Alexander Knebe (Universidad Autonoma de Madrid)

"Sure it's beautiful, but I can't help thinking about all that interstellar dust out there."

thermal excitation

atomic transitions

- Einstein coefficients
- line broadening

thermal excitation

- atomic transitions
- Einstein coefficients
- line broadening

- Boltzmann distribution
- Saha equation

Boltzmann distribution

Boltzmann distribution

•cloud of atoms at temperature T

Boltzmann distribution

- •cloud of atoms at temperature \boldsymbol{T}
- each atom has certain energy levels

Boltzmann distribution

•cloud of atoms at temperature T

• each atom has certain energy levels

how many atoms N_n are at level n? (compared to the ground state)

- Boltzmann distribution
 - •cloud of atoms at temperature T
 - each atom has certain energy levels
 - •Boltzmann distribution:

$$\frac{N_n}{N_1} = \frac{g_n}{g_1} e^{-\frac{(E_n - E_1)}{k_B T}}$$

how many atoms N_n are at level n? (compared to the ground state)

- Boltzmann distribution
 - •cloud of atoms at temperature T
 - each atom has certain energy levels
 - •Boltzmann distribution:

$$\frac{N_n}{N_1} = \frac{g_n}{g_1} e^{-\frac{(E_n - E_1)}{k_B T}}$$

how many atoms N_n are at level n? (compared to all possible states)

- Boltzmann distribution
 - •cloud of atoms at temperature \boldsymbol{T}
 - each atom has certain energy levels
 - •Boltzmann distribution:

$$\frac{N_n}{N_1} = \frac{g_n}{g_1} e^{-\frac{(E_n - E_1)}{k_B T}}$$
$$| N = \sum_{n=1}^{\infty} N_n$$
$$\frac{N_n}{N} = \frac{g_n}{Z(T)} e^{-\frac{E_n}{k_B T}}$$

- Boltzmann distribution
 - •cloud of atoms at temperature T
 - each atom has certain energy levels
 - •Boltzmann distribution:

$$\frac{N_n}{N_1} = \frac{g_n}{g_1} e^{-\frac{(E_n - E_1)}{k_B T}}$$
$$| N = \sum_{n=1}^{\infty} N_n$$
$$\frac{N_n}{N} = \frac{g_n}{Z(T)} e^{-\frac{E_n}{k_B T}}$$

•canonical partition function:

$$Z(T) = g_1 \frac{N}{N_1} = g_1 \frac{\sum_{n=1}^{\infty} N_n}{N_1} = g_1 \sum_{n=1}^{\infty} \frac{N_n}{N_1} = g_1 + g_2 e^{-\frac{E_2}{k_B T}} + g_3 e^{-\frac{E_3}{k_B T}} + \dots$$

- Boltzmann distribution
 - •cloud of atoms at temperature T
 - each atom has certain energy levels
 - •Boltzmann distribution:

$$\frac{N_n}{N_1} = \frac{g_n}{g_1} e^{-\frac{(E_n - E_1)}{k_B T}}$$
$$| N = \sum_{n=1}^{\infty} N_n$$
$$\frac{N_n}{N} = \frac{g_n}{Z(T)} e^{-\frac{E_n}{k_B T}}$$

•canonical partition function:

$$Z(T) = g_1 \frac{N}{N_1} = g_1 \frac{\sum_{n=1}^{\infty} N_n}{N_1} = g_1 \sum_{n=1}^{\infty} \frac{N_n}{N_1} = g_1 + g_2 e^{-\frac{E_2}{k_B T}} + g_3 e^{-\frac{E_3}{k_B T}} + \dots$$

description of statistical properties

- Boltzmann distribution
- Saha equation

Saha equation

•cloud of atoms at temperature ${\boldsymbol{T}}$

thermal excitation

Saha equation

•cloud of atoms at temperature ${\cal T}$

Saha equation

•cloud of atoms at temperature T

important for calculation of stellar spectra and the early Universe (where we need to know the number of free electrons)

• cloud of atoms at temperature *T* - how many atoms are ionized?

• cloud of atoms at temperature T - how many atoms are ionized?

• cloud of atoms at temperature T - how many atoms are ionized?

$$\frac{N_{i+1}}{N_i} = \frac{g_{i+1}g_e^{free}}{g_i} \ e^{-\frac{\chi}{k_B T}}$$

 χ ionisation energy

$$N_i$$
 atoms in ionisation state i

 g_i statistical weight of state i

• cloud of atoms at temperature T - number density of ionized atoms?

$$\frac{N_{i+1}}{N_i} = \frac{g_{i+1}g_e^{free}}{g_i} \ e^{-\frac{\chi}{k_B T}}$$

 χ ionisation energy

- n_i atoms in ionisation state i
- g_i statistical weight of state i

• cloud of atoms at temperature T - number density of ionized atoms?

$$\frac{n_{i+1}}{n_i} = \frac{g_{i+1}g_e^{free}}{g_i} e^{-\frac{\chi}{k_BT}}$$

 χ ionisation energy

- n_i atoms in ionisation state i
- g_i statistical weight of state i

• cloud of atoms at temperature T - how many atoms are ionized?

$$\frac{n_{i+1}}{n_i} = \frac{g_{i+1}g_e^{free}}{g_i} e^{-\frac{\chi}{k_B T}}$$

 g_e^{free} = number of possible quantum states of free electron

 χ ionisation energy

- n_i atoms in ionisation state i
- g_i statistical weight of state i

• cloud of atoms at temperature T - how many atoms are ionized?

$$\frac{n_{i+1}}{n_i} = \frac{g_{i+1}g_e^{free}}{g_i} e^{-\frac{\chi}{k_B T}}$$

 g_e^{free} = number of possible quantum states of free electron

$$g_e^{free} = g_e \frac{1}{h^3} V \int_0^\infty e^{-\frac{p^2}{2m_e k_B T}} d^3 p$$

 χ ionisation energy

- n_i atoms in ionisation state i
- g_i statistical weight of state i

• cloud of atoms at temperature T - how many atoms are ionized?

$$\frac{n_{i+1}}{n_i} = \frac{g_{i+1}g_e^{free}}{g_i}e^{-\frac{\chi}{k_BT}}$$

 g_e^{free} = number of possible quantum states of free electron

$$g_e^{free} = g_e \frac{1}{h^3} V \int_0^\infty e^{-\frac{p^2}{2m_e k_B T}} \frac{d^3 p}{d^3 p}$$

2 spin states configuration space volume of electron

smallest phase-space volume element

 χ ionisation energy

- n_i atoms in ionisation state i
- g_i statistical weight of state i

• cloud of atoms at temperature T - how many atoms are ionized?

$$\frac{n_{i+1}}{n_i} = \frac{g_{i+1}g_e^{free}}{g_i}e^{-\frac{\chi}{k_BT}}$$

 g_e^{free} = number of possible quantum states of free electron

$$g_e^{free} = g_e \frac{1}{h^3} V \int_0^\infty e^{-\frac{p^2}{2m_e k_B T}} \frac{d^3 p}{d^3 p}$$

2 spin states momentum space volume of electron $= \frac{1}{n_e}$

smallest phase-space volume element

 χ ionisation energy

- n_i atoms in ionisation state i
- g_i statistical weight of state i

• cloud of atoms at temperature T - how many atoms are ionized?

$$\frac{n_{i+1}}{n_i} = \frac{g_{i+1}g_e^{free}}{g_i} e^{-\frac{\chi}{k_B T}}$$

 g_e^{free} = number of possible quantum states of free electron

$$g_e^{free} = g_e \frac{1}{h^3} \frac{1}{n_e} \int_0^\infty e^{-\frac{p^2}{2m_e k_B T}} d^3p$$

 χ ionisation energy

- n_i atoms in ionisation state i
- g_i statistical weight of state i

$$\begin{split} E &= E_{kin}^{e^-} + \chi \text{ total electron energy} \\ n_e \text{ free electrons} \\ n_{i+1} \text{ atoms ionisation state } i+1 \\ g_{i+1} \text{ statistical weight of state } i+1 \\ g_e^{free} \text{ all possible states of electron with } [p, p + dp] \end{split}$$
• cloud of atoms at temperature T - how many atoms are ionized?

$$\frac{n_{i+1}}{n_i} = \frac{g_{i+1}g_e^{free}}{g_i} e^{-\frac{\chi}{k_BT}}$$

 g_e^{free} = number of possible quantum states of free electron

$$g_e^{free} = g_e \frac{1}{h^3} \frac{1}{n_e} \int_0^\infty e^{-\frac{p^2}{2m_e k_B T}} d^3p = \frac{g_e}{h^3 n_e} (2\pi m_e k_B T)^{3/2}$$

 χ ionisation energy

- n_i atoms in ionisation state i
- g_i statistical weight of state i

$$\begin{split} E &= E_{kin}^{e^-} + \chi \text{ total electron energy} \\ n_e \text{ free electrons} \\ n_{i+1} \text{ atoms ionisation state } i+1 \\ g_{i+1} \text{ statistical weight of state } i+1 \\ g_e^{free} \text{ all possible states of electron with } [p, p + dp] \end{split}$$

• cloud of atoms at temperature T - how many atoms are ionized?

 χ ionisation energy

- n_i atoms in ionisation state i
- g_i statistical weight of state i

 $E = E_{kin}^{e^-} + \chi \text{ total electron energy}$ $n_e \text{ free electrons}$ $n_{i+1} \text{ atoms ionisation state } i+1$ $g_{i+1} \text{ statistical weight of state } i+1$ $g_e^{free} \text{ all possible states of electron with } [p, p + dp]$

• cloud of atoms at temperature T - how many atoms are ionized?

$$\frac{n_{i+1}}{n_i} = \frac{g_{i+1}}{g_i} \frac{g_e}{h^3 n_e} \left(2\pi m_e k_B T\right)^{3/2} e^{-\frac{\chi}{k_B T}}$$

 χ ionisation energy

- n_i atoms in ionisation state i
- g_i statistical weight of state i

$$\begin{split} E &= E_{kin}^{e^-} + \chi \text{ total electron energy} \\ n_e \text{ free electrons} \\ n_{i+1} \text{ atoms ionisation state } i+1 \\ g_{i+1} \text{ statistical weight of state } i+1 \\ g_e^{free} \text{ all possible states of electron with } [p, p + dp] \end{split}$$

•cloud of atoms at temperature T

$$\frac{n_{i+1}}{n_i}n_e = \frac{g_{i+1}g_e}{g_i} \frac{(2\pi m_e k_B T)^{3/2}}{h^3} e^{-\frac{\chi}{k_B T}}$$

- n_i atoms in ionisation state i
- n_{i+1} atoms ionisation state i+1
 - n_e free electrons ($g_e = 2$)
 - χ ionisation energy
 - g_i statistical weight of state i
- g_{i+1} statistical weight of state i+1

•cloud of atoms at temperature T

$$\frac{n_{i+1}}{n_i}n_e = \frac{g_{i+1}g_e}{g_i} \frac{(2\pi m_e k_B T)^{3/2}}{h^3} e^{-\frac{\chi}{k_B T}}$$

•cloud of atoms at temperature T

$$\frac{n_{i+1}}{n_i}n_e = \frac{g_{i+1}g_e}{g_i} \frac{(2\pi m_e k_B T)^{3/2}}{h^3} e^{-\frac{\chi}{k_B T}}$$

 n_i atoms in ionisation state i n_{i+1} atoms ionisation state i+1 n_e free electrons ($g_e = 2$) χ ionisation energy g_i statistical weight of state i = partition function of state i g_{i+1} statistical weight of state i+1 = partition function of state i+1

•cloud of atoms at temperature T

$$\frac{n_{i+1}}{n_i}n_e = \frac{g_{i+1}g_e}{g_i} \frac{(2\pi m_e k_B T)^{3/2}}{h^3} e^{-\frac{\chi}{k_B T}}$$

example for hydrogen...

 n_i atoms in ionisation state i n_{i+1} atoms ionisation state i+1 n_e free electrons ($g_e = 2$) χ ionisation energy g_i statistical weight of state i = partition function of state i g_{i+1} statistical weight of state i+1 = partition function of state i+1

•hydrogen atoms at temperature T

$$\frac{n_{HII}}{n_I}n_e = \frac{g_{HII}g_e}{g_{HI}} \frac{(2\pi m_e k_B T)^{3/2}}{h^3} e^{-\frac{\chi_{HI}}{k_B T}}$$

 n_{HI} neutral hydrogen n_{HII} ionized hydrogen n_e free electrons ($g_e = 2$) χ_{HI} binding energy of hydrogen g_{HI} partition function HI g_{HII} partition function HII

$$\frac{n_{HII}}{n_I}n_e = \frac{g_{HII}g_e}{g_{HI}} \frac{(2\pi m_e k_B T)^{3/2}}{h^3} e^{-\frac{\chi_{HI}}{k_B T}}$$

$$n_{H} = n_{HI} + n_{HII}$$

$$n_{e} = n_{HII}$$

$$n_{e} = n_{HII}$$

$$n_{e} \text{ free electrons } (g_{e} = 2)$$

$$\chi_{HI} \text{ binding energy of hydrogen}$$

$$g_{HI} \text{ partition function } HI$$

$$g_{HII} \text{ partition function } HII$$

$$\frac{n_{HII}}{n_I}n_e = \frac{g_{HII}g_e}{g_{HI}} \frac{(2\pi m_e k_B T)^{3/2}}{h^3} e^{-\frac{\chi_{HI}}{k_B T}}$$

$$\begin{array}{c} n_{H} = n_{HI} + n_{HII} \\ n_{e} = n_{HII} \end{array} \begin{cases} \begin{array}{c} n_{HI} \text{ neutral hydrogen} \\ n_{HII} \text{ ionized hydrogen} \\ n_{e} \text{ free electrons } (g_{e} = 2) \\ \chi_{HI} \text{ binding energy of hydrogen} \\ \end{array} \\ g_{HI} = 2 \\ g_{HII} = 1 \end{cases} \begin{cases} \begin{array}{c} g_{HI} \text{ partition function } HI \\ g_{HII} \text{ in bound electrons anymore} \end{array} \end{cases}$$

$$\frac{n_{HII}^2}{n_I} = \frac{\left(2\pi m_e k_B T\right)^{3/2}}{h^3} e^{-\frac{\chi_{HI}}{k_B T}}$$

$$\begin{array}{c} n_{HI} = n_{HI} + n_{HII} \\ n_{e} = n_{HII} \end{array} \begin{cases} \begin{array}{c} n_{HI} \text{ neutral hydrogen} \\ n_{HII} \text{ ionized hydrogen} \\ n_{e} \text{ free electrons } (g_{e} = 2) \\ \chi_{HI} \text{ binding energy of hydrogen} \\ g_{HI} = 2 \\ g_{HII} = 1 \end{array} \end{cases} \begin{cases} \begin{array}{c} g_{HI} \text{ partition function } HI \\ g_{HII} \text{ : ground state of hydrogen} \\ g_{HII} \text{ : no bound electrons anymore} \end{array} \end{cases}$$

thermal excitation

Saha equation

•hydrogen atoms at temperature T

$$\frac{n_{HII}^2}{n_I} = \frac{\left(2\pi m_e k_B T\right)^{3/2}}{h^3} e^{-\frac{\chi_{HI}}{k_B T}}$$

$$n_{H} = n_{HI} + n_{HII}$$

$$n_{e} = n_{HII}$$

$$n_{e} = n_{HII}$$

$$n_{e} = n_{e} = 1 \text{ free electrons } (g_{e} = 2)$$

 χ_{HI} binding energy of hydrogen

thermal excitation

Saha equation

$$\frac{n_{HII}^2}{n_I} = \frac{\left(2\pi m_e k_B T\right)^{3/2}}{h^3} e^{-\frac{\chi_{HI}}{k_B T}}$$

$$n_{H} = n_{HI} + n_{HII}$$

$$n_{e} = n_{HII}$$

$$n_{e} = n_{HII}$$

$$n_{e} \text{ free electrons } (g_{e} = 2)$$

$$\chi_{HI} \text{ binding energy of hydrogen}$$

$$x = \frac{n_{HII}}{n_{H}} \text{ fraction of ionized atoms}$$

•hydrogen atoms at temperature T

$$\frac{x^2}{1-x} = \frac{1}{n_H} \frac{\left(2\pi m_e k_B T\right)^{3/2}}{h^3} e^{-\frac{\chi_{HI}}{k_B T}}$$

 χ_{HI} binding energy of hydrogen $x = \frac{n_{HII}}{n_H}$ fraction of ionized atoms n_H total hydrogen density

•hydrogen atoms at temperature T

$$\frac{x^2}{1-x} = \frac{1}{n_H} \frac{\left(2\pi m_e k_B T\right)^{3/2}}{h^3} e^{-\frac{\chi_{HI}}{k_B T}}$$

has to be solved numerically for x(T)...

 χ_{HI} binding energy of hydrogen

$$x = \frac{n_{HII}}{n_H}$$
 fraction of ionized atoms
 n_H total hydrogen density

summary

•cloud of atoms at temperature T

Boltzmann distribution: number of atoms in state n

$$\frac{N_n}{N} = \frac{g_n}{Z(T)} e^{-\frac{E_n}{k_B T}} \qquad \qquad Z(T) = g_1 \frac{N_n}{N_1} = g_1 \frac{\sum_{n=1}^{\infty} N_n}{N_1} = g_1 \sum_{n=1}^{\infty} \frac{N_n}{N_1} = g_1 + g_2 e^{-\frac{E_2}{k_B T}} + g_3 e^{-\frac{E_3}{k_B T}} + \dots$$

Saha equation: number of ionized atoms

$$\frac{n_{i+1}}{n_i}n_e = \frac{g_{i+1}g_e}{g_i} \frac{(2\pi m_e k_B T)^{3/2}}{h^3} e^{-\frac{\chi}{k_B T}}$$

 n_i atoms in ionisation state i

 n_{i+1} atoms ionisation state i+1

$$n_e$$
 free electrons ($g_e = 2$)

 χ ionisation energy

 g_i statistical weight of state i = partition function of state i

 g_{i+1} statistical weight of state i+1 = partition function of state i+1

thermal excitation

• atomic transitions

- Einstein coefficients
- line broadening

- bound-bound
- bound-free
- free-free

- bound-free
- free-free

+Ze

bound-bound

emission

hydrogen-like atoms

$$E_n = \frac{m_e e^4}{2\hbar^2} \ \frac{Z^2}{n^2}$$

 $h\nu_{ij} = \left| E_i - E_j \right|$

Lyman series

n = 1

Ground state

emission

hydrogen-like atoms

$$E_n = \frac{m_e e^4}{2\hbar^2} \frac{Z^2}{n^2}$$

 $hv_{ij} = |E_i - E_j|$

 E_i

 E_i

Ma

absorption

- transitions give...
 - spectral lines (either absorption or emission),
 - that are not sharp though (Heisenberg uncertainty principle)

atomic transitions

galaxy spectrum

atomic transitions

galaxy spectrum

atomic transitions

bound-bound

• absorption vs. emission lines:

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} e^{-(\tau_{\nu} - \tau_{\nu}')} S_{\nu}(\tau_{\nu}') d\tau_{\nu}'$$

atomic transitions

bound-bound

• absorption vs. emission lines:

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} e^{-(\tau_{\nu} - \tau_{\nu}')} S_{\nu}(\tau_{\nu}') d\tau_{\nu}'$$

constant source term: $I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + S_{\nu}(1 - e^{-\tau_{\nu}})$

 $I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + S_{\nu}(1 - e^{-\tau_{\nu}})$

• absorption vs. emission lines:

 $I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + S_{\nu}(1 - e^{-\tau_{\nu}})$

 \circ optically thin medium $\tau_{\nu} \ll 1$: $I_{\nu}(\tau_{\nu}) = I_{\nu}(0) (1 - \tau_{\nu}) + \tau_{\nu} S_{\nu}$

definition of τ_{v}

the emergent radiation is proportional to the absorption coefficient!

the emergent radiation is proportional to the absorption coefficient! the absorption coefficient is large at the frequencies of the corresponding energy levels!

$\tau_{\nu} \gg 1$

bound-bound

• absorption vs. emission lines:

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + S_{\nu}(1 - e^{-\tau_{\nu}})$$

 \circ optically thin medium $\tau_{\nu} \ll 1$:

 $S_{\nu} > I_{\nu}(0)$: emission lines on top of continum

 $S_{\nu} < I_{\nu}(0)$: absorption lines on top of continum

bound-bound

• absorption vs. emission lines:

 $I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + S_{\nu}(1 - e^{-\tau_{\nu}})$

 \circ optically thin medium $\tau_{\nu} \ll 1$:

 $S_{\nu} > I_{\nu}(0)$: emission lines on top of continum

 $S_{\nu} < I_{\nu}(0)$: absorption lines on top of continum

 \circ optically thick medium $\tau_{\nu} \gg 1$: $I_{\nu}(\tau_{\nu}) = S_{\nu} = B_{\nu}$

bound-bound

• absorption vs. emission lines:

 $I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + S_{\nu}(1 - e^{-\tau_{\nu}})$

 \circ optically thin medium $\tau_{\nu} \ll 1$:

 $S_{\nu} > I_{\nu}(0)$: emission lines on top of continum

 $S_{\nu} < I_{\nu}(0)$: absorption lines on top of continum

 \circ optically thick medium $\tau_{\nu} \gg 1$: $I_{\nu}(\tau_{\nu}) = S_{\nu} = B_{\nu}$

continous radiation like a black-body

bound-bound

emission

hydrogen-like atoms

 $h\nu_{ij} = \left| E_i - E_j \right|$

 E_i

 E_i

- transitions give...
 - spectral lines (either absorption or emission),
 - that are not sharp though (Heisenberg uncertainty principle)

bound-bound

emission

hydrogen-like atoms

 $E_n = \frac{m_e e^4}{2\hbar^2} \ \frac{Z^2}{n^2}$

 $h\nu_{ij} = \left| E_i - E_j \right|$

 E_i

- transitions give...
 - spectral lines (either absorption or emission),

• that are not sharp though (Heisenberg uncertainty principle)

more later in "line broadening"...

bound-bound

emission

hydrogen-like atoms

$$E_n = \frac{m_e e^4}{2\hbar^2} \frac{Z^2}{n^2}$$

 $h\nu_{ij} = \left| E_i - E_j \right|$

 E_i

 E_i

absorption

- transitions give...
 - spectral lines (either absorption or emission),
 - that are not sharp though (Heisenberg uncertainty principle)
- electron spin can be coupled to...
 - e-angular momentum \rightarrow fine-structure splitting
 - nucleus spin \rightarrow hyperfine-structure splitting

- bound-bound
- bound-free
- free-free

 $h\nu > \frac{m_e e^4}{2\hbar^2} \; \frac{Z^2}{n^2}$

(radiative) recombination

(photo-)ionisation

(radiative) recombination

(photo-)ionisation

$$\rightarrow v_n^{crit} = \frac{1}{h} \frac{m_e e^4}{2\hbar^2} \frac{Z^2}{n^2}$$

 $h\nu > \frac{m_e e^4}{2\hbar^2} \ \frac{Z^2}{n^2}$

(radiative) recombination

(photo-)ionisation

$$\rightarrow v_n^{crit} = \frac{1}{h} \frac{m_e e^4}{2\hbar^2} \frac{Z^2}{n^2}$$

 $h\nu > \frac{m_e e^4}{2\hbar^2} \ \frac{Z^2}{n^2}$

$$\rightarrow \lambda_n^{crit} = \frac{2\pi^2 m_e e^4 c}{h^3 Z^2} n^2$$

(radiative) recombination

(photo-)ionisation

• (photo-)ionisation

$$\lambda_n^{crit} = \frac{2\pi^2 \, m_e e^4 c}{h^3 \, Z^2} \, n^2$$

(photo-)ionisation

atomic transitions

bound-free

• (photo-)ionisation

$$\lambda_n^{crit} = \frac{2\pi^2 \ m_e e^4 c}{h^3 \ Z^2} \ n^2$$

(photo-)ionisation

atomic transitions

bound-free

• (photo-)ionisation

$$\lambda_n^{crit} = \frac{2\pi^2 \ m_e e^4 c}{h^3 \ Z^2} \ n^2$$

(photo-)ionisation

(radiative) recombination

(photo-)ionisation

• (radiative) recombination

 $E_{e-} \circ$ $\mathbb{N}^{\mathbb{A}^{E_{v}}}$ E_n

(radiative) recombination

contributes to emission coefficient...

- bound-bound
- bound-free
- free-free

free-free

free-free

- collisions/scattering process with ionized atom
- leads to both continuous emission and absorption
- is especially important at very high temperatures (i.e. fully ionized plasma)
- depends on temperature, charge, electron density, and ion density:

 $\epsilon \propto n_e n_i Z^2 T^{1/2}$

summary

name	atomic transition	spectral feature	LTE distribution
bound-bound	excitation de-excitation	absorption line emission line	Boltzmann
bound-free	(photo-)ionisation (radiative) recombination	absorption edge emission edge	Saha
free-free	collisions	continuum	Maxwell-Boltzmann

summary

name	atomic transition	spectral feature	LTE distribution
bound-bound	excitation de-excitation	absorption line emission line	Boltzmann
bound-free	(photo-)ionisation (radiative) recombination	absorption edge emission edge	Saha
free-free	collisions	continuum	Maxwell-Boltzmann

 $T \le 10^4 K$: forbidden transitions dominate

 $10^4 K \le T \le 10^7 K$: allowed transitions dominate

 $10^7 K \le T$: free-free emission dominates

thermal excitation

atomic transitions

Einstein coefficients

line broadening

$$j_{\nu} = \alpha_{\nu} B_{\nu}(T)$$

"if material absorbs well at a certain wavelength, it will also radiate well at the same wavelength."

 $j_{\nu} = \alpha_{\nu} B_{\nu}(T)$

"if material absorbs well at a certain wavelength, it will also radiate well at the same wavelength."

...establishes a connection between emission and absorption!

 $j_{\nu} = \alpha_{\nu} B_{\nu}(T)$

"if material absorbs well at a certain wavelength, it will also radiate well at the same wavelength."

... establishes a connection between emission and absorption!

Kirchoff's law is a macroscopic/thermodynamical description

 $j_{\nu} = \alpha_{\nu} B_{\nu}(T)$

"if material absorbs well at a certain wavelength, it will also radiate well at the same wavelength."

... establishes a connection between emission and absorption!

 $j_{\nu} = \alpha_{\nu} B_{\nu}(T)$

"if material absorbs well at a certain wavelength, it will also radiate well at the same wavelength."

... establishes a connection between emission and absorption!

 $j_{\nu} = \alpha_{\nu} B_{\nu}(T)$

"if material absorbs well at a certain wavelength, it will also radiate well at the same wavelength."

... establishes a connection between emission and absorption!

spontaneous emission

- stimulated emission
- absorption

spontaneous emission

drop from Level 2 to 1, even in absence of radiation field

spontaneous emission

drop from Level 2 to 1, even in absence of radiation field

• Einstein A-coefficient:

 A_{21} = transition probability per unit time

$$\frac{dn_2}{dt} = -A_{21}n_2$$

$$\frac{dn_1}{dt} = A_{21}n_1$$

stimulated emission

external photon with correct energy triggers emission

stimulated emission

external photon with correct energy triggers emission

• Einstein B₂₁-coefficient:

 B_{21} = transition probability per unit time, unit energy of ext. field, and unit frequency

$$\frac{dn_1}{dt} = B_{21} \, n_2 \, u_{\nu}(T)$$

stimulated emission

external photon with correct energy triggers emission

• Einstein B₂₁-coefficient:

 B_{21} = transition probability per unit time, unit energy of ext. field, and unit frequency

absorption

external photon is absorbed

absorption

external photon is absorbed

• Einstein B₁₂-coefficient:

 B_{12} = transition probability per unit time, unit energy of ext. field, and unit frequency

$$\frac{dn_1}{dt} = -B_{12} n_1 u_{\nu}(T)$$

spontaneous emission

$$\frac{dn_1}{dt} = A_{21}n_1$$

$$\frac{dn_2}{dt} = -A_{21}n_2$$
 stimulated emission

$$\frac{dn_1}{dt} = B_{21}n_2u_v(T)$$

absorption

$$\frac{dn_1}{dt} = -B_{12} n_1 u_{\nu}(T)$$

• spontaneous emission
$$\frac{dn_1}{dt} = A_{21}n_1$$
 $\frac{dn_2}{dt} = -A_{21}n_2$

• stimulated emission
$$\frac{dn_1}{dt} = B_{21} n_2 u_{\nu}(T)$$

• absorption
$$\frac{dn_1}{dt} = -B_{12} n_1 u_{\nu}(T)$$

thermodynamic equilibrium: (emission = absorption)

 $A_{21}n_2 + B_{21}n_2 u_{\nu}(T) = B_{12} n_1 u_{\nu}(T)$

• spontaneous emission
• spontaneous emission
• stimulated emission
• absorption
• thermodynamic equilibrium:

$$dn_1 \\ dt = B_{21} n_2 u_v(T)$$

 $dn_1 \\ dt = -B_{12} n_1 u_v(T)$
(emission = absorption)
 $A_{21}n_2 + B_{21}n_2 u_v(T) = B_{12} n_1 u_v(T)$
downwards transitions rate = upwards transition rates:
 $dn_1 \\ dn_1 \\ dt = -B_{12} n_1 u_v(T)$
 $dn_1 \\ dt = -B_{12} n_1 u_v(T)$

• spontaneous emission
$$\frac{dn_1}{dt} = A_{21}n_1$$
 $\frac{dn_2}{dt} = -A_{21}n_2$

• stimulated emission
$$\frac{dn_1}{dt} = B_{21} n_2 u_{\nu}(T)$$

• absorption
$$\frac{dn_1}{dt} = -B_{12} n_1 u_{\nu}(T)$$

thermodynamic equilibrium: (emission = absorption)

$$A_{21}n_2 + B_{21}n_2 u_{\nu}(T) = B_{12} n_1 u_{\nu}(T)$$

 u_{ν}

Boltzman statistics:

$$\frac{n_1}{n_2} = \frac{g_1}{g_2} \frac{e^{-(E/k_B T)}}{e^{-(E+h\nu/k_B T)}} = \frac{g_1}{g_2} e^{-(h\nu/k_B T)}$$

thermal radiation:

$$(T) = \frac{8\pi}{c^3} \frac{h\nu^3}{e^{\frac{h\nu}{k_BT}} - 1}$$

• spontaneous emission
$$\frac{dn_1}{dt} = A_{21}n_1$$
 $\frac{dn_2}{dt} = -A_{21}n_2$

• stimulated emission
$$\frac{dn_1}{dt} = B_{21} n_2 u_{\nu}(T)$$

• absorption
$$\frac{dn_1}{dt} = -B_{12} n_1 u_{\nu}(T)$$

$$A_{21}n_{2} + B_{21}n_{2} u_{\nu}(T) = B_{12} n_{1} u_{\nu}(T)$$

$$\begin{cases}
\frac{n_{1}}{n_{2}} = \frac{g_{1}}{g_{2}} \frac{e^{-(E/k_{B}T)}}{e^{-(E+h\nu/k_{B}T)}} = \frac{g_{1}}{g_{2}} e^{-(h\nu/k_{B}T)} \\
u_{\nu}(T) = \frac{8\pi}{c^{3}} \frac{h\nu^{3}}{e^{\frac{h\nu}{k_{B}T}} - 1}
\end{cases}$$

• spontaneous emission
$$\frac{dn_1}{dt} = A_{21}n_1$$
 $\frac{dn_2}{dt} = -A_{21}n_2$

• stimulated emission
$$\frac{dn_1}{dt} = B_{21} n_2 u_{\nu}(T)$$

absorption
$$\frac{dn_1}{dt} = -B_{12} n_1 u_{\nu}(T)$$

$$A_{21}n_2 + B_{21}n_2 \frac{8\pi}{c^3} \frac{h\nu^3}{e^{\frac{h\nu}{k_BT}} - 1} = B_{12} n_2 \frac{g_1}{g_2} e^{-(h\nu/k_BT)} \frac{8\pi}{c^3} \frac{h\nu^3}{e^{\frac{h\nu}{k_BT}} - 1}$$

• spontaneous emission
$$\frac{dn_1}{dt} = A_{21}n_1$$
 $\frac{dn_2}{dt} = -A_{21}n_2$

• stimulated emission
$$\frac{dn_1}{dt} = B_{21} n_2 u_{\nu}(T)$$

• absorption
$$\frac{dn_1}{dt} = -B_{12} n_1 u_{\nu}(T)$$

$$A_{21}g_2\left(e^{\frac{h\nu}{k_BT}}-1\right)+B_{21}g_2\frac{8\pi}{c^3}h\,\nu^3=B_{12}g_1e^{-(h\nu/k_BT)}\frac{8\pi}{c^3}h\,\nu^3$$

• spontaneous emission
$$\frac{dn_1}{dt} = A_{21}n_1$$
 $\frac{dn_2}{dt} = -A_{21}n_2$

• stimulated emission
$$\frac{dn_1}{dt} = B_{21} n_2 u_{\nu}(T)$$

• absorption
$$\frac{dn_1}{dt} = -B_{12} n_1 u_{\nu}(T)$$

thermodynamic equilibrium: (emission = absorption)

$$A_{21}g_2\left(e^{\frac{h\nu}{k_BT}}-1\right)+B_{21}g_2\frac{8\pi}{c^3}h\,\nu^3=B_{12}g_1e^{-(h\nu/k_BT)}\frac{8\pi}{c^3}h\,\nu^3$$

true for any temperature

• spontaneous emission
$$\frac{dn_1}{dt} = A_{21}n_1$$
 $\frac{dn_2}{dt} = -A_{21}n_2$

• stimulated emission
$$\frac{dn_1}{dt} = B_{21} n_2 u_{\nu}(T)$$

• absorption
$$\frac{dn_1}{dt} = -B_{12} n_1 u_{\nu}(T)$$

$$A_{21}g_2\left(e^{\frac{h\nu}{k_BT}}-1\right)+B_{21}g_2\frac{8\pi}{c^3}h\,\nu^3=B_{12}g_1e^{-(h\nu/k_BT)}\frac{8\pi}{c^3}h\,\nu^3$$

$$T \to \infty$$
: $B_{21}g_2 = B_{12}g_1$
 $T \to 0$: $A_{21} = B_{21}\frac{8\pi}{c^3}h\nu^3$

• spontaneous emission
$$\frac{dn_1}{dt} = A_{21}n_1$$
 $\frac{dn_2}{dt} = -A_{21}n_2$

• stimulated emission
$$\frac{dn_1}{dt} = B_{21} n_2 u_{\nu}(T)$$

• absorption
$$\frac{dn_1}{dt} = -B_{12} n_1 u_{\nu}(T)$$

$$B_{21}g_2 = B_{12}g_1$$
$$A_{21} = B_{21}\frac{8\pi}{c^3}h\,\nu^3$$

• spontaneous emission
$$\frac{dn_1}{dt} = A_{21}n_1$$
 $\frac{dn_2}{dt} = -A_{21}n_2$

• stimulated emission
$$\frac{dn_1}{dt} = B_{21} n_2 u_{\nu}(T)$$

• absorption
$$\frac{dn_1}{dt} = -B_{12} n_1 u_{\nu}(T)$$

• thermodynamic equilibrium:
$$B_{21}g_2 = B_{12}g_1$$

$$A_{21} = B_{21} \frac{8\pi}{c^3} h \, \nu^3$$

• connection between atomic properties, with no reference to temperature T !

• spontaneous emission
$$\frac{dn_1}{dt} = A_{21}n_1$$
 $\frac{dn_2}{dt} = -A_{21}n_2$

• stimulated emission
$$\frac{dn_1}{dt} = B_{21} n_2 u_{\nu}(T)$$

• absorption
$$\frac{dn_1}{dt} = -B_{12} n_1 u_{\nu}(T)$$

• thermodynamic equilibrium:
$$B_{21}g_2 = B_{12}g_1$$

$$A_{21} = B_{21} \frac{8\pi}{c^3} h \, \nu^3$$

- connection between atomic properties, with no reference to temperature T!
- must even hold for non-equilibrium

• spontaneous emission
$$\frac{dn_1}{dt} = A_{21}n_1$$
 $\frac{dn_2}{dt} = -A_{21}n_2$

• stimulated emission
$$\frac{dn_1}{dt} = B_{21} n_2 u_{\nu}(T)$$

• absorption
$$\frac{dn_1}{dt} = -B_{12} n_1 u_{\nu}(T)$$

• thermodynamic equilibrium:
$$B_{21}g_2 = B_{12}g_1$$

$$A_{21} = B_{21} \frac{8\pi}{c^3} h \, \nu^3$$

- connection between atomic properties, with no reference to temperature T!
- must even hold for non-equilibrium
- we only need to determine one of the three coefficients

• spontaneous emission
$$\frac{dn_1}{dt} = A_{21}n_1$$
 $\frac{dn_2}{dt} = -A_{21}n_2$

• stimulated emission
$$\frac{dn_1}{dt} = B_{21} n_2 u_{\nu}(T)$$

• absorption
$$\frac{dn_1}{dt} = -B_{12} n_1 u_{\nu}(T)$$

• thermodynamic equilibrium:
$$B_{21}g_2 = B_{12}g_1$$

$$A_{21} = B_{21} \frac{8\pi}{c^3} h \, \nu^3$$

- connection between atomic properties, with no reference to temperature T!
- must even hold for non-equilibrium
- we only need to **determine** one of the three coefficients

• spontaneous emission
$$\frac{dn_1}{dt} = A_{21}n_1$$
 $\frac{dn_2}{dt} = -A_{21}n_2$

• stimulated emission
$$\frac{dn_1}{dt} = B_{21} n_2 u_{\nu}(T)$$

• absorption
$$\frac{dn_1}{dt} = -B_{12} n_1 u_{\nu}(T)$$

• thermodynamic equilibrium:
$$B_{21}g_2 = B_{12}g_1$$

$$A_{21} = B_{21} \frac{8\pi}{c^3} h \, \nu^3$$

- connection between atomic properties, with no reference to temperature T!
- must even hold for non-equilibrium
- we only need to **determine** one of the three coefficients

 A_{21}, B_{21} , and B_{12} are related to oscillator strengths $|f_{nlj \to n'l'j'}| \sim |\langle \psi_{nlj} | \vec{r} | \psi_{n'l'j'} \rangle|^2$

• spontaneous emission
$$\frac{dn_1}{dt} = A_{21}n_1$$
 $\frac{dn_2}{dt} = -A_{21}n_2$

• stimulated emission
$$\frac{dn_1}{dt} = B_{21} n_2 u_{\nu}(T)$$

• absorption
$$\frac{dn_1}{dt} = -B_{12} n_1 u_{\nu}(T)$$

• thermodynamic equilibrium:
$$B_{21}g_2 = B_{12}g_1$$

$$A_{21} = B_{21} \frac{8\pi}{c^3} h \, \nu^3$$

- connection between atomic properties, with no reference to temperature T!
- must even hold for non-equilibrium
- we only need to determine one of the three coefficients

any relation to our 'usual' emission and absorption coefficients?

• Einstein coefficients vs. α_{v} and j_{v}

• Einstein coefficients vs. α_v and j_v

• Einstein coefficients vs. α_v and j_v

$$\frac{dn_2}{dt} = -n_2 A_{21}$$

Level 2 population decrease...

• Einstein coefficients vs. α_v and j_v

$$\frac{dn_2}{dt} = -n_2 A_{21}$$
$$dE = \frac{h\nu}{4\pi} n_2 A_{21} dA ds dt d\Omega d\nu$$

Level 2 population decrease...

...viewed as energy input to radiation field

• Einstein coefficients vs. α_v and j_v

$$\frac{dn_2}{dt} = -n_2 A_{21}$$
$$dE = \frac{h\nu}{4\pi} n_2 A_{21} dA ds dt d\Omega d\nu$$
$$dE = j_{\nu} dA ds dt d\Omega d\nu$$

Level 2 population decrease...

...viewed as energy input to radiation field

energy input written via emmission coefficient

• Einstein coefficients vs. α_v and j_v

$$\frac{dn_2}{dt} = -n_2 A_{21}$$
$$dE = \frac{h\nu}{4\pi} n_2 A_{21} dA ds dt d\Omega d\nu$$
$$dE = j_{\nu} dA ds dt d\Omega d\nu$$

Level 2 population decrease...

...viewed as energy input to radiation field

energy input written via emmission coefficient

$$\rightarrow j_{\nu} = \frac{h\nu}{4\pi} n_2 A_{21}$$

• Einstein coefficients vs. α_v and j_v

$$\frac{dn_2}{dt} = -n_2 A_{21}$$
$$dE = \frac{h\nu}{4\pi} n_2 A_{21} dA ds dt d\Omega d\nu$$
$$dE = j_{\nu} dA ds dt d\Omega d\nu$$

Level 2 population decrease...

...viewed as energy input to radiation field

energy input written via emmission coefficient

$$\longrightarrow \quad j_{\nu} = \frac{h\nu}{4\pi} \ n_2 \ A_{21}$$

same logic for α_{ν} and B_{12} ...

• Einstein coefficients vs. α_v and j_v

$$\frac{dn_2}{dt} = -n_2 A_{21}$$
$$dE = \frac{h\nu}{4\pi} n_2 A_{21} dA ds dt d\Omega d\nu$$
$$dE = j_{\nu} dA ds dt d\Omega d\nu$$

Level 2 population decrease...

...viewed as energy input to radiation field

energy input written via emmission coefficient

$$j_{\nu} = \frac{h\nu}{4\pi} n_2 A_{21}$$
$$\alpha_{\nu} = \frac{h\nu}{4\pi} n_1 B_{12}$$

• Einstein coefficients vs. α_v and j_v

$$\frac{dn_2}{dt} = -n_2 A_{21}$$
$$dE = \frac{h\nu}{4\pi} n_2 A_{21} dA ds dt d\Omega d\nu$$

 $dE = j_{\nu} \quad dA \, ds \, dt \, d\Omega \, d\nu$

...viewed as energy input to radiation field

energy input written via emmission coefficient

$$j_{\nu} = \frac{h\nu}{4\pi} n_2 A_{21}$$
$$\alpha_{\nu} = \frac{h\nu}{4\pi} n_1 B_{12}$$

what about stimulated emission?

• Einstein coefficients vs. α_v and j_v

$$\frac{dn_2}{dt} = -n_2 A_{21}$$
$$dE = \frac{h\nu}{4\pi} n_2 A_{21} dA ds dt d\Omega d\nu$$

 $dE = j_{\nu} \quad dA \, ds \, dt \, d\Omega \, d\nu$

Level 2 population decrease...

...viewed as energy input to radiation field

energy input written via emmission coefficient

$$j_{\nu} = \frac{h\nu}{4\pi} n_2 A_{21}$$
$$\alpha_{\nu} = \frac{h\nu}{4\pi} n_1 B_{12} \qquad \qquad \alpha_{\nu}^{se} = -\frac{h\nu}{4\pi} n_2 B_{21}$$

what about stimulated emission? include as negative absorption...

• Einstein coefficients vs. α_v and j_v

$$\frac{dn_2}{dt} = -n_2 A_{21}$$
$$dE = \frac{h\nu}{4\pi} n_2 A_{21} dA ds dt d\Omega d\nu$$

 $dE = j_{\nu} \quad dA \, ds \, dt \, d\Omega \, d\nu$

Level 2 population decrease...

...viewed as energy input to radiation field

energy input written via emmission coefficient

$$j_{\nu} = \frac{h\nu}{4\pi} n_2 A_{21}$$
$$\alpha_{\nu} = \frac{h\nu}{4\pi} n_1 B_{12} \qquad \qquad \alpha_{\nu}^{se} = -\frac{h\nu}{4\pi} n_2 B_{21}$$

what about stimulated emission? include as negative absorption...

hu

Level 2

Level I

Absorption

Emission

Level 2

• Einstein coefficients vs. α_v and j_v

$$\frac{dn_2}{dt} = -n_2 A_{21}$$
$$dE = \frac{h\nu}{4\pi} n_2 A_{21} dA ds dt d\Omega d\nu$$

 $dE = j_{\nu} \quad dA \, ds \, dt \, d\Omega \, d\nu$

hu

Level 2 population decrease...

...viewed as energy input to radiation field

energy input written via emmission coefficient

$$j_{\nu} = \frac{h\nu}{4\pi} n_2 A_{21}$$
$$\alpha_{\nu} = \frac{h\nu}{4\pi} n_1 B_{12} \qquad \qquad \alpha_{\nu}^{se} = -\frac{h\nu}{4\pi} n_2 B_{21}$$

what about stimulated emission? include as negative absorption... $E_{21} = hv$ connection between macroscopic description and quantum mechanical properties but there is "one more thing"... Emission Absorption

• Einstein coefficients vs. α_{v} and j_{v}

$$\frac{dn_2}{dt} = -n_2 A_{21}$$
$$dE = \frac{h\nu}{4\pi} n_2 A_{21} dA ds dt d\Omega d\nu$$

 $dE = j_{\nu} \quad dA \, ds \, dt \, d\Omega \, d\nu$

$$j_{\nu} = \frac{h\nu}{4\pi} n_2 A_{21}$$
$$\alpha_{\nu} = \frac{h\nu}{4\pi} n_1 B_{12} \qquad \qquad \alpha_{\nu}^{se} = -\frac{h\nu}{4\pi} n_2 B_{21}$$

the energy levels are not sharp due to Heisenberg's uncertainy principle!*

*see 'line broadening' later...
• Einstein coefficients vs. α_v and j_v effective line profile $\phi(v)$ $\frac{dn_2}{dt} = -n_2 A_{21}$ $1=\int\phi(\nu)d\nu$ $\phi(v)$ $dE = \frac{h\nu}{4\pi} n_2 A_{21} \, dA \, ds \, dt \, d\Omega \, d\nu$ $dE = j_{\nu} \quad dA \, ds \, dt \, d\Omega \, d\nu$ \boldsymbol{v}_0 $j_{\nu} = \frac{h\nu}{4\pi} n_2 A_{21}$ $\alpha_{\nu} = \frac{h\nu}{4\pi} n_1 B_{12} \qquad \qquad \alpha_{\nu}^{se} = -\frac{h\nu}{4\pi} n_2 B_{21}$ Level 2 the energy levels are not sharp due to Heisenberg's uncertainy principle! $E_{21} = h(\nu \pm \Delta \nu)$ Level I Emission Absorption

• Einstein coefficients vs. α_v and j_v effective line profile $\phi(v)$ $\frac{dn_2}{dt} = -n_2 A_{21}$ $1=\int\phi(\nu)d\nu$ $\phi(v)$ $dE = \frac{h\nu}{4\pi} n_2 A_{21} \, dA \, ds \, dt \, d\Omega \, d\nu$ $dE = j_{\nu} \quad dA \, ds \, dt \, d\Omega \, d\nu$ \boldsymbol{v}_0 $j_{\nu} = \frac{h\nu}{4\pi} \phi(\nu) n_2 A_{21}$ $\alpha_{\nu} = \frac{h\nu}{4\pi} \phi(\nu) n_1 B_{12}$ $\alpha_{\nu}^{se} = -\frac{h\nu}{4\pi} \phi(\nu) n_2 B_{21}$ Level 2 the energy levels are not sharp due to Heisenberg's uncertainy principle! $E_{21} = h(\nu \pm \Delta \nu)$ Level I Emission Absorption

radiative transfer equation using Einstein coefficients

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}$$

radiative transfer equation using Einstein coefficients

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}$$

• emission coefficient j_v

$$j_{\nu} = \frac{h\nu}{4\pi} \phi(\nu) n_2 A_{21}$$

• aborption coefficient α_{ν}

$$\alpha_{\nu} = \frac{h\nu}{4\pi} \phi(\nu) n_1 B_{12}$$

• including stimulated emission as negative absorption

$$\alpha_{\nu}^{se} = -\frac{h\nu}{4\pi} \phi(\nu) n_2 B_{21}$$

radiative transfer equation using Einstein coefficients

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}$$

• emission coefficient j_v

$$j_{\nu} = \frac{h\nu}{4\pi} \phi(\nu) n_2 A_{21}$$

• aborption coefficient α_{ν}

$$\alpha_{\nu} = \frac{h\nu}{4\pi} \phi(\nu) n_1 B_{12}$$

• including stimulated emission as negative absorption

$$\alpha_{\nu}^{se} = -\frac{h\nu}{4\pi} \,\phi(\nu) \,n_2 B_{21}$$

$$\frac{dI_{\nu}}{ds} = \frac{h\nu}{4\pi} \left(n_2 A_{21} - (n_1 B_{12} - n_2 B_{21}) \right) \phi(\nu)$$

radiative transfer equation using Einstein coefficients

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}$$

• emission coefficient j_v

$$j_{\nu} = \frac{h\nu}{4\pi} \phi(\nu) n_2 A_{21}$$

• aborption coefficient α_{ν}

$$\alpha_{\nu} = \frac{h\nu}{4\pi} \phi(\nu) n_1 B_{12}$$

• including stimulated emission as negative absorption

$$\alpha_{\nu}^{se} = -\frac{h\nu}{4\pi} \,\phi(\nu) \,n_2 B_{21}$$

$$\frac{dI_{\nu}}{ds} = \frac{h\nu}{4\pi} \left(n_2 A_{21} - (n_1 B_{12} - n_2 B_{21}) \right) \phi(\nu)$$

• source function $S_{\nu} = \frac{n_2 A_{21}}{n_1 B_{12} - n_2 B_{21}}$

thermal excitation

- atomic transitions
- Einstein coefficients
- Ine broadening

• what effects lead to $\phi(v)$?

• Doppler broadening

• natural broadening

• collisional broadening

• what effects lead to $\phi(v)$?

• Doppler broadening

 \circ atoms (with mass m_a) in thermal motion

• absorption/emission frequency ν differs by $\Delta \nu_D = \frac{\nu_0}{c} \sqrt{\frac{2k_BT}{m_a}}$

 $_{\circ}$ net effect spreads out line, but not its strength

• Doppler broadening

 \circ atoms (with mass m_a) in thermal motion

• absorption/emission frequency ν differs by $\Delta \nu_D = \frac{\nu_0}{c} \sqrt{\frac{2k_BT}{m_a}}$

 $_{\circ}$ net effect spreads out line, but not its strength

natural broadening

• Doppler broadening

 \circ atoms (with mass m_a) in thermal motion

• absorption/emission frequency ν differs by $\Delta \nu_D = \frac{\nu_0}{c} \sqrt{\frac{2k_BT}{m_a}}$

 $_{\circ}$ net effect spreads out line, but not its strength

natural broadening

◦ energy levels are not sharp which leads to the so-called ◦ Lorentz line profile $\phi(v) = \frac{\gamma^2}{(v - v_0)^2 - \gamma^2}$ $\gamma = A_{21} \left(= \sum_{m < n} A_{nm} \right)$ ◦ broadening usually very small

- $_{\circ}$ broadening due to effects of nearby atoms
- o collisions supply/remove small amounts of energy

• Lorentz line profile $\phi(v) = \frac{\alpha^2}{(v - v_0)^2 - \alpha^2}$ $\alpha \propto P T^{-0.5}$

• Doppler broadening

 \circ atoms (with mass m_a) in thermal motion

• absorption/emission frequency ν differs by $\Delta \nu_D = \frac{\nu_0}{c} \sqrt{\frac{2k_BT}{m_a}}$

 $_{\rm o}$ net effect spreads out line, but not its strength

natural broadening

◦ energy levels are not sharp which leads to the so-called ◦ Lorentz line profile $\phi(\nu) = \frac{\gamma^2}{(\nu - \nu_0)^2 - \gamma^2}$ ◦ broadening usually very small

collisional broadening

- $_{\circ}$ broadening due to effects of nearby atoms
- $_{\circ}$ collisions supply/remove small amounts of energy

• Lorentz line profile $\phi(v) = \frac{\alpha^2}{(v - v_0)^2 - \alpha^2}$

relation between macro- and micro-physics

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} \qquad \qquad S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}$$

$$j_{\nu} = \frac{h\nu}{4\pi} n_2 A_{21}$$
$$\alpha_{\nu} = \frac{h\nu}{4\pi} (n_1 B_{12} - n_2 B_{21})$$

