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Radiation transfer: A very brief introduction [7, 9]

The radiation transfer equation is:

dIν
dl

= −kν Iν + εν =⇒
dIν
dτν

= −Iν + Sν ,

where Iν is the intensity of the incident light, kν and εν are the total opacity
and the emissivity of the medium under study, τν is the optical depth, and Sν

is the source function defined as:

τν =

∫
kνdl and Sν =

εν

kν

The solution of the radiation transfer equation for a plane-parallel layer is:

Iν = Iν,0e−τν + e−τν

∫ τν

0
dtSν(t)et.

For a layer with constant temperature and density, Sν = const.:

Iν = Iν,0e−τν + Sν(T)
(
1 − e−τν

)
.

Units (usually CGS):
[l]: cm
[Iν ]: erg s−1 cm−2 Hz−1 sr−1

[kν ]: cm−1

[εν ]: erg s−1 cm−3 Hz−1 sr−1

[Sν ]: erg s−1 cm−2 Hz−1 sr−1

Iν,0 Iν

l

T(l), n(l)

τν(l), Sν(l)

Iν,0 Iν

l

T, n ̸= f(l)

τν , Sν ̸= f(l)
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Radiation transfer: A very brief introduction [7, 9]

Iν = Iν,0e−τν + Sν(T)
(
1 − e−τν

)
; Fν =

∫
4π

P(ϕ, θ)Iν(ϕ, θ)dω ≃ ⟨Iν⟩Ω

Optically thin regime

τν ≪ 1
Iν ≃ Iν,0 +

[
Sν(T)− Iν,0

]
τν

Fν ≃ ⟨Iν,0 +
[
Sν(T)− Iν,0

]
τν⟩Ω

Ω = solid angle

Optically thick regime

τν ≫ 1
Iν ≃ Sν(T)

Fν ≃ ⟨Sν(T)⟩Ω
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Radiation transfer: The two-level approximation [7, 9]

A photon with a given frequency interacting with a
quantum system with multiple energy levels could
excite levels with an energy distance different than
the photon energy, although with a small probability.

The two-level approximation assumes that this is not
possible and a photon only can produce a transition
if its energy matches up with the energy difference
between two levels.

Aul =
4π
c

2hν3

c2
Bul

Bul =
gl

gu
Blu

 Einstein
coefficients

.

.

induced
emission

induced absorption
spontaneous

emission

Collisional
coefficients


γlu =

gu

gl
γule−hν/kBTK

Cul = nγul

Clu = nγlu

.

.
collisional

rates

γul =

(
8kBTk

πµ

)1/2 ( 1
kBTk

)
eEu/kBTk

∫ ∞

0
σul(E)(E−Eu)e−E/kBTk dE

l nl

u nu

Bul Blu Aul Cul Clu populations
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Radiation transfer: The equation with molecular transitions [7, 9]

The radiation transfer equation in its general form can be used to describe the absorption and emission of
different materials and gases

dIν
dl

= −kν Iν + εν

For the particular case of molecules (or atoms) it can be written using the Einstein coefficients in this way:

dIν
dl

=
hν
4π

Aulnu +
hν
c

BulIνnu︸ ︷︷ ︸
emission

−
hν
c

BluIνnl︸ ︷︷ ︸
absorption

Einstein
coefficients

l

u

Bul Blu Aul

Absorption

Estimulated
emission

Spontaneous
emission
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Radiation transfer: Opacity of a molecular line [7, 9]

For a given molecule with an abundance x and m transitions:

kν =
c2

8π
ngx
Z

m∑
i=1

gu,iAi

ν2
i

(
g0,inl,i

gl,in0,i

)(
1 −

gl,inu,i

gu,inl,i

)
ϕi(ν − νi)

absorption profile (normalized)

A-Einstein coefficient

degeneracy of
the upper level

gas density

partition
function

Assuming that the populations of the levels are described with Boltzmann factors
( gu

gl
e−∆E/kBTexc ), which are controlled by the excitation temperature, Texc:

kν =
c2

8π
ngx
Z

m∑
i=1

gu,iAi

ν2
i

e−El,i/kBTexc
(

1 − e−hνi/kBTexc
)
ϕi(ν − νi)

∫ ∞

0
ϕi(ν − νi)dν = 1 ⇒ ϕi(ν − νi) =

1
σi
√
π

e−(ν−νi)
2/σ2

i

There are several on-line databases available to find molecular spectroscopic parameters:
(mm/submm) MADEX, CDMS, JPL, Splatalogue, (IR) HITRAN, GEISA, (IR/visible)
ExoMol. . .

Usually taken as the
profile for the Max-
well velocity distribu-
tion associated to Tk.
The fundamental Lo-
rentzian line profile is
too narrow
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Radiation transfer: Opacity of a molecular line [7, 9]

For a given molecule with an abundance x and m transitions:

kν =
c2

8π
ngx
Z

m∑
i=1

gu,iAi

ν2
i

e−El,i/kBTexc
(

1 − e−hνi/kBTexc
)
ϕi(ν − νi)

absorption profile (normalized)

A-Einstein coefficient

degeneracy of
the upper level

gas density

partition
function

The opacity of a given line is positive if

ζ = 1 − e−El,i/kBTexc > 0 =⇒
nu

nl
<

gu

gl
=⇒ Texc > 0 =⇒ kν > 0,

resulting in thermal emission, and negative if

ζ = 1 − e−El,i/kBTexc < 0 =⇒
nu

nl
>

gu

gl
=⇒ Texc < 0 =⇒ kν < 0,

producing maser emission (population inversion).
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Radiation transfer: Source function of a molecular line [7, 9]

For a given molecule with an abundance x and m transitions:

Sν =
2h
c2

m∑
i=1

kν,i
kν

ν3
i

[
gu,inl,i

gl,inu,i
− 1

]−1

total gas opacity

gas opacity
per line

Assuming that Texc controls the populations:

Sν =
2h
c2

m∑
i=1

kν,i
kν

ν3
i

1
ehνi/kBTexc − 1

=
m∑

i=1

kν,i
kν

Bνi (Texc)

Bν(T) =
2hν3

c2

1
ehν/kBT − 1

: Planck’s function

The process followed to derive kν and Sν can be strightforwardly extended to include other molecules.
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Molecular excitation: Statistical Equilibrium

dni

dt
= 0 =

∑
j>i

Ajinj−
∑
j<i

Aijni : radiative, spontaneous

+
∑
j ̸=i

Bji4πJ̄(νji)nj−
∑
j ̸=i

Bij4πJ̄(νij)ni : radiative, induced

+
∑
j ̸=i

Cjinj−
∑
j ̸=i

Cijni : collisional

steady-state regime

Ai1B1i Bi1

AijBji Bij

AmiBmi Bim

C1i Ci1

Cji Cij

Cmi Cim

n1 1

nj j

ni i

nm m
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Molecular excitation: Temperatures

Kinetic temperature (Tk): ⟨Ek⟩ = 3
2 kBTk

Black-body temperature (Tbb): Bν(Tbb) =
2hν3

c2
1

ehν/kBTbb−1

Excitation temperature (Texc, Trot, Tvib,. . . ): nu
nl

=
gu
gl

e−(Eu−El)/kBTexc

e−hν/kBTexc =
1 + (n/ncrit)e−hν/kBTK

(
ehν/kBTbb − 1

)
ehν/kBTbb + (n/ncrit)

(
ehν/kBTbb − 1

) ,
ncrit

n
=

Aul

Cul

Boltzmann
population
distribution

critical
density

Tbb ≤ Texc ≤ TK or TK ≤ Texc ≤ Tbb

l

u

Bul Blu Aul Cul Clu

Tbb TKTexc
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Molecular excitation: Texc and critical density

ncrit is the density at which the change of regime
occurs

ncrit is different for every transition:

ncrit = Aul/γul , ncrit = ncrit(µ)

Boltzmann regime: Excitation is dominated by
collisions (collisional LTE)

n ≫ ncrit =⇒ Texc ≃ Tk

Sub-Boltzmann regime: Excitation is dominated by
radiation (radiative LTE)

n ≪ ncrit =⇒ Texc ≃ Tbb

When n ≃ ncrit, Texc strongly depends on the balance
of the physical conditions

CO is easily thermalized which
makes it one of the best

molecules to trace Tk
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Molecular excitation: Dependence of rotational level populations with density

The J of the strongest line
depends on Texc

Texc depends on the gas density

The CO rotational level are under
collisional LTE for densities
higher than ∼ 104 − 105 cm−3

Gas density in molecular clouds
∼ 102 − 106 cm−3. Higher than
∼ 104 cm−3 around evolved stars

The behavior strongly changes
for HCN (µ(HCN) ≃ 30µ(CO))

HCN lines are more sensitive to
change in density than those of
CO for intermediate densities

Molecules tend to de-excitate to
the ground state (rotational
relaxation)

However, the population of the
rotational levels have a lower
limit determined by the Cosmic
Microwave Background (CMB)

The Boomerang Nebula is the
only environment in the known
Universe with a temperature
lower than the TCMB ≃ 2.73 K [13]
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Molecular excitation: A piece of History of Science

Adapted from [8, 1]

CN(0,0)R(J=0,K=0)

CN(0,0)R(J=0,K=1)

Taken from [6], p. 496

Optical observations were taken
from Mount Wilson of the ζ Oph

1940: McKellar presented the
analysis of the data with the
identifications of two weak CN lines
with J = 0 K = 0 and J = 0 K = 1 of
the R branch of the vibronic band
B2Σ+ − X2Σ+ [8]
1941: Adams presented the observations [1]

1950: The Nobel Prize winner G. Herzberg
estimated the intensity ratio for these lines
deriving a rotational Texc ≃ 2.3 K [6]

1965: Penzias & Wilson [11] detected the
Cosmic Microwave Background

..

.

..

.(J, K)

(0, 0)
(0, 1)

(1, 0)
(1, 1)

X2Σ+

B2Σ+

R(0, 0)
R(0, 1)

∆E ≃ 5.45 K
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Solving the Statistical Equilibrium Equations (SEE)

J̄(νij)???

∑
j>i

Ajinj −
∑
j<i

Aijni +
∑
j̸=i

Bji4πJ̄(νji)nj −
∑
j̸=i

Bij4πJ̄(νij)ni +
∑
j̸=i

Cjinj −
∑
j ̸=i

Cijni = 0

We know the quantities Aij, Bij, Cij, n

Add a conservation condition:∑
i

ni = n

This is an algebraic linear system of equations
with all equations independent

Can be solved with typical methods (system
matrix decomposition – e.g., LU — or iterative
methods – e.g., Jacobi)

Main problem: calculate J̄(νij) =⇒ Radiation
transfer equation (SEE+RT; RT: Ray Tracing)
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Radiation transfer: Solving methods

Accelerated Λ iteration (ALI): It uses the Λ operator to calculate iteratively the total intensity and the source
function at any point of the modeled environment (Jnew

ν = ΛSold
ν ) [12, 17].

Large Velocity Gradient (LVG; Sobolev method): A photon can escape from the region where it has been
emitted due to differences in velocity with other close regions. It is the ALI method with Λ = 1 − β [14, 3].

Monte Carlo: A number of model photons (comprising many “real” photons) related to an initial source
function travel through the modeled environment modifying the population of the molecular levels. The
process is repeated to reach convergence [2, 16].

Gauss-Seidel algorithm: The population of the molecular levels in a shell are recalculated once the total
intensity for this shell is known. It is not necessary to solve the SSE for all the environment at the same time
[15, 10, 4].

Coupled escape probability (CEP): The molecular level populations are calculated without knowing the total
radiation intensity in every point of the environment to model [5].
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Radiation transfer: Solving methods (Large Velocity Gradient, LVG) [14, 3]

∑
j>i

Ajinj −
∑
j<i

Aijni +
∑
j̸=i

Bji4πJ̄(νji)nj −
∑
j̸=i

Bij4πJ̄(νij)ni +
∑
j̸=i

Cjinj −
∑
j ̸=i

Cijni = 0

∑
i

ni = n

J̄ν = (1 − β) Sν + βI0
ν , β =

1 − e−τν

τν
, β: escape probability

J̄νni
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Radiation transfer: Ray Tracing

We integrate the emission along the line-of-sight by
summing the contribution of each volume in the
discretized cloud

Iν = Ibg
ν e−τν + Sν

(
1 − e−τν

)

Iν(xi) =
1∑

k=mxi

Sν,k
(
1 − e−τν,k

)
e−

∑k−1
j=1 τν,j ,

being mxi the number of discretized volumes for the
xi coordinate

Finally, the flux is calculated along with the effect of
the PSF of the telescope on the synthetic emission

Fν =

nlayers∑
i=1

Iν(xi)P(xi)δwi,

where δwi is the solid angle subtended by the i-th
layer
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Line profiles: Doppler velocity

v

x

ν < ν0 ν > ν0
Relativistic Doppler effect

ν − ν0

ν0︸ ︷︷ ︸
z

=

√
1 − v/c
1 + v/c

− 1

Non-relativistic Doppler effect

ν − ν0

ν0
≃ −

v
c

vsys

vexp

vexp vDoppler

T∗
A
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Line profiles: Turbulence and gas kinematics

Observed environment

+ =HPBW

PSF Gaussian
velocity profile

∆vtur

vDoppler =
1

∆vtur

√
4 ln 2
π

× e−v24 ln 2/∆v2
tur

vDoppler
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Line profiles: Typical profiles

Rotational
θs > θb; vexp > 0

τ ≫ 1

τ ≪ 1

Rotational
θs < θb; vexp > 0

τ ≫ 1

τ ≪ 1

Rotational; Shell
θs > θb; vexp > 0

τ ≫ 1

τ ≪ 1

Rotational; Shell
θs < θb; vexp > 0

τ ≫ 1

τ ≪ 1

Rotational; Quiescent
vexp = 0

τ ≫ 1
τ ≪ 1

Ro-vibrational
θs > θb; vexp > 0

τ ≫ 1

τ ≪ 1

Rotational; Shell
θs > θb; vexp < 0

Rotational
θs > θb; vexp > 0

self-absorption

vDopplerConsider a spherically
symmetric cloud with gas
expanding radially

Expansion velocity: vexp

Source diameter: θs

HPBW of the telescope: θb

Line profiles strongly
depends on:

Physical conditions
(Tk, Tbb, n)
Expansion velocity
(vexp)
Turbulence (vtur)
Type of transition
(rotational,
vibrational, electronic)
Size of the source
compared with that of
the PSF
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Summary and final remarks

Understanding radiation transfer is essential to derive useful information about the observed environment

Light interacts with the gas-phase and solid state material absorbing and re-emitting photons that modifies the
radiation field

This radiation-matter interaction can only be understood with quantum mechanics

Einstein coefficients (excitation, spontaneous and induced de-excitation) are used to analyze the effect of radiation on
molecules

Molecular excitation depends on the radiation field (Tbb) and on collisions (Tk)

Level populations are widely described by Boltzmann factors depending on an excitation temperature, Texc

Texc along with the critical density, ncrit, qualitatively explains excitation in a given scenario

Populations can be determined by solving the statistical equilibrium equations

The combinations of these equations and the radiation transfer equations allow us to solve the problem and derive
the physical and chemical conditions from astronomical observations

Use numerical codes to reproduce the
observations and Texc and ncrit to

interpret them
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