Introduction to molecular spectroscopy

Marcelino Agúndez

Instituto de Física Fundamental, CSIC, Madrid

UAM Master in Astrophysics – Radiative Processes in Astrophysics

DISTANT GALAXY BEHIND SMACS 0723 WEBB SPECTRUM SHOWCASES GALAXY'S COMPOSITION

NIRCam Imaging

NIRSpec Microshutter Array Spectroscopy

Molecular spectroscopy: Energy levels and transitions

Quantum Mechanics: Molecules have discrete energy levels

Radiative transitions between them create the spectrum of the molecule

Organization of this lesson

Electronic levels of molecules

We aim to solve the quantum mechanics to get the energies of the quantum levels Let's consider a system of 2 nuclei and 1 electron (the simplest molecule: H_2 ⁺)

Let's consider a system of 2 protons and 1 electron (the simplest molecule: H_2 ⁺) We aim to solve the quantum mechanics to get the energies of the quantum levels

Born-Oppenheimer approximation

protons are 1836 times heavier than electrons nuclei are slow and electrons are fast nuclei can be assumed to be static compared with the motion of electrons

Let's consider a system of 2 nuclei and 1 electron (the simplest molecule: H_2 ⁺) We aim to solve the quantum mechanics to get the energies of the quantum levels

Potential energy curves for H_2^+

Electronic energy of the system as a function of the separation between the 2 nuclei

These are the electronic states of the molecule

Potential energy curves for H_2

Molecular orbitals for H_2 *(shown as probability density functions of electrons)*

In Ψ^* the electron density has a maximum between the two nuclei \rightarrow chemical bond In Ψ− the electron density is concentrated around each nuclei

from Herzberg "Molecular spectra and Molecular Structure"

Motion of nuclei

We come back to our system of 2 protons and 1 electron (H_2^+) We now focus on the motion of nuclei

In an electronic bound state, the motion of nuclei are not completely independent: There are 3 types of degrees of freedom that describe the motion of nuclei:

* translation (not quantized)

- * vibration *vibrational and rotational energies, as electronic energy,*
- * rotation *are quantized (only discrete energies are possible)*

Born-Oppenheimer approximation: separation of electronic and nuclear motions (justified due to the very different time scales at which electrons and nuclei move)

$$
\hat{H}(R_A, R_B, r, P_A, P_B, p) = \frac{\hbar^2}{2m_e} \vec{\nabla}_r^2 - \frac{\hbar^2}{2m_p} \vec{\nabla}_A^2 - \frac{\hbar^2}{2m_p} \vec{\nabla}_B^2 + \begin{pmatrix} \frac{e^2}{r_1} - \frac{e^2}{r_2} + \frac{e^2}{R} \\ \frac{e^2}{r_1} - \frac{e^2}{r_2} + \frac{e^2}{R} \end{pmatrix}
$$

$$
\hat{H}_{\mathsf{T}} = \hat{H}_{\mathsf{e}} + \hat{H}_{\mathsf{n}}
$$

The same approximation can be done for vibrational and rotational motions because vibrations are much faster than rotations

$$
\hat{H}_{\text{n}} = \hat{H}_{\text{vib}} + \hat{H}_{\text{rot}}
$$

The energy of a molecule can be presented as sum of electronic energy, vibrational energy, and rotational energy. This allows to treat each phenomenon (electronic, vibrational, and rotational) independently

$$
\hat{H}_{\mathsf{T}} = \hat{H}_{\mathsf{e}} + \hat{H}_{\mathsf{vib}} + \hat{H}_{\mathsf{rot}}
$$

Vibrational levels of molecules

Vibration in a diatomic molecule: the simple harmonic oscillator Scheme from Franck Houwing Lectures

Let's consider a diatomic molecule as two masses connected by a massless spring obeying Hook's law

According to classical mechanics, there is only one discrete oscillation frequency, but the energy, related to the amplitude of the vibration, can take any value

Vibration in a diatomic molecule: the simple harmonic oscillator Scheme from Franck Houwing Lectures

In quantum mechanics, one must write the Schrödinger equation

The vibrational energy is discretized according to the quantum number v

$$
E_{\rm v} = \left(v + \frac{1}{2}\right) h v_{\rm osc} \qquad \qquad v = 0, 1, 2, 3, ...
$$

Vibration in a diatomic molecule: the simple harmonic oscillator FACTS:

Vibrational energy is discretized according to quantum number v: $E_{\rm v}$ = (v + ½) hv[']_{osc}

In the ground vibrational state ($v=0$) the energy is not zero $v=0, 1, 2, 3, ...$

Energy separation between adjacent levels is constant:

Selection rule: $\Delta v = \pm 1$

All lines are coincident. Pure vibrational spectrum consists of one single line. *…but reality is not like that*

 $E_{v+1} - E_{v} = h v'_{osc}$

Reality of vibration in a diatomic molecule: anharmonicity

Level energies, still quantum number v:

 \int_{∂ sc (∨+½) − hν[']_{osc}X_e (∨+½)² + hν[']_{osc}y_e (∨+½)³ + … *harmonic term anharmonic terms*

Energy separation between adjacent levels decreases with increasing v

Selection rule: $\Delta v = \pm 1, \pm 2, \pm 3, ...$ but $\Delta v = \pm 1$ is the most intense

Reality of vibration in a diatomic molecule: anharmonicity

Vibrational levels lie in the potential energy curve of a bound electronic state The distance from $v=0$ to the continuum is the dissociation energy D_0

Vibration in a polyatomic molecule

Normal modes of H_2O .

Each vibration mode has its own set of vibrational levels

Rotational levels of molecules

Born-Oppenheimer approximation: separation of electronic and nuclear motions (justified due to the very different time scales at which electrons and nuclei move)

$$
\hat{H}(R_A, R_B, r, P_A, P_B, p) = \frac{\hbar^2}{2m_e} \vec{\nabla}_r^2 - \frac{\hbar^2}{2m_p} \vec{\nabla}_A^2 - \frac{\hbar^2}{2m_p} \vec{\nabla}_B^2 + \begin{pmatrix} \frac{e^2}{r_1} - \frac{e^2}{r_2} + \frac{e^2}{R} \\ \frac{e^2}{r_1} - \frac{e^2}{r_2} + \frac{e^2}{R} \end{pmatrix}
$$

$$
\hat{H}_{\mathsf{T}} = \hat{H}_{\mathsf{e}} + \hat{H}_{\mathsf{n}}
$$

The same approximation can be done for vibrational and rotational motions because vibrations are much faster than rotations

$$
\hat{H}_{\text{n}} = \hat{H}_{\text{vib}} + \hat{H}_{\text{rot}}
$$

The energy of a molecule can be presented as sum of electronic energy, vibrational energy, and rotational energy. This allows to treat each phenomenon (electronic, vibrational, and rotational) independently

$$
\hat{H}_{\mathsf{T}} = \hat{H}_{\mathsf{e}} + \hat{H}_{\mathsf{vib}} + \hat{H}_{\mathsf{rot}}
$$

Rotation in a diatomic molecule: the rigid rotator Scheme from Franck Houwing Lectures

Let's consider a diatomic molecule as two masses connected by a rigid massless rod of length *r*

According to classical mechanics, the energy of rotation is given by

$$
E = \frac{1}{2}I\omega^2 \qquad \qquad \omega = 2\pi v_{rot}
$$

where v'_{rot} is the frequency of rotation, which can have any value, and *I* is the moment of inertia

$$
I = m_1 r_1^2 + m_2 r_2^2 = \frac{m_1 m_2}{m_1 + m_2} r^2 = \mu r^2
$$

In quantum mechanics, one must write the Schrödinger equation

 $H\Psi = E\Psi$

where $H =$ Hamiltonian, Ψ = wavefunction, E = eigenvalue. Since there is no potential energy to be considered in this problem, the Hamiltonian is simply the kinetic energy operator given by

$$
H=\frac{p^2}{2\mu}
$$

The rotational energy *F* is discretized according to the quantum number *J*

$$
F(J) = \frac{E}{hc} = \frac{h}{8\pi^2 cI} J(J+1) = BJ(J+1) \quad J = 0, 1, 2, 3, ...
$$

where *B* is the rotational constant for that molecule

$$
B = \frac{h}{8\pi^2 cI}
$$

Rotation in a diatomic molecule: the rigid rotator Rotational energy levels and spectrum

Rotational energy scales with *J(J+1)* Ground rotational state $(J = 0)$ has $E_{\text{rot}} = 0$ Selection rule: *ΔJ* = ± 1

Erot = B J (J+1) ν = 2B (J+1)

Figure 4.2 (a) Energy levels of a rigid diatomic rotor, showing dipole-allowed transitions. (b) Absorption spectrum of such a rotor.

Figure 8.8. Pure rotational spectrum of CO, reproduced with permission from Modern Aspects of Microwave Spectroscopy, ed. G. W. Chantry, Academic Press, 1979.

Rotation in a diatomic molecule: the non-rigid rotator

When molecules rotate, the nuclei are submitted to centrifugal forces which increase the distance between them, and increase the moment of inertia and thus decrease the rotational constant *B*

Rotation in a diatomic molecule: the non-rigid rotator

Figure 2.9 The change in rotational energy levels and rotational spectrum when passing from a rigid to a non-rigid diatomic molecule. Levels on the right calculated using $D = 10^{-3}B$.

Concluding remarks

Rovibrational spectrum

A vibrational transition (band) consists of multiple rotational transitions

Rovibrational spectrum

A vibrational transition (band) consists of multiple rotational transitions

Fig. 4.9 Rotational fine structure of a vibration-rotation band of a diatomic molecule. Note the decreasing spacing with increasing J in the R branch, and the increasing spacing with increasing J in the P branch.

Fig. 4.10 Appearance of a vibration-rotation band of a diatomic molecule under low resolution.

Electronic spectrum

An electronic transition do also have vibration and rotation structure

Visible band system of I₂

Molecular spectroscopy: Times involved

Electrons: attosec scales *1018 /sec*

Vibration: CO $v=0$ *1014 /sec*

Rotation: CO J=1 *1011 /sec*

Internuclear separation

Molecular spectroscopy: Times involved

The Nobel Prize in Physics 2023

Electrons: attosec scales *1018 /sec*

Vibration: CO $v=0$ *1014 /sec*

III, Niklas Elmehed © Nobel Prize Outreach Pierre Agostini

III, Niklas Elmehed © Nobel Prize Outreach **Ferenc Krausz**

III, Niklas Elmehed © Nobel Prize Outreach Anne L'Huillier

Rotation: CO J=1 *1011 /sec*

Molecular spectroscopy: Energies involved

Types of molecular transitions across the electromagnetic spectrum

