Introduction to radiative transfer and molecular excitation

Marcelino Agúndez Instituto de Física Fundamental, CSIC, Madrid

UAM Master in Astrophysics – Radiative Processes in Astrophysics

Organization of this lesson

1) Introduction to radiative transfer

2) Introduction to molecular excitation

3) Line profiles

1) Introduction to radiative transfer

A good introduction can be found for example in chapter 1 of *"Radiative Processes in Astrophysics"* by Rybicki and Lightman A key quantity: *the specific intensity* I_v

 I_v is the energy carried out by a set of rays within a solid angle $d\Omega$ crossing an area dA perpendicular to the direction of propagation in a time interval dt within a frequency range dv

 $dE = I_v dt dA dv d\Omega$

 $I_v = energy (time)^{-1} (area)^{-1} (frequency)^{-1} (solid angle)^{-1} = erg s^{-1} cm^{-2} Hz^{-1} sr^{-1}$

 I_v is conserved along a ray in empty space $\frac{dI_v}{ds} = 0$

 I_{v} depends on the position in space and on the direction

A key equation: *the equation of radiative transfer*

$$\frac{dI_{v}}{ds} = -\alpha_{v}I_{v} + j_{v}$$
defining τ_{v} and S_{v} as:
 $d\tau_{v} = \alpha_{v} ds$
 $S_{v} = \frac{j_{v}}{\alpha_{v}}$

$$\frac{dI_v}{d\tau_v} = -I_v + S_v$$

spath length of propagation of ray(=) cm α_v absorption coefficient(=) cm⁻¹ j_v emission coefficient(=) erg s⁻¹ cm⁻³ Hz⁻¹ sr⁻¹

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0) \ e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} S_{\nu}(\tau_{\nu}') \ e^{-(\tau_{\nu}-\tau_{\nu}')} \ d\tau_{\nu}'$$

solution for an homogeneous medium:

$$I_{v} = I_{v}^{0} e^{-\tau_{v}} + S_{v} (1 - e^{-\tau_{v}})$$

$$l_{v}^{o}$$
 l_{v} l_{v}

Limiting cases (τ_v)

radiative transfer equation for an homogeneous medium

$$I_{v} = I_{v}^{0} e^{-\tau_{v}} + S_{v} (1 - e^{-\tau_{v}})$$

$$\tau_v \rightarrow 0 \quad \Rightarrow \quad I_v = I_v^0 + \left[S_v - I_v^0\right] \tau_v$$
 optically thin emission

$$\tau_v \rightarrow \infty \Rightarrow I_v = S_v$$
 optically thick emission

Limiting cases (τ_v)

$$\tau_v \to \infty \quad \clubsuit \quad I_v = S_v$$

optically thick emission

From macroscopic $(\alpha_v j_v)$ to microscopic quantities

intrinsic line profile function $\phi(v)$ [=] Hz⁻¹

From macroscopic ($\alpha_v j_v$) to microscopic quantities

 A_{ul} Einstein coefficient of spontaneous emission $[=] s^{-1}$ $g_{l} g_{u}$ statistical weight of lower and upper level $\phi(v)$ line profile function $[=] Hz^{-1}$ $n_{l} n_{u}$ population of lower and upper level $[=] cm^{-3}$

The excitation temperature T_{ex}

$$T_{ex} > 0 \rightarrow n_{I}/g_{I} > n_{u}/g_{u} \rightarrow \alpha_{v} > 0 \rightarrow \tau_{v} > 0$$
normal populations
"thermal emission"
$$T_{ex} < 0 \rightarrow n_{u}/g_{u} > n_{I}/g_{I} \rightarrow \alpha_{v} < 0 \rightarrow \tau_{v} < 0$$
inverted populations
maser emission

maser emission

The source function S_v

$$j_{v} = \frac{hv}{4\pi} n_{u} A_{ul} \phi(v)$$

$$\alpha_{v} = \frac{c^{2} A_{ul} n_{u}}{8\pi v^{2}} \left(\frac{n_{l}/g_{l}}{n_{u}/g_{u}} - 1\right) \phi(v)$$
upper level (u)

$$S_{v} = \frac{j_{v}}{\alpha_{v}} = \frac{2hv^{3}}{c^{2}} \frac{1}{\left(\frac{n_{i}/g_{i}}{n_{u}/g_{u}} - 1\right)} \stackrel{=}{=} \frac{2hv^{3}}{c^{2}} \frac{1}{exp(hv/kT_{ex}) - 1}}{Planck law at T = T_{ex}} \qquad S_{v} = B_{v}(T_{ex})$$

1) Introduction to radiative transfer: Summary

A key quantity: *the specific intensity I*_v

A key equation: *the equation of radiative transfer*

```
From macroscopic (\alpha_v j_v)
to microscopic quantities (A_{ul} g_u g_l)
and level populations (n_u n_l)
```

How are these level populations $(n_u n_l)$ determined?

2) Introduction to molecular excitation

Statistical equilibrium

$$\frac{dn_i}{dt} = \sum_{j \neq i} n_j \left(4\pi J_{ij} B_{ji} + \Upsilon_{ji} n \right) + \sum_{j > i} n_j A_{ji} - n_i \sum_{j \neq i} \left(4\pi J_{ij} B_{ij} + \Upsilon_{ij} n \right) - n_i \sum_{j < i} A_{ij} = 0$$

 Υ_{ij} ncollisional excitation rate for transition i \rightarrow j per unit time[=] s^{-1} Υ_{ij} collisional rate coefficient for transition i \rightarrow j[=] cm^3s^{-1} nnumber of particles of buffer gas per unit volume[=] cm^{-3}

Limiting case: collisional rates >> radiative rates \rightarrow LTE

Limiting case: radiative rates >> collisional rates

2) Introduction to molecular excitation: Remember

One must solve statistical equilibrium

If collisional processes dominate: \rightarrow LTE: Boltzmann distribution at T_{kin}

If radiative processes dominate: \rightarrow LTE: Boltzmann distribution at T_{rad} Solving statistical equilibrium

Statistical equilibrium

Large Velocity Gradient (LVG) method

More advanced methods

$$\frac{dn_{i}}{dt} = \sum_{j \neq i} n_{j} (4\pi J_{ij} B_{ji} + \Upsilon_{ji} n) + \sum_{j > i} n_{j} A_{ji} - n_{i} \sum_{j \neq i} (4\pi J_{ij} B_{ij} + \Upsilon_{ij} n) - n_{i} \sum_{j < i} A_{ij} = 0$$

More advanced methods to get the level populations:

- Monte Carlo:	Bernes 1979, A&A, 73, 67
- Accelerated Λ Iteration (ALI):	Hogerheijde & van der Tak 2000, A&A, 362, 697 Rybicki & Hummer 1991, A&A, 245, 171
- Gauss-Seidel algorithm:	Trujillo Bueno & Bendicho 1995, ApJ, 455, 646 Daniel & Cernicharo 2008, A&A, 488, 1247
 Coupled escape probability (CEP): 	Elitzur & Asensio Ramos 2006, MNRAS, 365, 779

Statistical equilibrium collisional vs radiative excitation

Statistical equilibrium collisional vs radiative excitation

Statistical equilibrium collisional vs radiative excitation

Statistical equilibrium Limiting case towards LTE

- At high densities, level populations tend towards a Boltzmann distribution at T_{kin} (LTE) - The critical density of thermalization depends on the dipole moment of the molecule

- CO is a good tracer of T_{kin} : easily thermalized

- HCN is a good tracer of $n(H_2)$: thermalises at high densities

Statistical equilibrium Limiting case with strong surrounding radiation field

CMB discovered by Penzias & Wilson in 1965.

First observations of CMB by McKellar using interstellar molecules in 1940, although he did not realized of the meaning at that time.

In 1950 the Nobel-prize winning physicist Gerhard Herzberg wrote in his book *Spectra of Diatomic Molecules*:

From the intensity ratio of the lines with K = 0 and K = 1 a rotational temperature of 2.3° K follows, which has of course only a very restricted meaning.

Spectrum towards zeta Oph taken in 1940 by McKellar.

2) Introduction to molecular excitation: Summary

One must solve statistical equilibrium

If collisional processes dominate: \rightarrow LTE: Boltzmann distribution at T_{kin}

If radiative processes dominate: \rightarrow LTE: Boltzmann distribution at T_{rad}

Radiative model: statistical equilibrium + ray-tracing

Radiative model: statistical equilibrium + ray-tracing

$$\frac{dn_{i}}{dt} = \sum_{j \neq i} n_{j} (4\pi J_{ij}B_{ji} + \gamma_{ji}n) + \sum_{j > i} n_{j}A_{ji} - n_{i}\sum_{j \neq i} (4\pi J_{ij}B_{ij} + \gamma_{ij}n) - n_{i}\sum_{j < i} A_{ij} = 0$$

solve statistical equilibrium (LVG) get level populations

Radiative model: statistical equilibrium + ray-tracing

$$I_{v} = I_{v}^{0} e^{-\tau_{v}} + S_{v} (1 - e^{-\tau_{v}})$$

3) Line profiles

Line profiles

Macroscopic motions: NO

- quiescent source

gaussian line profile:

- thermal broadening
$$\rightarrow T_{kin}$$

$$\Delta v = \sqrt{\frac{8 \ln 2 k T_{kin}}{m}}$$

- microturbulence broadening

Line profiles

Macroscopic motions: NO

- quiescent source

Macroscopic motions: YES

- expanding cloud

source resolved by telescope

source not resolved by telescope

optically thin

optically thick

Line profiles

Macroscopic motions: NO

- quiescent source

Macroscopic motions: YES

- expanding cloud
- collapsing cloud

Remember !

Radiative transfer model:

- (1) Solve statistical equilibrium to get level populations(LVG, MC, ALI, ...)
- (2) Solve radiative transfer equation (ray-tracing) to get line profiles

Astronomical observation + radiative transfer model

You can retrieve - physical structure of the source (temperature, density, kinematics)

- chemical composition of the source (molecular abundances)