

- the Ly-a forest
- cosmic reionisation
- the warm-hot intergalactic medium

• the Ly-a forest

- cosmic reionisation
- the warm-hot intergalactic medium

Ly- α forest

Ly- α forest

- first observed in 2001, for the most-distant QSO to that date!
- non-existence for z<6 means that...
 - either most of the hydrogen is not neutral, but ionized instead
 - or no hydrogen left in intergalactic space (all already collapsed)

- first observed in 2001, for the most-distant QSO to that date!
- non-existence for z<6 means that...
 - either most of the hydrogen is not neutral, but ionized instead
 - or no hydrogen left in intergalactic space (all already collapsed)

not really compliant with cosmic structure formation...

- first observed in 2001, for the most-distant QSO to that date!
- non-existence for z<6 means that...

...most of the hydrogen is not neutral, but ionized instead

- first observed in 2001, for the most-distant QSO to that date!
- non-existence for z<6 means that...

...most of the hydrogen is not neutral, but ionized instead: cosmic reionisation

the Ly-a forest

cosmic reionisation

the warm-hot intergalactic medium

reionising the Universe

reionising the Universe

- energy released by first objects ionizes neutral hydrogen
- detected via...

...Gunn-Peterson trough in QSO spectra: neutral hydrogen along line-of-sight absorbs photons

reionising the Universe

- energy released by first objects ionizes neutral hydrogen
- detected via...

...Gunn-Peterson trough in QSO spectra: neutral hydrogen along line-of-sight absorbs photons, **but** no trough in spectra for QSO's with z<6!

reionising the Universe

- energy released by first objects ionizes neutral hydrogen
- detected via...

...Gunn-Peterson trough in QSO spectra: neutral hydrogen along line-of-sight absorbs photons, **but** no trough in spectra for QSO's with z<6!

...Thomson scattering of CMB photons: erasing of small scale anisotropies, polarization of CMB, Planck 2013: reionisation started at z=11

reionising the Universe

- energy released by first objects ionizes neutral hydrogen
- detected via...

...Gunn-Peterson trough in QSO spectra: neutral hydrogen along line-of-sight absorbs photons, **but** no trough in spectra for QSO's with z<6!

...Thomson scattering of CMB photons: erasing of small scale anisotropies, polarization of CMB, Planck 2013: reionisation started at z=11

 \rightarrow reionisation window: 6 < z < 11 (ca. 500 Myrs)

reionising the Universe - inhomogenous process

reionising the Universe - inhomogenous process

reionising the Universe - inhomogenous process

cosmic effects of first objects

reionising the Universe – movie

reionising the Universe – the UV background

eventually there will be a homogenous UV background filling the Universe!

reionising the Universe – the UV background

412 96 Göteborg, Sweden. ³ ISAS/SISSA, via Beirut 2-4, 34014 Trieste, Italy.

(FOC) detection of redshifted He II 304 Å absorption in the spectrum of the z = 3.29 quasar Q0302-003 (Jakobsen et

20 © American Astronomical Society • Provided by the NASA Astrophysics Data System

first quantitative calculations can be found in Haardt & Madau (1996)

reionising the Universe – the UV background

first quantitative calculations can be found in Haardt & Madau (1996)

cosmic effects of first objects

reionising the Universe – first stars? first galaxies?

but what exactly are the sources?

- reionising the Universe first stars:
 - are very massive
 - should have zero metalicities

cosmic effects of first objects

- reionising the Universe first stars
 - are very massive
 - should have zero metalicities

massive stars are primarily forming in pairs

cosmic effects of first objects

reionising the Universe – (first) galaxies

reionising the Universe - Cosmic Dawn simulation (Ocvirk et al. 2016)

reionising the Universe - Cosmic Dawn simulation (Ocvirk et al. 2016)

- \blacksquare the Ly- α forest
- cosmic reionisation

the warm-hot intergalactic medium

	absolute	relative	
	$\Omega_{ m b} h^2$	$arOmega_{ m b}/arOmega_{ m b}^{ m Plank}$	018)
Stars in galaxies	0.0015 ± 0.0004	(7±2)%	 (Nicastro et al. 2

	absolute	relative	
	$\Omega_{ m b}h^2$	$arOmega_{ m b}/arOmega_{ m b}^{ m Plank}$	018)
Stars in galaxies Cold gas in galaxies	$\begin{array}{c} 0.0015 \pm 0.0004 \\ 0.00037 \pm 0.00009 \end{array}$	(7±2)% (1.7±0.4)%	l (Nicastro et al. 2

	absolute	relative	
	$\Omega_{ m b}h^2$	$arOmega_{ m b}/arOmega_{ m b}^{ m Plank}$	018)
Stars in galaxies Cold gas in galaxies Galaxies' hot disks/haloes	$\begin{array}{c} 0.0015 \pm 0.0004 \\ 0.00037 \pm 0.00009 \\ 0.0011 \pm 0.0007 \end{array}$	$(7\pm2)\%$ $(1.7\pm0.4)\%$ $(5\pm3)\%$	l icastro et al. 2
			Ī

	absolute	relative	
	$arOmega_{ m b}h^2$	$arOmega_{ m b}/arOmega_{ m b}^{ m Plank}$	018)
Stars in galaxies	0.0015 ± 0.0004	(7±2)%	 al. 2
Cold gas in galaxies	0.00037 ± 0.00009	(1.7±0.4)%	et
Galaxies' hot disks/haloes	0.0011 ± 0.0007	(5±3)%	itro
Hot ICM	0.00088 ± 0.00033	$(4.0 \pm 1.5)\%$	licas
			Z

	absolute	relative	
	$\Omega_{ m b}h^2$	$arOmega_{ m b}/arOmega_{ m b}^{ m Plank}$	018)
Stars in galaxies	$0.0015 \!\pm\! 0.0004$	(7±2)%	al. 2
Cold gas in galaxies	0.00037 ± 0.00009	(1.7±0.4)%	et
Galaxies' hot disks/haloes	0.0011 ± 0.0007	(5±3)%	itro
Hot ICM	0.00088 ± 0.00033	(4.0±1.5)%	icas
Photoionized Lyman α forest	$0.0062 \!\pm\! 0.0024$	(28±11)%	Z

	absolute	relative	
	$\Omega_{ m b}h^2$	$arOmega_{ m b}/arOmega_{ m b}^{ m Plank}$	018)
Stars in galaxies	0.0015 ± 0.0004	(7±2)%	al. 2
Cold gas in galaxies	0.00037 ± 0.00009	$(1.7 \pm 0.4)\%$	et
Galaxies' hot disks/haloes	0.0011 ± 0.0007	(5±3)%	tro
Hot ICM	0.00088 ± 0.00033	(4.0±1.5)%	icas
Photoionized Lyman $lpha$ forest	0.0062 ± 0.0024	(28±11)%	Z

observed baryons only account for ~45% of all available baryons

	absolute	relative	
	$\Omega_{ m b}h^2$	$arOmega_{ m b}/arOmega_{ m b}^{ m Plank}$	018)
Stars in galaxies	0.0015 ± 0.0004	(7±2)%	al. 2
Cold gas in galaxies	0.00037 ± 0.00009	(1.7±0.4)%	et
Galaxies' hot disks/haloes	0.0011 ± 0.0007	(5±3)%	tro
Hot ICM	0.00088 ± 0.00033	(4.0±1.5)%	icas
Photoionized Lyman $lpha$ forest	0.0062 ± 0.0024	(28±11)%	Z

observed baryons only account for ~45% of all available baryons

the warm-hot intergalactic medium

Hydrogen

 $T < 10^{5} {
m K}$

 $10^{7} {
m K} < T$

<u>neutral hydrogen atoms:</u>

• absorption of background photons

• emission via 21 cm 'spin-flip'

fully ionised hydrogen atoms:

• emission of X-rays (electrons)

Note: 10^{5} K ~ 13.6eV

difficult to detect:

emission/absorpion of UV and low-energy X-rays!?

$r < 10^5 K$ $< T < 10^7 K$

difficult to detect:

emission/absorpion of UV and low-energy X-rays!?

maybe the missing baryons/hydrogen have such temperatures? ...but where to look for them?

$r < 10^5 K$ $< T < 10^7 K$

difficult to detect:

emission/absorpion of UV and low-energy X-rays!?

maybe the missing baryons/hydrogen have such temperatures?

...but where to look for them?

difficult to detect:

emission/absorpion of UV and low-energy X-rays!?

...but where to look for them?

possibly hidden in filamentary structure of the Universe* (Cen & Ostriker 1999)

*based upon performing full physics cosmological simulations and simply looking for them...

Cosmological Simulations

Cosmological Simulations

	$arOmega_{ m b}h^2$	$arOmega_{ m b}/arOmega_{ m b}^{ m Plank}$	018)
Stars in galaxies	0.0015 ± 0.0004	(7±2)%	al. 2
Cold gas in galaxies	0.00037 ± 0.00009	$(1.7\pm0.4)\%$	et
Galaxies' hot disks/haloes	0.0011 ± 0.0007	(5±3)%	stro
Hot ICM	0.00088 ± 0.00033	(4.0±1.5)%	icas
Photoionized Lyman α forest	0.0062 ± 0.0024	(28±11)%	Z

the warm-hot intergalactic medium

Cosmic Baryon Census at z < 0.5

	$arOmega_{ m b}h^2$	$arOmega_{ m b}/arOmega_{ m b}^{ m Plank}$
Stars in galaxies	0.0015 ± 0.0004	(7±2)%
Cold gas in galaxies	0.00037 ± 0.00009	(1.7±0.4)%
Galaxies' hot disks/haloes	0.0011 ± 0.0007	(5±3)%
Hot ICM	0.00088 ± 0.00033	(4.0±1.5)%
Photoionized Lyman $lpha$ forest	0.0062 ± 0.0024	(28±11)%
WHIM with $10^5 \text{ K} \le T < 10^{5.7} \text{ K}$	$0.0033\substack{+0.0018\\-0.0009}$	$15_{-4}^{+8}\%$
WHIM with $10^{5.7} \text{ K} \le T < 10^{6.2} \text{ K}$	>0.002 and <0.009	>9% and <40%
Total	>0.013 and < 0.026	>59% and <118%

summary

• the Ly-a forest

cosmic reionisation

the warm-hot intergalactic medium

the Ly-a forest

 \rightarrow study spatial distribution of neutral hydrogen clouds

cosmic reionisation

the warm-hot intergalactic medium

• the Ly-a forest

 \rightarrow study spatial distribution of neutral hydrogen clouds

cosmic reionisation

 \rightarrow what re-ionized the Universe?

• the warm-hot intergalactic medium

the Ly-a forest

 \rightarrow study spatial distribution of neutral hydrogen clouds

cosmic reionisation

 \rightarrow what re-ionized the Universe?

• the warm-hot intergalactic medium

 \rightarrow where are the missing baryons?