

Alexander Knebe (Universidad Autonoma de Madrid)

"Galaxy clusters are the

largest gravitationally bound

objects in the Universe."

Hagar the Horrible

- properties
- scaling relations
- application

- properties
- scaling relations
- application

introduction

first mentioning?

• "strange accumulation of nebulae"

www.y William Herschel already found in 1783 some 23 nebuluous things in that direction...

• "strange accumulation of nebulae" ("Ein merkwürdiger Haufen von Nebelflecken")

- "strange accumulation of nebulae" ("Ein merkwürdiger Haufen von Nebelflecken")
- "frightened by such remarkable appearance" ("Man erschrickt bei dem Anblick")
- "of greatest relevance for understanding of our Universe!"

- "strange accumulation of nebulae" ("Ein merkwürdiger Haufen von Nebelflecken")
- "frightened by such remarkable appearance" ("Man erschrickt bei dem Anblick")
- "of greatest relevance for understanding of our Universe!"

- "strange accumulation of nebulae" ("Ein merkwürdiger Haufen von Nebelflecken")
- "frightened by such remarkable appearance" ("Man erschrickt bei dem Anblick")
- "of greatest relevance for understanding of our Universe!"

- "strange accumulation of nebulae" ("Ein merkwürdiger Haufen von Nebelflecken")
- "frightened by such remarkable appearance" ("Man erschrickt bei dem Anblick")
- "of greatest relevance for understanding of our Universe!"

"Galaxy clusters are the largest gravitationally bound objects in the Universe."

first mentioning by Max Wolf in 1901/02:

- "strange accumulation of nebulae" ("Ein merkwürdiger Haufen von Nebelflecken")
- "frightened by such remarkable appearance" ("Man erschrickt bei dem Anblick")
- "of greatest relevance for understanding of our Universe!"

introduction

"Galaxy clusters are the largest gravitationally bound objects in the Universe."

(www.clues-project.org)

introduction

actual observation of the local Universe (<u>https://cosmicflows.iap.fr</u>)

introduction

gravitational lensing effects used to reconstruct matter distribution

CL0024+17

introduction

intra-cluster stars/light

Ko & Jee (2018)

introduction

intra-cluster stars/light

...but what about non-optical wavebands?!

introduction

introduction

introduction

observations in different wave-bands

Hydra A – radio

observations in different wave-bands

Hydra A – radio

http://chandra.harvard.edu/photo/0087/index.html

http://chandra.harvard.edu/photo/0087/index.html

- properties
- scaling relations
- application

properties

George Abell

George Abell

"Abell catalog of rich clusters of galaxies":

- 4073 clusters at *z*<0.2
- Virgo excluded as it was too large on the plates

George Abell

galaxy cluster classification

• Abell 'Richness':

number of galaxies
a) in cylinder of radius 1.5 Mpc, and
b) must lie in magnitude intervall [m_{3rd}, m_{3rd}-2]

- galaxy cluster classification
 - Abell 'Richness':
- number of galaxies
 a) in cylinder of radius 1.5 Mpc, and
 b) must lie in magnitude intervall [m_{3rd}, m_{3rd}-2]

- regular clusters:
- well defined geometrical centre
- dominated by central, elliptical galaxy (BCG*)

- galaxy cluster classification
 - Abell 'Richness':
- number of galaxies
 a) in cylinder of radius 1.5 Mpc, and
 b) must lie in magnitude intervall [m_{3rd}, m_{3rd}-2]

- regular clusters:
- well defined geometrical centre
- dominated by central, elliptical galaxy (BCG)
- irregular clusters:
- no well-defined centresigns of substructure

$N_{galaxies}$	~	10-10 ³
Mass	~	10 ¹⁴ -10 ¹⁵ M _☉
Radius	~	I-5 Mpc

general properties

 $N_{galaxies}$ ~10-103Mass~ 10^{14} - $10^{15} M_{\odot}$ Radius~1-5 Mpc

abundance

 $n_{clusters}$ ~ $10^{-5} / Mpc^3$

	$N_{galaxies}$	~	10-10 ³
	Mass	~	10 ¹⁴ -10 ¹⁵ M _☉
	Radius	~	I-5 Mpc
abundance			
	n _{clusters}	~	10 ⁻⁵ / Mpc ³
	$n_{galaxies}$	~	10 ⁻² / Mpc ³

	$N_{galaxies}$	~	10-10 ³
	Mass	~	10 ¹⁴ -10 ¹⁵ M _☉
	Radius	~	I-5 Mpc
■ abundance			
	n _{clusters}	~	10 ⁻⁵ / Mpc ³
	$(n_{galaxies})$	~	10 ⁻² / Mpc ³)
baryonic properties			
	L _x	~	10 ⁴³ -10 ⁴⁵ erg/s
	T _{ICM}	>	10 ⁸ K
	M _g	~	10 ¹³ -10 ¹⁴ M _☉
	f_b	~	0.95 f _{b,cosmic}

hot X-ray gas

XMM-Newton

Swift

Exosat

Hitomi

Rosat

Chandra

Rossi

Athena

hot X-ray gas

http://antwrp.gsfc.nasa.gov/apod/astropix.html

Bullet cluster (IE 0657-558)

properties

Galaxy Clusters	properties
■ hot X-ray gas	
 X-ray luminosity 	$L_x \sim 10^{43} - 10^{45} \text{ erg/s}$

hot X-ray gas

• X-ray luminosity

$$L_x \sim 10^{43} - 10^{45} \text{ erg/s}$$

measured with X-ray satellites...

not measured, but inferred!

• X-ray luminosity

$$L_x \sim 10^{43} - 10^{45} \text{ erg/s}$$

measured with X-ray satellites...

not measured, but inferred!

• X-ray luminosity

$$L_x \sim 10^{43} - 10^{45} \text{ erg/s}$$

measured with X-ray satellites...

but what is causing this emission?

- hot X-ray gas
 - X-ray luminosity

$$L_x \sim 10^{43} - 10^{45} \text{ erg/s}$$

- Bremsstrahlung (free-free radiation)
- collisionally excited emission lines

- hot X-ray gas
 - X-ray luminosity

- Bremsstrahlung (free-free radiation)
- collisionally excited emission lines

 $L_x \sim 10^{43} - 10^{45} \text{ erg/s}$

which is the dominant component? hot X-ray gas

• X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s

emission processes:

- Bremsstrahlung (free-free radiation)
- collisionally excited emission lines

- hot X-ray gas
 - X-ray luminosity

$$L_x \sim 10^{43} - 10^{45} \text{ erg/s}$$

- Bremsstrahlung (free-free radiation, T>2.5keV):
 - X-ray gas is highly ionized
 - free electrons are accelerated in the E-field
 - free-free emissivity:

$$\epsilon_{\nu}^{ff} = \frac{2^5 \pi e^6}{3m_e c^3} \left(\frac{2\pi}{3m_e k}\right)^{1/2} n_e T^{-1/2} e^{-h\nu/kT} Z^2 n_i g(Z, T, \nu).$$

• total emissivity*:

$$\epsilon_{tot} = \int \epsilon d\nu \propto n_e n_i T^{1/2}$$

*emissivity:
$$\epsilon = \frac{dL}{dV}$$

- hot X-ray gas
 - X-ray luminosity

$$L_x \sim 10^{43} - 10^{45} \text{ erg/s}$$

- Bremsstrahlung (free-free radiation, T>2.5keV):
 - X-ray gas is highly ionized
 - free electrons are accelerated in the E-field
 - free-free emissivity:

$$\epsilon_{\nu}^{ff} = \frac{2^5 \pi e^6}{3m_e c^3} \left(\frac{2\pi}{3m_e k}\right)^{1/2} n_e T^{-1/2} e^{-h\nu/kT} Z^2 n_i g(Z, T, \nu).$$

• total emissivity:

$$\epsilon_{tot} = \int \epsilon d\nu \propto n_e n_i T^{1/2} \quad \rightarrow \quad T \checkmark \Rightarrow \mathcal{E} \checkmark$$

- hot X-ray gas
 - X-ray luminosity

$$L_x \sim 10^{43} - 10^{45} \text{ erg/s}$$

- Bremsstrahlung (free-free radiation)
- collisionally excited emission lines 30.3 10 30 10 3 ٦ 5 6 [′]T<5x10⁷ K (=2.5keV) NeX FeXX 1044 Si XIV XVI 4×107K-1044 6x10⁷K (ergs / sec - keV) Provide (ergs / sec - keV) -1043 1042 1x10⁷K -1045 7 ڲؖٳ ڲٵؖڲۜٳ 2x10⁷K 1043 1044 1042 1043 10.1 10 .3 .3 3 3 .1 4 1 E (keV)

- hot X-ray gas
 - X-ray luminosity

$$L_x \sim 10^{43} - 10^{45} \text{ erg/s}$$

- Bremsstrahlung (free-free radiation)
- collisionally excited emission lines (T<2.5keV):
 - rate of collisional excitations:

 $R = n_e n_i^m C_{mn}(T),$

$$C_{mn}(T) = \int_{v_0}^{\infty} v f(v,T) \sigma_{mn}(v) dv \propto T^{-1/2}$$

$$f(v,T) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-mv^2/2kT}.$$

• line emissivity:

$$\epsilon_{tot} = \int \epsilon^{line} d\nu \propto R \propto n_e n_i T^{-1/2}$$

- hot X-ray gas
 - X-ray luminosity

$$L_x \sim 10^{43} - 10^{45} \text{ erg/s}$$

- Bremsstrahlung (free-free radiation)
- collisionally excited emission lines (T<2.5keV):
 - rate of collisional excitations:

 $R = n_e n_i^m C_{mn}(T),$

$$C_{mn}(T) = \int_{v_0}^{\infty} v f(v, T) \sigma_{mn}(v) dv \propto T^{-1/2}$$

$$f(v,T) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-mv^2/2kT}.$$

• line emissivity:

$$\epsilon_{tot} = \int \epsilon^{line} d\nu \propto R \propto n_e n_i T^{-1/2} \qquad \rightarrow \quad T \checkmark \Rightarrow \varepsilon \checkmark$$

- hot X-ray gas
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s

- Bremsstrahlung (free-free radiation) $\epsilon = \int \epsilon_{\nu} d\nu \propto n_e n_i T^{1/2} \rightarrow T \Rightarrow \varepsilon \checkmark$
- collisionally excited emission lines $\epsilon = \int \epsilon^{line} dv \propto n_e n_i T^{-1/2} \rightarrow T \Rightarrow \epsilon^{n_e}$

- hot X-ray gas
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s = $\iiint \epsilon dV$

- Bremsstrahlung (free-free radiation) $\epsilon = \int \epsilon_{\nu} d\nu \propto n_e n_i T^{1/2} \rightarrow T \Rightarrow \varepsilon \checkmark \Rightarrow L_x \checkmark$
- collisionally excited emission lines $\epsilon = \int \epsilon^{line} d\nu \propto n_e n_i T^{-1/2} \rightarrow T \Rightarrow \epsilon \rightarrow L_x \rightarrow L_x$

hot X-ray gas

• X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s = $\iiint \epsilon dV$

emission processes:dominant component- Bremsstrahlung (free-free radiation) $\epsilon = \int \epsilon_v dv \propto n_e n_i T^{1/2} \rightarrow T \Rightarrow \epsilon \Rightarrow L_x \Rightarrow$ - collisionally excited emission lines $\epsilon = \int e^{line} dv \propto n_e n_i T^{-1/2} \rightarrow T \Rightarrow \epsilon \Rightarrow L_x \Rightarrow$
• X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s = $\iiint \epsilon dV$

emission processes:dominant component- Bremsstrahlung (free-free radiation) $\epsilon = \int \epsilon_v dv \propto n_e n_i T^{1/2} \rightarrow T \Rightarrow \epsilon \Rightarrow L_x \Rightarrow$ - collisionally excited emission lines $\epsilon = \int e^{line} dv \propto n_e n_i T^{-1/2} \rightarrow T \Rightarrow \epsilon \Rightarrow L_x \Rightarrow$

can this be used to learn something about the gas?

• X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s = $\iiint \epsilon dV$

emission processes:dominant component- Bremsstrahlung (free-free radiation) $\epsilon = \int \epsilon_v dv \propto n_e n_i T^{1/2} \rightarrow T \Rightarrow \varepsilon \Rightarrow L_x \checkmark$ - collisionally excited emission lines $\epsilon = \int e^{line} dv \propto n_e n_i T^{-1/2} \rightarrow T \Rightarrow \varepsilon \Rightarrow L_x \checkmark$

$$L_X = \iiint \epsilon dV \propto n_e^2 T^{1/2} R^3$$
 (assuming n_e =const. T=const.)

can this be used to learn something about the gas?

• X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s = $\iiint \epsilon dV$

emission processes:dominant component- Bremsstrahlung (free-free radiation) $\epsilon = \int \epsilon_v dv \propto n_e n_i T^{1/2} \rightarrow T \Rightarrow \epsilon \Rightarrow L_x \Rightarrow$ - collisionally excited emission lines $\epsilon = \int e^{line} dv \propto n_e n_i T^{-1/2} \rightarrow T \Rightarrow \epsilon \Rightarrow L_x \Rightarrow$

can this be used to learn something about the gas?

- hot X-ray gas
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s = $\iiint \epsilon dV$

emission processes:dominant component- Bremsstrahlung (free-free radiation) $\epsilon = \int \epsilon_v dv \propto n_e n_i T^{1/2} \rightarrow T \Rightarrow \epsilon \Rightarrow L_x \Rightarrow$ - collisionally excited emission lines $\epsilon = \int e^{line} dv \propto n_e n_i T^{-1/2} \rightarrow T \Rightarrow \epsilon \Rightarrow L_x \Rightarrow$

 $L_x \sim 10^{43} - 10^{45} \text{ erg/s}$

• shape of spectrum, and

• strength of emission lines

- hot X-ray gas
 - X-ray luminosity

emission processes:

- Bremsstrahlung (free-free radiation)
- collisionally excited emission lines

- hot X-ray gas
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s
 - very low density $n_e \sim 10^{-1} 10^{-4} \text{ cm}^{-3}$
 - extremely hot

 $T \sim 10^{7} - 10^{8} \text{ K}$

Galaxy Clusters	properties
■hot X-ray gas	
 X-ray luminosity 	$L_x \sim 10^{43} - 10^{45} \text{ erg/s}$
 very low density 	$n_e \sim 10^{-1} - 10^{-4} \text{ cm}^{-3}$
extremely hot	T ∼ 10 ⁷ -10 ⁸ K

 X-ray luminosity 	$L_x \sim 10^{43} - 10^{45} \text{ erg/s}$
 very low density 	$n_e \sim 10^{-1} - 10^{-4} \mathrm{cm}^{-3}$
• extremely hot	$T \sim 10^7 - 10^8 \text{ K}$

but why?

- hot X-ray gas
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s
 - very low density $n_e \sim 10^{-1} 10^{-4} \text{ cm}^{-3}$
 - extremely hot $T \sim 10^7 10^8 \text{ K}$

- hot X-ray gas
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s
 - very low density $n_e \sim 10^{-1} 10^{-4} \, \mathrm{cm}^{-3}$
 - extremely hot $T \sim 10^7 10^8 \text{ K}$

- hot X-ray gas
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s
 - very low density $n_e \sim 10^{-1} 10^{-4} \, \mathrm{cm}^{-3}$
 - extremely hot $T \sim 10^7 10^8 \text{ K}$

but why?

another estimate of *T*:

$$\frac{1}{2}m_p\sigma_v^2 \approx \frac{3}{2}kT$$

- hot X-ray gas
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s
 - very low density $n_e \sim 10^{-1} 10^{-4} \text{ cm}^{-3}$
 - extremely hot $T \sim 10^7 10^8 \text{ K}$
 - but why?

another estimate of *T*:

$$\frac{1}{2}m_{\nu}\sigma_{\nu}^{2} \approx \frac{3}{2}kT$$

- hot X-ray gas
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s • very low density $n_e \sim 10^{-1}$ -10⁻⁴ cm⁻³
 - extremely hot $T \sim 10^7 10^8 \text{ K}$

but why?

another estimate of T:

$$\frac{1}{2}m_p\sigma_{\nu,gal}^2 \approx \frac{3}{2}kT$$

galaxies & gas live in the same potential

$$\Rightarrow T \approx \frac{m_p \sigma_{\nu,gal}^2}{3k} \approx 4 \cdot 10^7 K$$

- hot X-ray gas radiative cooling
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s
 - very low density $n_e \sim 10^{-1} 10^{-4} \text{ cm}^{-3}$
 - extremely hot $T \sim 10^7 10^8 \text{ K}$

if unperturbed, the emitted X-ray radiation will cool the gas!

- hot X-ray gas radiative cooling
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s
 - very low density $n_e \sim 10^{-1} 10^{-4} \text{ cm}^{-3}$
 - extremely hot $T \sim 10^7 10^8 \text{ K}$

if unperturbed, the emitted X-ray radiation will cool the gas:

$$t_{cool} \equiv \frac{\frac{5}{2}n_e kT}{n_e^2 \Lambda} \approx t_H \left(\frac{T}{10^8 \text{ K}}\right) \left(\frac{\Lambda}{10^{-23} \text{erg cm}^3 \text{ s}^{-1}}\right)^{-1} \left(\frac{n_e}{10^{-2} \text{ cm}^{-3}}\right)^{-1}$$

- hot X-ray gas radiative cooling
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s
 - very low density $n_e \sim 10^{-1} 10^{-4} \text{ cm}^{-3}$
 - extremely hot $T \sim 10^7 10^8 \text{ K}$

if unperturbed, the emitted X-ray radiation will cool the gas:

$$t_{cool} \equiv \frac{\frac{5}{2}n_e kT}{n_e^2 \Lambda} \approx t_H \left(\frac{T}{10^8 \text{ K}}\right) \left(\frac{\Lambda}{10^{-23} \text{erg cm}^3 \text{ s}^{-1}}\right)^{-1} \left(\frac{n_e}{10^{-2} \text{ cm}^{-3}}\right)^{-1}$$

Hubble time

- hot X-ray gas radiative cooling
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s
 - very low density $n_e \sim 10^{-1} 10^{-4} \text{ cm}^{-3}$
 - extremely hot $T \sim 10^7 10^8 \text{ K}$

if unperturbed, the emitted X-ray radiation will cool the gas:

$$t_{cool} \equiv \frac{\frac{5}{2}n_e kT}{n_e^2 \Lambda} \approx t_H \left(\frac{T}{10^8 \text{ K}}\right) \left(\frac{\Lambda}{10^{-23} \text{erg cm}^3 \text{ s}^{-1}}\right)^{-1} \left(\frac{n_e}{10^{-2} \text{ cm}^{-3}}\right)^{-1}$$

Hubble time

<<1 in the cluster centre

- hot X-ray gas radiative cooling
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s
 - very low density $n_e \sim 10^{-1} 10^{-4} \text{ cm}^{-3}$
 - extremely hot $T \sim 10^7 10^8 \text{ K}$

if unperturbed, the emitted X-ray radiation will cool the gas:

 \Rightarrow we should see 'cool cores' and 'cooling flows'!?

- hot X-ray gas radiative cooling
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s
 - very low density $n_e \sim 10^{-1} 10^{-4} \text{ cm}^{-3}$
 - extremely hot $T \sim 10^7 10^8 \text{ K}$

if unperturbed, the emitted X-ray radiation will cool the gas:

Hubble time

<<I in the cluster centre

 \Rightarrow we should see 'cool cores' and 'cooling flows'!?

"cooling flow problem":

only a few clusters (if any) show signs of cooling flows and/or cool cores...

- X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s
- very low density $n_e \sim 10^{-1} 10^{-4} \, \mathrm{cm}^{-3}$
- extremely hot $T \sim 10^7 10^8 \text{ K}$

if un**perturbed**, the emitted X-ray radiation will cool the gas: $t_{m} = \frac{5}{2} n_e kT$ $t_{m} = \frac{5}{2} n_e kT$

 \Rightarrow we should see 'cool cores' and 'cooling flows'!?

"cooling flow problem":

only a few clusters (if any) show signs of cooling flows and/or cool cores...

Galaxy Clusters properties hot X-ray gas – numerical modelling Z=00.00 Hydra cluster in X-rays Hydra cluster in optical

hot X-ray gas – numerical modelling

can we be sure that this is done correctly?

hot X-ray gas – numerical modelling

Туре	Code name	CSF	AGN	Versions	Reference
Grid-based	RAMSES	Y	Y	RAMSES-AGN	Teyssier et al. (2011)
Moving mesh	AREPO	Y Y	Y N	arepo-IL arepo-SH	Vogelsberger et al. (2013, 2014)
Modern SPH	G3-X G3-PESPH G3-Magneticum	Y Y Y	Y N Y		Huang et al. (in prep.) Hirschmann et al. (2014)
Classic SPH	G3-Music	Y	Ν	G3-Music G2-MusicPI	Sembolini et al. (2013) Piontek & Steinmetz (2011)
	G3-OWLS G2-X	Y Y	Y Y		Schaye et al. (2010) Pike et al. (2014)

comparison of different codes

(Sembolini et al. 2016)

hot X-ray gas – numerical modelling: with feedback

- hot X-ray gas
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s
 - very low density $n_e \sim 10^{-1} 10^{-4} \text{ cm}^{-3}$
 - extremely hot

 $T \sim 10^{7} - 10^{8} \text{ K}$

- hot X-ray gas
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s
 - very low density $n_e \sim 10^{-1} 10^{-4} \text{ cm}^{-3}$
 - extremely hot $T \sim 10^7 10^8 \text{ K}$
 - gas mass?

hot X-ray gas

- hot X-ray gas
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s
 - very low density $n_e \sim 10^{-1} 10^{-4} \, \mathrm{cm}^{-3}$
 - extremely hot $T \sim 10^7 10^8 \text{ K}$
 - gas mass $M_g \sim 10^{13} 10^{14} \,\mathrm{M}_{\odot}$

- hot X-ray gas
 - X-ray luminosity $L_x \sim 10^{43}$ -10⁴⁵ erg/s
 - very low density $n_e \sim 10^{-1} 10^{-4} \text{ cm}^{-3}$
 - extremely hot
 - gas mass

 $M_g \sim 10^{13} - 10^{14} \, \mathrm{M}_{\odot}$

 $T \sim 10^{7} - 10^{8} \text{ K}$

turns out to be $f_b \sim 0.95 f_{b,cosmic}$ (see total mass estimation on following slides...)

general properties

	$N_{galaxies}$	~	10-10 ³		
	Mass	~	10 ¹⁴ -10 ¹⁵ M _☉		
	Radius	~	I-5 Mpc		
■ abundance					
	n _{clusters}	~	10 ⁻⁵ / Mpc ³		
	(n _{galaxies}	~	10 ⁻² / Mpc ³)		
baryonic properties					
	L _x	~	10 ⁴³ -10 ⁴⁵ erg/s		
	Т _{ісм}	>	10 ⁸ K		
	Mg	~	10 ¹³ -10 ¹⁴ M _☉		
	f _b	~	0.95 f _{b,cosmic}		

Galaxy Clusters				properties
■ general pro	perties			
	$N_{galaxies}$	~	10-10 ³	
	total cluster Mass	~	10 ¹⁴ -10 ¹⁵ M _©	
	Radius	~	I-5 Mpc	
abundance				
	n _{clusters}	~	10 ⁻⁵ / Mpc ³	
	(n _{galaxies}	~	10 ⁻² / Mpc ³)	
baryonic press	operties			
	L _x	~	10 ⁴³ -10 ⁴⁵ erg/s	
	T _{ICM}	>	10 ⁸ K	
	Mg	~	10 ¹³ -10 ¹⁴ M _☉	
	f _b	~	0.95 f _{b,cosmic}	

properties

- cluster mass estimates
 - galaxy motion inside cluster
 - hot X-ray gas
 - gravitational lensing

- cluster mass estimates
 - galaxy motion inside cluster
 - hot X-ray gas
 - gravitational lensing

properties

• gravitational lensing*:

with $D = D_{\rm L} D_{\rm LS} / D_{\rm S}$

*more details in Advanced Cosmology lecture...

properties

- cluster mass estimates
 - galaxy motion inside cluster
 - hot X-ray gas
 - gravitational lensing

cluster mass profile

• hot X-ray gas - in hydrostatic equilibrium:

$$M(< r) = -\frac{kTr}{G\mu m_p} \left(\frac{dln\rho_g}{dlnr} + \frac{dlnT}{dlnr}\right)$$

(exercise)

cluster mass estimates

- galaxy motion inside cluster*
- hot X-ray gas
- gravitational lensing

*remember Zwicky back in 1933...

properties

cluster mass estimates

• galaxy motion inside cluster:

virial theorem:
$$2 E_{\text{kin}} + E_{\text{pot}} = 0$$

properties

cluster mass estimates

• galaxy motion inside cluster:

virial theorem:
$$2 E_{kin} + E_{pot} = 0$$

2
$$E_{\text{kin}} = \sum m_i v_i^2 = \sum m_i (v_{x,i}^2 + v_{y,i}^2 + v_{z,i}^2)$$

$$E_{\rm pot} = -(3/5) \ G \ M^2/R$$

properties

cluster mass estimates

• galaxy motion inside cluster:

virial theorem:
$$2 E_{\text{kin}} + E_{\text{pot}} = 0$$

 $2 E_{kin} = \sum m_i v_i^2 = \sum m_i (v_{x,i}^2 + v_{y,i}^2 + v_{z,i}^2) = 3 \sum m_i v_{los,i}^2 = 3 M \langle v_{los,i}^2 \rangle = 3 M \sigma_{los}^2$ $E_{pot} = -(3/5) G M^2/R$

properties

cluster mass estimates

• galaxy motion inside cluster:

$$\boxed{\begin{array}{c} \text{virial theorem: } 2 E_{kin} + E_{pot} = 0 \\ | \\ 2 E_{kin} = \sum m_i v_i^2 = \sum m_i (v_{x,i}^2 + v_{y,i}^2 + v_{z,i}^2) = 3 \sum m_i v_{los,i}^2 = 3 M < v_{los,i}^2 > = 3 M \sigma_{los}^2 \\ E_{pot} = -(3/5) G M^2 / R \\ \hline M = 5 R \sigma_{los}^2 / G \\ \hline \end{array}}$$

properties

cluster mass estimates

• galaxy motion inside cluster:

$$\boxed{\begin{array}{c} \text{virial theorem: } 2 E_{\text{kin}} + E_{\text{pot}} = 0 \\ \\ \\ 2 E_{\text{kin}} = \sum m_{i} v_{i}^{2} = \sum m_{i} (v_{x,i}^{2} + v_{y,i}^{2} + v_{z,i}^{2}) = 3 \sum m_{i} v_{\text{los},i}^{2} = 3 M < v_{\text{los},i}^{2} > = 3 M \sigma_{\text{los}}^{2} \\ \\ E_{\text{pot}} = - (3/5) G M^{2}/R \\ \\ \\ \hline M = 5 R \sigma_{\text{los}}^{2} / G \\ \end{array}}$$

we can do even better and get the mass profile...

properties

cluster mass profile

• galaxy motion inside cluster:

Jeans equation*:
$$\frac{1}{\rho} \frac{d}{dr} (\rho \sigma_r^2) + 2\beta \frac{\sigma_r^2}{r} = -\frac{GM(\langle r)}{r}$$
; $\beta = 1 - \frac{\sigma_{\theta}^2}{\sigma_r^2}$

*analog to hydrostatic equilibrium, but now velocity dispersion balances gravity...

properties

- cluster mass profile
 - galaxy motion inside cluster:

Jeans equation*:
$$\frac{1}{\rho} \frac{d}{dr} (\rho \sigma_r^2) + 2\beta \frac{\sigma_r^2}{r} = -\frac{GM(\langle r)}{r}$$
; $\beta = 1 - \frac{\sigma_{\theta}^2}{\sigma_r^2}$

anisotropy parameter: difference between radial and tangential velocities...

*analog to hydrostatic equilibrium, but now velocity dispersion balances gravity...

properties

- cluster mass profile
 - galaxy motion inside cluster:

Jeans equation:
$$\frac{1}{\rho} \frac{d}{dr} (\rho \sigma_r^2) + 2\beta \frac{\sigma_r^2}{r} = -\frac{GM(\langle r)}{r}$$
; $\beta = 1 - \frac{\sigma_{\theta}^2}{\sigma_r^2}$
$$M(\langle r) = -\frac{\sigma_r^2 r}{G} \left(\frac{dln\rho}{dlnr} + \frac{dln\sigma_r^2}{dlnr} + 2\beta \right)$$

- cluster mass profile
 - galaxy motion inside cluster:

$$M(< r) = -\frac{\sigma_r^2 r}{G} \left(\frac{dln\rho}{dlnr} + \frac{dln\sigma_r^2}{dlnr} + 2\beta \right)$$

;
$$\beta = 1 - \frac{\sigma_{\theta}^2}{\sigma_r^2}$$

; $\beta = 1 - \frac{\sigma_{\theta}^2}{\sigma_r^2}$

- cluster mass profile
 - galaxy motion inside cluster:

$$M(< r) = -\frac{\sigma_r^2 r}{G} \left(\frac{d ln \rho}{d ln r} + \frac{d ln \sigma_r^2}{d ln r} + 2\beta \right)$$

$$f(< r) = -\frac{\sigma_r^2 r}{G} \left(\frac{d ln \rho}{d ln r} + \frac{d ln \sigma_r^2}{d ln r} + 2\beta \right)$$

$$f(< r) = -\frac{\sigma_r^2 r}{G} \left(\frac{d ln \rho}{d ln r} + \frac{d ln \sigma_r^2}{d ln r} + 2\beta \right)$$

$$f(< r) = -\frac{\sigma_r^2 r}{G} \left(\frac{d ln \rho}{d ln r} + \frac{d ln \sigma_r^2}{d ln r} + 2\beta \right)$$

; $\beta = 1 - \frac{\sigma_{\theta}^2}{\sigma_r^2}$

- cluster mass profile
 - galaxy motion inside cluster:

$$M(< r) = -\frac{\sigma_r^2 r}{G} \left(\frac{dln\rho}{dlnr} + \frac{dln\sigma_r^2}{dlnr} + 2\beta \right)$$

$$(ircular problem as \rho = \frac{dM}{dr} \rightarrow iterative solution...$$

cluster mass profile

hydrostatic equilibrium:

$$M(< r) = -\frac{kTr}{\mu m_p G} \left(\frac{dln\rho_g}{dlnr} + \frac{dlnT}{dlnr} \right)$$

$$M(< r) = -\frac{\sigma_r^2 r}{G} \left(\frac{dln\rho}{dlnr} + \frac{dln\sigma_r^2}{dlnr} + 2\beta \right)$$

- cluster mass profile
 - the β model*:

hydrostatic equilibrium:

$$M(< r) = -\frac{kTr}{\mu m_p G} \left(\frac{dln \rho_g}{dlnr} + \frac{dlnT}{dlnr} \right)$$

Jeans equation:

$$M(< r) = -\frac{\sigma_r^2 r}{G} \left(\frac{dln\rho}{dlnr} + \frac{dln\sigma_r^2}{dlnr} + 2\beta \right)$$

*has nothing to do with the anisotropy parameter!

- cluster mass profile
 - the β model:

hydrostatic equilibrium:

$$M(< r) = -\frac{kTr}{\mu m_p G} \left(\frac{dln\rho_g}{dlnr} + \frac{dlnT}{dlnr} \right)$$

Jeans equation:

$$M(< r) = -\frac{\sigma_r^2 r}{G} \left(\frac{dln\rho}{dlnr} + \frac{dln\sigma_r^2}{dlnr} + 2\beta \right)$$

$$0 = \beta = 1 - \frac{\sigma_{\theta}^2}{\sigma_r^2}$$
 (isotropic velocity dispersion)
 σ_r^2 =const.
 T =const.

*has nothing to do with the anisotropy parameter!

- cluster mass profile
 - the β model:

hydrostatic equilibrium:

$$M(< r) = -\frac{kTr}{\mu m_p G} \left(\frac{dln\rho_g}{dlnr}\right)$$

$$M(< r) = -\frac{\sigma_r^2 r}{G} \left(\frac{dln\rho}{dlnr}\right)$$

$$0 = \beta = 1 - \frac{\sigma_{\theta}^2}{\sigma_r^2}$$
 (isotropic velocity dispersion)
 σ_r^2 =const.
 T =const.

- cluster mass profile
 - the β model:

hydrostatic equilibrium:

$$M(< r) = -\frac{kTr}{\mu m_p G} \left(\frac{dln\rho_g}{dlnr}\right)$$

$$M(< r) = -\frac{\sigma_r^2 r}{G} \left(\frac{dln\rho}{dlnr}\right)$$

$$\Rightarrow \frac{d \ln \rho_g}{d \ln r} \frac{kT r}{\mu m_p} = \sigma_r^2 \frac{d \ln \rho}{d \ln r}$$
$$\frac{d \ln \rho_g}{d \ln \rho} = \frac{\sigma_r^2 \mu m_p}{kT} \equiv \beta$$

$$\Rightarrow \frac{\rho_g}{\rho_{g0}} = \left(\frac{\rho}{\rho_0}\right)^{\beta}$$

- cluster mass profile
 - the β model:

hydrostatic equilibrium:

$$M(< r) = -\frac{kTr}{\mu m_p G} \left(\frac{dln\rho_g}{dlnr}\right)$$

$$M(< r) = -\frac{\sigma_r^2 r}{G} \left(\frac{dln\rho}{dlnr}\right)$$

$$\Rightarrow \frac{d \ln \rho_g}{d \ln r} \frac{kT r}{\mu m_p} = \sigma_r^2 \frac{d \ln \rho}{d \ln r}$$
$$\frac{d \ln \rho_g}{d \ln \rho} = \frac{\sigma_r^2 \mu m_p}{kT} \equiv \beta$$
$$\frac{careful}{\rho} \beta here is not the anisotropy-\beta!$$

$$\Rightarrow \frac{\rho_g}{\rho_{g0}} = \left(\frac{\rho}{\rho_0}\right)^{\beta}$$

properties

- cluster mass profile
 - the β model:

$$\frac{\rho_g}{\rho_{g,0}} = \left(\frac{\rho}{\rho_0}\right)^\beta \qquad \qquad \beta = \frac{\sigma_r^2 \mu m_p}{kT}$$

under the assumptions:

$$0 = 1 - \frac{\sigma_{\theta}^2}{\sigma_r^2}$$
 (isotropic velocity dispersion)
 $\sigma_r^2 = \text{const.}$
 $T = \text{const.}$

general properties

	$N_{galaxies}$	~	10-10 ³
	Mass	~	10 ¹⁴ -10 ¹⁵ M _☉
	Radius	~	I-5 Mpc
■ abundance			
	n _{clusters}	~	10 ⁻⁵ / Mpc ³
	$(n_{galaxies})$	~	10 ⁻² / Mpc ³)
baryonic properties			
	L _x	~	10 ⁴³ -10 ⁴⁵ erg/s
	T _{ICM}	>	10 ⁸ K
	M _g	~	10 ¹³ -10 ¹⁴ M _☉
	f_b	~	0.95 f _{b,cosmic}

general properties
general properties

the cluster galaxy population!?	N galaxies	~	10-10 ³
	Mass	~	10 ¹⁴ -10 ¹⁵ M _☉
	Radius	~	I-5 Mpc
abundance			
	n _{clusters}	~	10 ⁻⁵ / Mpc ³
	$(n_{galaxies})$	~	10 ⁻² / Mpc ³)
baryonic properties			
	L _x	~	10 ⁴³ -10 ⁴⁵ erg/s
	T _{ICM}	>	10 ⁸ K
	M _g	~	10 ¹³ -10 ¹⁴ M _☉
	f _b	~	0.95 f _{b,cosmic}

galaxy population

*spiral galaxies are preferentially blue

galaxy population vs. intra-cluster stars

galaxy population vs. intra-cluster stars

galaxy population vs. intra-cluster stars

- properties
- scaling relations
- application

Galaxy Clusters scaling relation		
properties		
• total mass	M_{vir}	~ 10 ¹⁴ -10 ¹⁵ M _☉
 extremely hot 	T	~ 10 ⁷ -10 ⁸ K
• gas mass	M_g	~ 10 ¹³ -10 ¹⁴ M _☉
 X-ray luminosity 	L_x	~ 10 ⁴³ -10 ⁴⁵ erg/s

Galaxy Clusters properties

• total mass

- extremely hot
- gas mass
- X-ray luminosity

related!

 M_{vir}

T

 M_{g}

 L_x

• $M_{vir} - T$ relation

 $M_{vir} \propto T^{3/2}$

(exercise)

• $M_{vir} - L_x$ relation

Bremsstrahlung:
$$L_X \propto \epsilon(T, \rho_g) r^3 \propto T^{1/2} \rho_g^2 r^3$$
,

$$M_{vir} = \frac{4\pi}{3} \Delta_c \rho_c r_{vir}^3.$$
$$\rho_c(z) = E^2(z) \frac{3H_0^2}{8\pi G}$$

$$\label{eq:rhog} \begin{split} \rho_g \propto & \frac{f_g M_{vir}}{r_{vir}^3} \\ M_{vir} \propto T^{3/2} \end{split}$$

• $M_{vir} - L_x$ relation

Bremsstrahlung:
$$L_X \propto \epsilon(T, \rho_g) r^3 \propto T^{1/2} \rho_g^2 r^3$$
,

$$M_{vir} = \frac{4\pi}{3} \Delta_c \rho_c r_{vir}^3.$$

$$\rho_c(z) = E^2(z) \frac{3H_0^2}{8\pi G}$$

$$\rho_g \propto \frac{f_g M_{vir}}{r_{vir}^3}$$

$$M_{vir} \propto T^{3/2}$$

 $M_{vir} \propto L_X^{3/4}$

• $T - L_x$ relation

 $M_{vir} \propto T^{3/2}$ $M_{vir} \propto L_X^{3/4}$

 $L_X \propto T^2$

• $M_* - M_g$ relation?

introduction

- properties
- scaling relations

application

- number density evolution
- high-mass end of massfunction
- Sunyaev-Zeldovich effect

number density evolution

- high-mass end of massfunction
- Sunyaev-Zeldovich effect

number density evolution

high-mass end of massfunction

• the mass function:

mass spectrum of objects (dark matter haloes)

• the mass function:*

$$\frac{dn}{dM}dM = \sqrt{\frac{2}{\pi}} \frac{\overline{\rho}}{M} \frac{\delta_c}{\sigma_M} \left| \frac{d\ln\sigma_M}{d\ln M} \right| \exp\left(\frac{-\delta_c^2}{2\sigma_M^2}\right) \frac{dM}{M}$$

$$\sigma_M^2 = \frac{1}{2\pi^2} \int_0^{+\infty} P(k) \hat{W}^2(kR) k^2 \, dk \qquad P(k) = \left(\frac{D(a)}{D(a_0)}\right)^2 P_0(k)$$
$$\hat{W}(x) = \frac{3}{r^3} \left(\sin(x) - x\cos(x)\right)$$

mass spectrum of objects (dark matter haloes)

the mass function:

- number density evolution
- high-mass end of massfunction
- Sunyaev-Zeldovich effect

- thermal: CMB photons scatter off the hot intra-cluster gas
- kinetic: the cluster gas has a bulk motion with respects to the CMB and hence induces a Doppler shift

• thermal: CMB photons scatter off the hot intra-cluster gas

• thermal: CMB photons scatter off the hot intra-cluster gas

frequency shift: $\frac{\Delta v}{v} = \frac{\Delta E}{E} = \frac{kT - hv}{m_e c^2} \approx \frac{kT}{m_e c^2}$

• thermal: CMB photons scatter off the hot intra-cluster gas

• thermal: CMB photons scatter off the hot intra-cluster gas

• thermal: CMB photons scatter off the hot intra-cluster gas

SZ effect (white contours) for Abell 2218 as modelled for the observed gas (orange)

Sunyaev-Zeldovich effect – applications

Sunyaev-Zeldovich effect – applications

• scattering effect \Rightarrow magnitude is redshift independent!

Sunyaev-Zeldovich effect – applications

• scattering effect \Rightarrow magnitude is redshift independent!

 \Rightarrow SZ effect allows for detection of high-z clusters

application

- Sunyaev-Zeldovich effect applications
 - detection of high-z clusters

application

- Sunyaev-Zeldovich effect applications
 - detection of high-z clusters
 - detection of accretion shocks

Sunyaev-Zeldovich effect – applications

- detection of high-z clusters
- detection of accretion shocks

application

- Sunyaev-Zeldovich effect applications
 - detection of high-z clusters
 - detection of accretion shocks
 - measuring H_0

- Sunyaev-Zeldovich effect applications
 - detection of high-z clusters
 - detection of accretion shocks
 - measuring H_0

 $L_X \propto 4\pi d_L^2 F_X$

- Sunyaev-Zeldovich effect applications
 - detection of high-z clusters
 - detection of accretion shocks
 - measuring H_0

$$L_X \propto 4\pi d_L^2 F_X$$

 $L_X \propto \left(\frac{\Delta T}{T}\right)^2 d_A \qquad \qquad \frac{\Delta T}{T}$: CMB temperature flucuations

Sunyaev-Zeldovich effect – applications

- detection of high-z clusters
- detection of accretion shocks
- measuring H_0

 $L_X \propto 4\pi d_L^2 F_X$ $L_X \propto \left(\frac{\Delta T}{T}\right)^2 d_A$ $d_L = (1+z)^2 d_A$ $\left(\frac{\Delta T}{T}\right)^2 (1+z)^{-2} d_L \propto 4\pi d_L^2 F_X$

- Sunyaev-Zeldovich effect applications
 - detection of high-z clusters
 - detection of accretion shocks
 - measuring H_0

$$d_L \propto \left(\frac{\Delta T}{T}\right)^2 (1+z)^{-2} F_X^{-1}$$
- Sunyaev-Zeldovich effect applications
 - detection of high-z clusters
 - detection of accretion shocks
 - measuring H_0

measured via SZ effect

- Sunyaev-Zeldovich effect applications
 - detection of high-z clusters
 - detection of accretion shocks
 - measuring H_0 :

$$d_L \propto \left(\frac{\Delta T}{T}\right)^2 (1+z)^{-2} F_X^{-1} \propto \frac{c}{H_0}$$

Sunyaev-Zeldovich effect – applications

- detection of high-z clusters
- detection of accretion shocks
- measuring H_0 :

$$d_L \propto \left(\frac{\Delta T}{T}\right)^2 (1+z)^{-2} F_X^{-1} \propto \frac{c}{H_0}$$

 $H_0 = \begin{cases} 66 \text{ km/s/Mpc (Mason et al. 2001)} \\ ... \\ 67 \text{ km/s/Mpc (Udomprasert et al. 2004)} \\ ... \\ 67 \text{ km/s/Mpc (Kozmanyan et al. 2019)} \end{cases}$

application

