration in a diatomic molecule: anharmonicity

harmonic term anharmonic terms
) ]
f \ \
Level energies, still quantum number v: E, = hV, s (Vv+25) = hV o X (V#25)? + hV o e (V+25)3 + ...

Energy separation between adjacent levels decreases with increasing v

Selection rule: Av=%1,+2,+3, .. but Av=1%1is the mostintense

V,.c Coherences 2V .. coherences




Reality of vibration in a diatomic molecule: anharmonicity

Vibrational levels lie in the potential energy curve of a bound electronic state

The distance from v=0 to the continuum is the dissociation energy D,

, ! Harmonic potential
| «— (Hooke's law)

i/ T potential D
(Morse type) 0

I_ ‘ ./ Anharmonic
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Molecular spectroscopy: Energy levels and transitions
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Vibration in a polyatomic molecule

Type of molecule N Degrees of Modes
freedom
Monatomic, e.g. Ne 1 3 3 translational
0 rotational
Q 0 vibrational
Diatomic, e.g. HCI 2 6 3 translational
2 rotational
J,, - Q 1 vibrational
Triatomic linear, e.g. CO2 3 9 3 translational
2 rotational
o. 0 Q 4 vibrational o
Triatomic non-linear, e.g. H20 3 9 3 translational
‘ ) 3 rotational
8 3 vibrational ==
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Each vibration mode has its own set of vibrational levels




Rotational levels of molecules



Born-Oppenheimer approximation: separation of electronic and nuclear motions
(justified due to the very different time scales at which electrons and nuclei move)

H(R,,R,,r,P, P, p)=

s+ 4>+ B>

FIT=FIe +Hn

The same approximation can be done for vibrational and rotational motions because
vibrations are much faster than rotations

N N N

H.=Hp + H o

The energy of a molecule can be presented as sum of electronic energy, vibrational energy,

and rotational energy. This allows to treat each phenomenon (electronic, vibrational, and
rotational) independently

N N N

Hi=H, +H,, +H



Rotation in a diatomic molecule: the rigid rotator
Scheme from Franck Houwing Lectures

Let’s consider a diatomic molecule r, .
as two masses connected by a < > <—>»

l
I
rigid massless rod of length r :
C
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According to classical mechanics, the energy of rotation is given by
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where V., is the frequency of rotation, which can have any value,
and / is the moment of inertia
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Rotation in a diatomic molecule: the rigid rotator

Scheme from Franck Houwing Lectures

In quantum mechanics, one must write the Schrodinger equation

HY = EY

where H = Hamiltonian, ¥ = wavefunction, E = eigenvalue.
Since there 1s no potential energy to be considered 1n this problem, the

Hamiltonian is simply the kinetic energy operator given by

The rotational energy F is discretized according to the guantum number J
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where B is the rotational constant for that molecule

1=01,2 3, ..



Rotation in a diatomic molecule: the rigid rotator
Rotational energy levels and spectrum

Rotational energy scales with J(J+1) Selection rule: AJ=%1

Ground rotational state (J=0) has E,,= 0
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Figure 4.2 (a) Energy levels of a rigid diatomic rotor, showing dipole-allowed transi-
tions. (b) Absorption spectrum of such a rotor.



Pure rotational spectrum of CO

Rotational lines regularly spaced by 2B
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Figure 8.8. Pure rotational spectrum of CO, reproduced with permission from
Modern Aspects of Microwave Spectroscopy, ed. G. W. Chantry, Academic Press,

1979.



Rotation in a diatomic molecule: the non-rigid rotator

When molecules rotate, the nuclei are submitted to centrifugal forces which
increase the distance between them, and increase the moment of inertia
and thus decrease the rotational constant B




Rotation in a diatomic molecule: the non-rigid rotator

The rotational energy is given by

E_.=BJ(J+1) - D 2 (J+1)2

centrifugal distortion constant

Now frequencies are given by

v=2B(J+1) - 4D (J+1)3
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Figure 2.9 The change in rotational energy levels and rotational spectrum when passing from
a rigid to a non-rigid diatomic molecule. Levels on the right calculated using D = 107 3B.



Concluding remarks
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Rovibrational spectrum

A vibrational transition (band) consists of multiple rotational transitions
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Rovibrational spectrum

A vibrational transition (band) consists of multiple rotational transitions

R branch

g —>>

Q ———

P branch
0

Fig. 4.9 Rotational fine structure of a vibration-rotation band of a diatomic molecule. Note
the decreasing spacing with increasing J in the R branch, and the increasing spacing with

increasing J in the P branch.

Pbranch R branch

g —>

Fig. 4.10 Appearance of a vibration-rotation band of a diatomic molecule under low

resolution.



Molecular spectroscopy: Energy levels and transitions
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Electronic spectrum

An electronic transition do also have vibration and rotation structure
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Molecular spectroscopy: Times involved

Electrons:
attosec scales

108 /sec

Vibration:
COv=0
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Molecular spectroscopy: Times involved

Electrons:
attosec scales

1018 /sec

Vibration:

CO V:O . nehed © Nobel Prize ; as ElImehed © Nobel Prize
1 014 /sec Pierre Agostini Ferenc Krausz Anne L'Huillier
Rotation:

CO J=1

10 /sec



Molecular spectroscopy: Energies involved

Electronic: >1000 K

Sl
o \ —~_/~EXxcited electronic
N -y \U/ state
Vibration: 100-1000 K S | A
N
™ S/~ Ground state
= /7'\_/\ Vibrational energy level

Rotation: 10-100 K = Rotational level

N > :

Internuclear separation




Types of molecular transitions across the electromagnetic spectrum
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