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Can we find the intensity In (T, W) for some simple example?
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§ formally we need to distinguish...

• black-body radiation
o generated by matter in thermal equilibrium (T = const.)

o fully isotropic

o described by Bn (T) = In (T, W)

• thermal radiation
o generated by thermal motion in matter

o all matter with T > 0 emits thermal radiation

o described by In (T, W)

o becomes black-body radiation for optically thick media



Thermal Radiation

BB Intensity
An important property of of I! is that it is independent of the properties of the
enclosure and depends only on TEMPERATURE.

B!(T) is called the PLANCK FUNCTION

Any object with a temperature above absolute zero emits light of all wavelengths with
varying degrees of efficiency; an ideal emitter is an object that absorbs all of the
light energy incident upon it and reradiates this energy with a characteristic
spectrum. Because it reflects no light it is called a blackbody, and the radiation is
called Blackbody radiation.

Thermodynamics of BB radiation
A BB enclosure with a piston, so that work may be done on
or extracted from the radiation

First Law of Thermodynamics:

Second Law of Thermodynamics:

Since total entropy is a function only of temperature and volume:

black-body radiation

• black-body radiation
o generated by matter in thermal equilibrium (T = const.)

o fully isotropic

o described by Bn (T) = In (T, W)

Bn (T): Planck spectrum*

*derivation comes later...
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Second Law of Thermodynamics:
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black-body radiation

• black-body radiation
o generated by matter in thermal equilibrium (T = const.)

o fully isotropic

o described by Bn (T) = In (T, W)

Bn (T): Planck spectrum

emitted by an idealized

opaque, non-reflective body
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§ black-body

idealized physical body that absorbs all incident electromagnetic radiation,
regardless of frequency or angle of incidence

• cavity (with a hole)

Radiación térmica

La radiación de un cuerpo negro es aquélla que corresponde a un 
cuerpo en equilibrio térmico (cualquier proceso físico está
equilibrado por su inverso). 

Para conseguirla, podemos mantener una cavidad a una temperatura uniforme, T, y 
no permitir intercambio de radiación hasta que el equilibrio se establece. El número
de fotones se ajustará a dicha situación de equilibrio. Si hacemos un pequeño
agujero en una pared de la cavidad, podemos medir las propiedades de la radiación
en la misma sin alterar su equilibrio.

La intensidad de la radiación de un cuerpo negro, depende sólo de 
la temperatura T, de modo que Iν depende de T y ν.
Iν = Bν (T) à esta función se denomina función de Plank y es 
isotropica. 
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thermal equilibrium T

BB Intensity
An important property of of I! is that it is independent of the properties of the
enclosure and depends only on TEMPERATURE.

B!(T) is called the PLANCK FUNCTION

Any object with a temperature above absolute zero emits light of all wavelengths with
varying degrees of efficiency; an ideal emitter is an object that absorbs all of the
light energy incident upon it and reradiates this energy with a characteristic
spectrum. Because it reflects no light it is called a blackbody, and the radiation is
called Blackbody radiation.

Thermodynamics of BB radiation
A BB enclosure with a piston, so that work may be done on
or extracted from the radiation

First Law of Thermodynamics:

Second Law of Thermodynamics:

Since total entropy is a function only of temperature and volume:

examples for black-bodies
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§ black-body

idealized physical body that absorbs all incident electromagnetic radiation,
regardless of frequency or angle of incidence

• cavity (with a hole)

• stars

examples for black-bodies

absorption emission

scattering

𝐼!,# 𝐼!,$
𝑑𝐼!
𝑑𝑠 = −𝛼!𝐼! + 𝑗!
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§ black-body

idealized physical body that absorbs all incident electromagnetic radiation,
regardless of frequency or angle of incidence

• cavity (with a hole)

• stars

• black holes:

examples for black-bodies

𝑇 =
ℎ𝑐%

8𝜋𝐺𝑀&'𝑘(

(G
ra

in
 &

 B
ar

au
 2

00
7)

o they absorb all the radiation that falls on them

o they emit black-body radiation (Hawking radiation)

    → the temperature depends on the mass of the black hole



Thermal Radiation black-body radiation

§ black-body

idealized physical body that absorbs all incident electromagnetic radiation,
regardless of frequency or angle of incidence

• cavity (with a hole)

• stars

• black holes

• the most perfect black-body in the Universe?

examples for black-bodies
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§ black-body

idealized physical body that absorbs all incident electromagnetic radiation,
regardless of frequency or angle of incidence

• cavity (with a hole)

• stars

• black holes

• CMBR*

*Cosmic Microwave Background Radiation: all details in Cosmology course examples for black-bodies
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§ black-body radiation

thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

• populations described by Saha-Boltzmann statistics*

𝑁1 = 𝑁𝑒2
3!
4"5

Ni : number of atoms/ions/molecules with energy Ei

*we’ll make use of that later when deriving Bn(T)
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𝑁1 = 𝑁𝑒2
3!
4"5

Ni : number of atoms/ions/molecules with energy Ei

• radiative transfer equation
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thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

• populations described by Saha-Boltzmann statistics
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3!
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§ black-body radiation

thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

• populations described by Saha-Boltzmann statistics

𝑁1 = 𝑁𝑒2
3!
4"5

Ni : number of atoms/ions/molecules with energy Ei

• radiative transfer equation

→   𝐼! = 𝑆! = 𝐵!(𝑇)

𝑗! = 𝛼!	𝐵!(𝑇)

• Kirchoff’s law
if material absorbs well at a certain wavelength,
it will also radiate well at the same wavelength. 

𝒅𝑰𝝂
𝒅𝝉𝝂

= −𝐼! + 𝑆! = 𝟎
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§ black-body radiation

thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

• populations described by Saha-Boltzmann statistics

𝑁1 = 𝑁𝑒2
3!
4"5

Ni : number of atoms/ions/molecules with energy Ei

• radiative transfer equation

→   𝐼! = 𝑆! = 𝐵!(𝑇)

𝑗! = 𝛼!	𝐵!(𝑇)

• Kirchoff’s law
at thermal equilibrium, the power radiated
must be equal to the power absorbed

𝒅𝑰𝝂
𝒅𝝉𝝂

= −𝐼! + 𝑆! = 𝟎
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energy density

intensity

𝐹(𝑇) = 𝜎!	𝑇" flux

𝑢 𝑇 =
4
𝑐 𝜎!	𝑇

"

𝑆(𝑇) =
16
3𝑐 	𝜎!	𝑇
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𝐵 𝑇 =
1
𝜋𝜎!𝑇

"

entropy
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as a function of temperature?
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§ thermodynamics

energy density

intensity

𝐹(𝑇) = 𝜎!	𝑇" flux

𝑢 𝑇 =
4
𝑐 𝜎!	𝑇

"

𝑆(𝑇) =
16
3𝑐 	𝜎!	𝑇

#𝑉

𝐵 𝑇 =
1
𝜋𝜎!𝑇

"

entropy

integrated quantities!

𝐵𝝂 𝑇  comes later...

any chance to obtain

energy density, intensity, and flux

of the radiation field

as a function of temperature?
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§ thermodynamics
18 Fundamentats of RadiatiW Tmnrfer 

&ure 1.10 Bhckbody enclosure with a piston on one side. 

where S 3 entropy. But U =  uV, and p = u / 3 ,  and u depends only on T 
since u = (47r/c)jJv dv and J,  = B,( T ) .  Thus we have 

V du U 1 u  
T dT T 3 T  
V du 4u - -dT+-dV 
T dT 3T 

dS=--dT+-dV+--dV,  

- _  

Since dS is a perfect differential, 

V du 4u 
v T dT 

Thus we obtain 

( 1.40) 

so that 

du 4u du - dT 
dT T ’  U 

logu=4logT+loga, 

where loga is a constant of integration. Thus we obtain the Stefan- 
BoItzmann law 

-=- - - 4 7  

u( T )  = aT4. (1.41) 

This may be related to the Planck function, since I , = J ,  for isotropic 

cavity that can be manipulated
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• first law of thermodynamics

𝑑𝑄 = 𝑑𝑈 + 𝑝𝑑𝑉

U : total energy of cavity
Q : heat 
p  : pressure
V : volume
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𝑢
3

*see Fundamentals lecture
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𝐹 = +𝐹! 𝑑𝜈 =-𝐼! Ω 	𝑐𝑜𝑠𝜃 𝑑Ω𝑑𝜈 =-𝐵!	𝑐𝑜𝑠𝜃 𝑑Ω𝑑𝜈

...relation to flux*

= +𝐵! 𝑑𝜈+𝑐𝑜𝑠𝜃 𝑑Ω = +𝐵! 𝑑𝜈+
#

.6
𝑑𝜑+

#

⁄6 .
𝑐𝑜𝑠𝜃	𝑠𝑖𝑛𝜃	𝑑𝜃 = 	𝜋+𝐵! 𝑑𝜈 = 𝜋𝐵(𝑇)

*see Fundamentals lecture...
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a	= @
A
𝜎B  𝜎!	: Stefan-Boltzman constant 



Thermal Radiation thermodynamics of black-body radiation

§ thermodynamics
18 Fundamentats of RadiatiW Tmnrfer 

&ure 1.10 Bhckbody enclosure with a piston on one side. 

where S 3 entropy. But U =  uV, and p = u / 3 ,  and u depends only on T 
since u = (47r/c)jJv dv and J,  = B,( T ) .  Thus we have 

V du U 1 u  
T dT T 3 T  
V du 4u - -dT+-dV 
T dT 3T 

dS=--dT+-dV+--dV,  

- _  

Since dS is a perfect differential, 

V du 4u 
v T dT 

Thus we obtain 

( 1.40) 

so that 

du 4u du - dT 
dT T ’  U 

logu=4logT+loga, 

where loga is a constant of integration. Thus we obtain the Stefan- 
BoItzmann law 

-=- - - 4 7  

u( T )  = aT4. (1.41) 

This may be related to the Planck function, since I , = J ,  for isotropic 

cavity that can be manipulated
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𝑢 𝑇 =
4
𝑐 𝜎!	𝑇

"

(𝜎$ =
%&8'9

:

()*;+<
 : Stefan-Boltzman constant )

𝐵 𝑇 =
1
𝜋𝜎!𝑇

"
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"

this factor – and its relation to a – will be derived later...
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%&8'9
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()*;+<
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𝑆(𝑇) =
16
3𝑐 	𝜎!	𝑇

#𝑉 (exercise)

𝐵 𝑇 =
1
𝜋𝜎!𝑇

"

entropy
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where loga is a constant of integration. Thus we obtain the Stefan- 
BoItzmann law 

-=- - - 4 7  

u( T )  = aT4. (1.41) 

This may be related to the Planck function, since I , = J ,  for isotropic 

cavity that can be manipulated

• first law of thermodynamics

𝑑𝑄 = 𝑑𝑈 + 𝑝𝑑𝑉

U : total energy of cavity
Q : heat 
p  : pressure
V : volume
S : entropy

• second law of thermodynamics

𝑑𝑆 =
𝑑𝑄
𝑇

• Stefan-Boltzmann law

energy density

integrated intensity

𝐹(𝑇) = 𝜎!	𝑇" emergent flux

𝑢 𝑇 =
4
𝑐 𝜎!	𝑇

"

(𝜎$ =
%&8'9

:

()*;+<
 : Stefan-Boltzman constant )

𝐵𝝂 𝑇  ?

BB Intensity
An important property of of I! is that it is independent of the properties of the
enclosure and depends only on TEMPERATURE.

B!(T) is called the PLANCK FUNCTION

Any object with a temperature above absolute zero emits light of all wavelengths with
varying degrees of efficiency; an ideal emitter is an object that absorbs all of the
light energy incident upon it and reradiates this energy with a characteristic
spectrum. Because it reflects no light it is called a blackbody, and the radiation is
called Blackbody radiation.

Thermodynamics of BB radiation
A BB enclosure with a piston, so that work may be done on
or extracted from the radiation

First Law of Thermodynamics:

Second Law of Thermodynamics:

Since total entropy is a function only of temperature and volume:

𝐵 𝑇 =
1
𝜋𝜎!𝑇

"

dependency on wave-length?

𝑆(𝑇) =
16
3𝑐 	𝜎!	𝑇

#𝑉 (exercise)entropy
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An important property of of I! is that it is independent of the properties of the
enclosure and depends only on TEMPERATURE.

B!(T) is called the PLANCK FUNCTION

Any object with a temperature above absolute zero emits light of all wavelengths with
varying degrees of efficiency; an ideal emitter is an object that absorbs all of the
light energy incident upon it and reradiates this energy with a characteristic
spectrum. Because it reflects no light it is called a blackbody, and the radiation is
called Blackbody radiation.

Thermodynamics of BB radiation
A BB enclosure with a piston, so that work may be done on
or extracted from the radiation

First Law of Thermodynamics:

Second Law of Thermodynamics:

Since total entropy is a function only of temperature and volume:
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𝐵C 𝑇 =
𝑐
4𝜋	𝑢C 𝑇

Planck spectrum - derivation

remember: un = 4p/c In for isotropic radiation, and In =Bn for black-body radiation

𝑢C 𝑇 𝑑𝜈 =	?
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§ direction cosine

cos 𝑎 =
𝑣⃗ 8 𝑒%
𝑣⃗

cos 𝑏 =
𝑣⃗ 8 𝑒&
𝑣⃗

cos 𝑐 =
𝑣⃗ 8 𝑒'
𝑣⃗

→ 	 1 = ()+⃗!
(

,
+ ()+⃗"

(

,
+ ()+⃗#

(

,
= 𝑐𝑜𝑠, 𝑎 + 𝑐𝑜𝑠, 𝑏 + 𝑐𝑜𝑠, 𝑐
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• ‘sphere’ condition for standing wave

2𝐿
𝜆

.
= 𝑛$. + 𝑛.. + 𝑛%.

Planck spectrum - derivation

1 =
𝜆$

4𝐴%
+
𝜆$

4𝐴$
+
𝜆$

4𝐴$
=

𝜆
2

$ 𝑛%
𝐿

$
+

𝑛$
𝐿

$
+

𝑛&
𝐿

$
=

𝜆
2𝐿

$

𝑛%$ + 𝑛$$ + 𝑛&$
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§ average energy per state
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• properties

§ local thermal equilibrium
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• varying temperature T :

o curves never cross

o maximum shifts with T

o intensity increases with T

the temperature
uniquely

determines the curve

𝜆VWX𝑇 = 0.290	𝑐𝑚	𝐾

ℎ𝜈VWX = 2.82	𝑘(	𝑇

𝜆 ≫ 𝜆&'(: Rayleigh-Jeans law

𝜆 ≪ 𝜆&'(: Wien law

Wien’s displacement law

𝑎 =
8𝜋R𝑘(/

15𝑐%ℎ%
sB = a  c/4

𝜎( =
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15𝑐.ℎ%

𝐵 𝑇 =
𝑎𝑐
4𝜋𝑇

/

𝐵 𝑇 =
𝜎(
4 𝑇

/

radiation constants
(expressed in terms of fundamental constants)



Thermal Radiation

§ properties

Planck spectrum - properties

𝐵! 𝑇 =
2
𝑐.

ℎ	𝜈%

𝑒
'!
L%- − 1

𝐵Q 𝑇 = 2𝑐.
⁄ℎ 𝜆R

𝑒
'S
QL%- − 1

• characteristic temperatures



Thermal Radiation

§ properties

Planck spectrum - properties

𝐵! 𝑇 =
2
𝑐.

ℎ	𝜈%

𝑒
'!
L%- − 1

𝐵Q 𝑇 = 2𝑐.
⁄ℎ 𝜆R

𝑒
'S
QL%- − 1

• characteristic temperatures:

o brightness temperature Tb

o color temperature Tc

o effective temperature Teff



Thermal Radiation

§ properties

Planck spectrum - properties

𝐵! 𝑇 =
2
𝑐.

ℎ	𝜈%

𝑒
'!
L%- − 1

𝐵Q 𝑇 = 2𝑐.
⁄ℎ 𝜆R

𝑒
'S
QL%- − 1

• characteristic temperatures:

o brightness temperature Tb

- we observe In for fixedn and use it to define Tb

I(n)

n

In
observation

n



Thermal Radiation

§ properties

Planck spectrum - properties

𝐵! 𝑇 =
2
𝑐.

ℎ	𝜈%

𝑒
'!
L%- − 1

𝐵Q 𝑇 = 2𝑐.
⁄ℎ 𝜆R

𝑒
'S
QL%- − 1

• characteristic temperatures:

o brightness temperature Tb

- we observe In for fixedn and use it to define Tb

n

I(n)

n

In
observation

𝐵) 𝑇*

remember, Planck curves do not cross!
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• characteristic temperatures:

o brightness temperature Tb

- we observe In for fixedn and use it to define Tb

- frequently used in radio-astronomy*:

n

I(n)

n

In
observation

𝐵) 𝑇*𝐼! 𝑇& =
2
𝑐. 	𝜈

.𝑘(𝑇&

*where one can safely use the Rayleigh-Jeans law for Bn(T)
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• characteristic temperatures:

o brightness temperature Tb

- we observe In for fixedn and use it to define Tb

- frequently used in radio-astronomy (Rayleigh-Jeans limit):

n

I(n)

n

In
observation

𝐵) 𝑇*𝑇& =
𝑐.

2𝑘(
	𝜈J.𝐼!
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• characteristic temperatures:

o brightness temperature Tb

o color temperature Tc

- temperature of best-fit Planck curve to observed spectrum

in practice:

Ø find maximum

Ø use Wien’s displacement law to get Tc
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• characteristic temperatures:

o brightness temperature Tb

o color temperature Tc

o effective temperature Teff

*- we observe In for fixedn and use it to define Tb

#- temperature of best-fit Planck curve to observed spectrum

*- no frequency information, only integrated information (e.g. F)

*depends on magnitude of the source
#depends on spectral shape only
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§ global thermal equilibrium

• the whole system of interest has one well defined temperature T

for which the temperature various 3 orders of magnitude!
but what about this system,

𝑑𝑇
𝑑𝑟 ≈ 10-"

𝐾
𝑐𝑚stellar modelling →

⟹ even for layers several kms thick,
    the temperature changes only minimally

and what about the mean free path?

𝑙 =
1
𝜅𝜌 ≈ 2𝑐𝑚stellar properties →

⟹ layers of several kms are optically thick

the radiation in a layer is considered to be at a
local thermal equilibrium

§ local thermal equilibrium



Thermal Radiation local thermal equilibrium

§ global thermal equilibrium

• the whole system of interest has one well defined temperature T

§ local thermal equilibrium

• the mean free path of any particles that might transport 
heat (e.g. photons, electrons) is very small compared to 
the length scale over which the temperature is changing.



Thermal Radiation local thermal equilibrium

§ global thermal equilibrium

• the whole system of interest has one well defined temperature T

§ local thermal equilibrium

• the mean free path of any particles that might transport 
heat (e.g. photons, electrons) is very small compared to 
the length scale over which the temperature is changing

• the system has a well-defined temperature on a scale 
much greater than the free mean path of a photon



Thermal Radiation local thermal equilibrium

§ global thermal equilibrium

• the whole system of interest has one well defined temperature T

§ local thermal equilibrium

• the mean free path of any particles that might transport 
heat (e.g. photons, electrons) is very small compared to 
the length scale over which the temperature is changing

• the system has a well-defined temperature on a scale 
much greater then the free mean path of a photon

→ the radiation locally follows a Planck curve
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§ Planck spectrum

summary
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