

Thermal Radiation

Alexander Knebe (*Universidad Autonoma de Madrid*)

Can we find the intensity $I_{\nu}(T, \Omega)$ for some simple example?

- **B** black-body radiation
- thermodynamics of black-body radiation
- **Planck spectrum**
- § local thermal equilibrium

§**black-body radiation**

- thermodynamics of black-body radiation
- **Planck spectrum**
- § local thermal equilibrium
- § formally we need to distinguish...
	- thermal radiation

• black-body radiation

- § formally we need to distinguish...
	- thermal radiation
		- o generated by thermal motion in matter
		- \circ all matter with $T > 0$ emits thermal radiation
		- \circ described by $I_{\nu}(T,\Omega)$

• black-body radiation

- § formally we need to distinguish...
	- thermal radiation
		- o generated by thermal motion in matter
		- \circ all matter with $T > 0$ emits thermal radiation
		- \circ described by $I_{\nu}(T, \Omega)$

- black-body radiation
	- \circ generated by matter in thermal equilibrium ($T = const.$)
	- o fully isotropic
	- \circ described by $B_{\nu}(T) = I_{\nu}(T, \Omega)$

§ formally we need to distinguish...

thermal radiation

- o generated by thermal motion in matter
- \circ all matter with $T > 0$ emits thermal radiation
- \circ described by $I_{\nu}(T, \Omega)$
- o becomes black-body radiation for optically thick media

• black-body radiation

- \circ generated by matter in thermal equilibrium ($T = const.$)
- o fully isotropic
- \circ described by $B_{\nu}(T) = I_{\nu}(T, \Omega)$

rmodynamics of BB radiation

idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence

idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence

Para conseguirla, podemos mantener una cavidad a una temperatura uniforme, T, y

no permitir intercambio de radiación hasta que el equilibrio se establece. El número

agujero en una pared de la cavidad, podemos medir las propiedades de la radiación

de fotones se ajustará a dicha situación de equilibrio. Si hacemos un pequeño

§ black-body

idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence

current process for equilibria terminal process final process for each process of the set of the La radiación de un cuerpo negro es aquélla que corresponde a un cuerpo negro es aquélla que corresponde a un c
La radiación de un corresponde a un corresp

• cavity (with a hole)

la temperatura *T,* de modo que *Iν* depende de *T* y *ν*. examples for black-bodies

en la misma sin alterar su equilibrio.

enclosure and depends only on TEMPERATURE.

```
Thermal Radiation I_{\nu} = D_{\text{block-body}f adiation
```
§ black-body

idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence

current process for equilibria terminal process final process for each process of the set of the La radiación de un cuerpo negro es aquélla que corresponde a un cuerpo negro es aquélla que corresponde a un c
La radiación de un corresponde a un corresp **Any object with a temperature above absolute zero emits light of all wavelengths with** vary *inguity degrees of transmits of medicine* efficiency in the control of the conductions, **light energy incident upon it and replacing the characteristic structure**

idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence

- cavity (with a hole)
- stars

idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence

- cavity (with a hole)
- stars

idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence

- cavity (with a hole)
- stars

idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence

idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence

- cavity (with a hole)
- stars
- black holes?

idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence

- cavity (with a hole)
- stars
- black holes:
	- o they absorb all the radiation that falls on them
	- o they emit black-body radiation (Hawking radiation)

idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence

- cavity (with a hole)
- stars
- black holes:
	- o they absorb all the radiation that falls on them
	- o they emit black-body radiation (Hawking radiation)
		- \rightarrow the temperature depends on the mass of the black hole

$$
T = \frac{hc^3}{8\pi G M_{bh} k_B}
$$

idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence

- cavity (with a hole)
- stars
- black holes:
	- o they absorb all the radiation that falls on them
	- o they emit black-body radiation (Hawking radiation)
		- \rightarrow the temperature depends on the mass of the black hole

$$
T = \frac{hc^3}{8\pi G M_{bh} k_B}
$$

idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence

- cavity (with a hole)
- stars
- black holes
- the most perfect black-body in the Universe?

idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence

- cavity (with a hole)
- stars
- black holes
- CMBR*

*Cosmic Microwave Background Radiation: all details in Cosmology course examples for black-bodies

idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence

B black-body radiation

thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

B black-body radiation

thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

• black-body radiation

thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

• populations **described by Saha-Boltzmann statistics***

$$
N_i = Ne^{-\frac{E_i}{k_B T}}
$$

Ni : number of atoms/ions/molecules with energy *Ei*

*we'll make use of that later when deriving $B_v(T)$

• black-body radiation

thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

• populations described by Saha-Boltzmann statistics

$$
N_i = Ne^{-\frac{E_i}{k_B T}}
$$

Ni : number of atoms/ions/molecules with energy *Ei*

• radiative transfer equation

$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}
$$

• black-body radiation

thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

• populations described by Saha-Boltzmann statistics

$$
N_i = Ne^{-\frac{E_i}{k_B T}}
$$

Ni : number of atoms/ions/molecules with energy *Ei*

• radiative transfer equation

$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} = 0
$$

• black-body radiation

thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

• populations described by Saha-Boltzmann statistics

$$
N_i = Ne^{-\frac{E_i}{k_B T}}
$$

Ni : number of atoms/ions/molecules with energy *Ei*

• radiative transfer equation

$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} = 0
$$

• black-body radiation

thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

• populations described by Saha-Boltzmann statistics

$$
N_i = Ne^{-\frac{E_i}{k_B T}}
$$

Ni : number of atoms/ions/molecules with energy *Ei*

• radiative transfer equation

$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} = \mathbf{0} \qquad \rightarrow \quad I_{\nu} = S_{\nu}
$$

• black-body radiation

thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

• populations described by Saha-Boltzmann statistics

$$
N_i = Ne^{-\frac{E_i}{k_B T}}
$$

Ni : number of atoms/ions/molecules with energy *Ei*

• radiative transfer equation

$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} = \mathbf{0} \qquad \rightarrow \quad I_{\nu} = S_{\nu} = B_{\nu}(T)
$$

• black-body radiation

thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

• populations described by Saha-Boltzmann statistics

$$
N_i = Ne^{-\frac{E_i}{k_B T}}
$$

Ni : number of atoms/ions/molecules with energy *Ei*

• radiative transfer equation

$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} = \mathbf{0} \qquad \rightarrow \quad I_{\nu} = S_{\nu} = B_{\nu}(T) \qquad \xrightarrow{S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}}
$$
\n $j_{\nu} = \alpha_{\nu} B_{\nu}(T)$

• black-body radiation

thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

• populations described by Saha-Boltzmann statistics

$$
N_i = Ne^{-\frac{E_i}{k_B T}}
$$

Ni : number of atoms/ions/molecules with energy *Ei*

• radiative transfer equation

$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} = \mathbf{0} \qquad \rightarrow \quad I_{\nu} = S_{\nu} = B_{\nu}(T) \qquad \xrightarrow{S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}} \underbrace{\begin{bmatrix} j_{\nu} = \alpha_{\nu} B_{\nu}(T) \end{bmatrix}!}
$$

• black-body radiation

thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

• populations described by Saha-Boltzmann statistics

$$
N_i = Ne^{-\frac{E_i}{k_B T}}
$$

Ni : number of atoms/ions/molecules with energy *Ei*

• radiative transfer equation

$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} = \mathbf{0} \qquad \rightarrow \quad I_{\nu} = S_{\nu} = B_{\nu}(T)
$$

• Kirchoff's law

$$
j_{\nu} = \alpha_{\nu} B_{\nu}(T)
$$
Thermal Radiation *black-body radiation*

• black-body radiation

thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

• populations described by Saha-Boltzmann statistics

$$
N_i = Ne^{-\frac{E_i}{k_B T}}
$$

Ni : number of atoms/ions/molecules with energy *Ei*

• radiative transfer equation

$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} = \mathbf{0} \qquad \rightarrow \quad I_{\nu} = S_{\nu} = B_{\nu}(T)
$$

• Kirchoff's law

 $j_{\nu} = \alpha_{\nu} B_{\nu}(T)$ *if material absorbs well at a certain wavelength, it will also radiate well at the same wavelength.*

Thermal Radiation *black-body radiation*

• black-body radiation

thermal radiation of a (black-)body in thermodynamic equilibrium with its environment

• populations described by Saha-Boltzmann statistics

$$
N_i = Ne^{-\frac{E_i}{k_B T}}
$$

Ni : number of atoms/ions/molecules with energy *Ei*

• radiative transfer equation

$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} = \mathbf{0} \qquad \rightarrow \quad I_{\nu} = S_{\nu} = B_{\nu}(T)
$$

• Kirchoff's law

 $j_{\nu} = \alpha_{\nu} B_{\nu}(T)$ *at thermal equilibrium, the power radiated must be equal to the power absorbed*

B black-body radiation

§ **thermodynamics of black-body radiation**

- Planck spectrum
- § local thermal equilibrium

■ thermodynamics

§ thermodynamics

§ thermodynamics

any chance to obtain

energy density, intensity, and flux

of the radiation field

as a function of temperature?

?

§ thermodynamics

$$
u(T) = \frac{4}{c}\sigma_B T^4
$$
 energy density

$$
B(T) = \frac{1}{\pi}\sigma_B T^4
$$
 intensity

$$
F(T) = \sigma_B T^4
$$
 flux

$$
S(T) = \frac{16}{3c} \sigma_B T^3 V \qquad \text{entropy}
$$

F thermodynamics

cavity that can be manipulated

where *S 3* entropy. But *U=* uV, and p = *u/3,* and *u* depends only on T

- **F** thermodynamics
	- first law of thermodynamics

- U : total energy of cavity \overline{U}
- $Q:$ heat $\overline{Q}:$
	- *p* : pressure
	- *V* : volume $\overline{}$: volume

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

- U : total energy of cavity \overline{U}
- $Q:$ heat $\overline{Q}:$
	- *p* : pressure
	- *V* : volume
		- Γ : volume β . end opy $\overline{}$ *S* : entropy

- **F** thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• radiation field*

$$
U = u V, \qquad p = \frac{u}{3}
$$

cavity that can be manipulated

```
U: total energy of cavity \overline{U}
```
 $Q:$ heat $\overline{Q}:$

- *p* : pressure
- *V* : volume
	- Γ : volume β . end opy $\overline{}$ *S* : entropy

• first law of thermodynamics

 $dQ = dU + pdV$

• second law of thermodynamics

 $dS = \frac{dQ}{T}$ \overline{T}

• radiation field

$$
U = u V, \qquad p = \frac{u}{3}
$$


```
U: total energy of cavity \overline{U}Q: heat \overline{Q}:
```
-
- *p* : pressure
- *V* : volume
	- Γ : volume β . end opy $\overline{}$ *S* : entropy

• first law of thermodynamics

 $dQ = dU + pdV$

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• radiation field

$$
U = u V, \qquad p = \frac{u}{3}
$$

$$
dS = \frac{dQ}{T} = \frac{dU + pdV}{T} = \frac{d(uV) + \frac{1}{3}udV}{T}
$$

= $V\frac{du}{T} + u\frac{dV}{T} + \frac{1}{3}u\frac{dV}{T} = \frac{V}{T}du + \frac{4}{3}\frac{u}{T}dV$

cavity that can be manipulated

```
U: total energy of cavity \overline{U}Q: heat \overline{Q}:V : volume
            \Gamma : volume
            p : pressure
```
 β . end opy $\overline{}$ *S* : entropy

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• radiation field

$$
U = u V, \qquad p = \frac{u}{3}
$$

$$
dS = \frac{dQ}{T} = \frac{dU + pdV}{T} = \frac{d(uV) + \frac{1}{3}udV}{T}
$$

= $V\frac{du}{T} + u\frac{dV}{T} + \frac{1}{3}u\frac{dV}{T} = \frac{V}{T}du + \frac{4}{3}\frac{u}{T}dV$

 $S = S(T,V)$

cavity that can be manipulated

```
U: total energy of cavity \overline{U}Q: heat \overline{Q}:V : volume
            \Gamma : volume
            p : pressure
```
 β . end opy $\overline{}$ *S* : entropy

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• radiation field

$$
U = u V, \qquad p = \frac{u}{3}
$$


```
U: total energy of cavity \overline{U}Q: heat \overline{Q}:V : volume
                \Gamma : volume
              \beta . end opy
              \overline{\phantom{a}}p : pressure
                S : entropy
```

$$
dS = \frac{dQ}{T} = \frac{dU + pdV}{T} = \frac{d(uV) + \frac{1}{3}udV}{T}
$$

= $V\frac{du}{T} + u\frac{dV}{T} + \frac{1}{3}u\frac{dV}{T} = \frac{V}{T}du + \frac{4}{3}\frac{u}{T}dV = \frac{V}{T}\frac{du}{dT}dT + \frac{4}{3}\frac{u}{T}dV$

$$
S = S(T,V)
$$

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• radiation field

$$
U = u V, \qquad p = \frac{u}{3}
$$


```
U: total energy of cavity \overline{U}Q: heat \overline{Q}:V : volume
                           \Gamma : volume
                         \beta . end opy
                         \overline{\phantom{a}}\mu_{\text{dV}} V du \mu_{\text{T}} 4u \mu_{\text{dV}}p : pressure
                           S : entropy
rac{1}{3}udV
              du4
                          \overline{u}
```

$$
dS = \frac{dQ}{T} = \frac{dU + pdV}{T} = \frac{d(uV) + \frac{1}{3}udV}{T}
$$

= $V\frac{du}{T} + u\frac{dV}{T} + \frac{1}{3}u\frac{dV}{T} = \frac{V}{T}du + \frac{4u}{3T}dV = \frac{V}{T}\frac{du}{dT} dT + \frac{4u}{3T}dV$

$$
S = S(T,V)
$$

$$
S = S(T,V)
$$

$$
= \left(\frac{\partial S}{\partial T}\right)_V dT + \left(\frac{\partial S}{\partial V}\right)_T dV
$$

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• radiation field

$$
U = u V, \qquad p = \frac{u}{3}
$$

 du

 $\frac{du}{T} + u$

 dV $\frac{1}{T}$ + 1 $\frac{1}{3}u$

 $S = S(T,V)$

cavity that can be manipulated

```
U: total energy of cavity \overline{U}Q: heat \overline{Q}:V : volume
                                                                                                      \Gamma : volume
                                                                                                  \beta . end opy
                                                                                                  \overline{\phantom{a}}S = V\frac{du}{dt} + u\frac{dV}{dt} + \frac{1}{2}u\frac{dV}{dt} = \frac{V}{T}du + \frac{4}{2}\frac{u}{T}dV = \frac{V}{T}\frac{du}{dt} \left[ dT + \frac{4}{2}\frac{u}{T}\frac{dV}{dt} \right]\int dVp : pressure
                                                                                                     S : entropy
dS = \frac{dQ}{T} = \frac{dU + pdV}{T} = \frac{d(uV) + \frac{1}{3}}{T}rac{1}{3}udV
                                                  \overline{T}=\left(\frac{\partial S}{\partial \mathbf{r}}\right)\partial S\frac{dV}{T} = \frac{V}{T} du +4
                                                             3
                                                               \frac{u}{T}dV = \frac{V}{T}du\frac{dS}{dT} dT +4
                                                                                                 3
                                                                                                    \overline{u}\frac{dV}{T} dV
```
 $\frac{\sqrt{3}}{2}$

 $\partial T/_{V}$

 $dT +$

 $\partial V/_{T}$

 dV

- **F** thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• radiation field

cavity that can be manipulated

$$
U = uV, \t p = \frac{u}{3}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n
$$
U : \text{total energy of cavity}
$$

\n $$

- **F** thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

 $\frac{du}{dT} = -\frac{4}{3}$

 \overline{u} $\frac{x}{T^2}$ +

• radiation field

1

 \overline{T}

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• radiation field

$$
U = u V, \qquad p = \frac{u}{3}
$$

$$
\frac{1}{T} \frac{du}{dT} = -\frac{4}{3} \frac{u}{T^2} + \frac{4}{3T} \frac{du}{dT}
$$

$$
0 = -\frac{4}{3} \frac{u}{T^2} + \frac{1}{3T} \frac{du}{dT}
$$


```
U: total energy of cavity \overline{U}
```
- $Q:$ heat $\overline{Q}:$
	- *p* : pressure
	- *V* : volume
		- Γ : volume β . end opy $\overline{}$ *S* : entropy

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• radiation field

$$
U = u V, \qquad p = \frac{u}{3}
$$

$$
\frac{1}{T} \frac{du}{dT} = -\frac{4}{3} \frac{u}{T^2} + \frac{4}{3T} \frac{du}{dT}
$$

$$
0 = -\frac{4}{3} \frac{u}{T^2} + \frac{1}{3T} \frac{du}{dT}
$$

$$
\frac{4u}{T} = \frac{du}{dT}
$$

- U : total energy of cavity \overline{U} $Q:$ heat $\overline{Q}:$
	-
	- *p* : pressure
	- *V* : volume
		- Γ : volume β . end opy $\overline{}$ *S* : entropy

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• radiation field

$$
U = uV, \t p = \frac{u}{3}
$$

$$
\frac{1}{T}\frac{du}{dT} = -\frac{4}{3}\frac{u}{T^2} + \frac{4}{3T}\frac{du}{dT}
$$

$$
0 = -\frac{4}{3}\frac{u}{T^2} + \frac{1}{3T}\frac{du}{dT}
$$

$$
\frac{4u}{T} = \frac{du}{dT} \t \rightarrow \frac{du}{u} = 4\frac{dT}{T}
$$

 \overline{T}

cavity that can be manipulated

```
U: total energy of cavity \overline{U}Q: heat \overline{Q}:
```
p : pressure

V : volume

 Γ : volume β . end opy $\overline{}$ *S* : entropy

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• radiation field

$$
U = uV, \t p = \frac{u}{3}
$$

$$
\frac{1}{T}\frac{du}{dT} = -\frac{4}{3}\frac{u}{T^2} + \frac{4}{3T}\frac{du}{dT}
$$

$$
0 = -\frac{4}{3}\frac{u}{T^2} + \frac{1}{3T}\frac{du}{dT}
$$

$$
\frac{4u}{T} = \frac{du}{dT} \rightarrow \frac{du}{u} = 4\frac{dT}{T} \rightarrow u(T)
$$

cavity that can be manipulated

```
U: total energy of cavity \overline{U}Q: heat \overline{Q}:p : pressure
```
V : volume Γ : volume

 β . end opy $\overline{}$ *S* : entropy

$$
4\frac{dT}{T} \qquad \rightarrow \quad u(T) = a\ T^4
$$

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• radiation field

$$
U = u V, \qquad p = \frac{u}{3}
$$

$$
\frac{1}{T} \frac{du}{dT} = -\frac{4}{3} \frac{u}{T^2} + \frac{4}{3T} \frac{du}{dT}
$$

$$
0 = -\frac{4}{3} \frac{u}{T^2} + \frac{1}{3T} \frac{du}{dT}
$$

$$
\frac{4u}{T} = \frac{du}{dT} \qquad \rightarrow \qquad \frac{du}{u} = 4\frac{dT}{T} \qquad \rightarrow \left(u(T) = aT^4 \right) \quad \text{Stefan-I}
$$


```
U: total energy of cavity \overline{U}Q: heat \overline{Q}:
```
- *p* : pressure
- *V* : volume
	- Γ : volume β . end opy $\overline{}$ *S* : entropy

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• Stefan-Boltzmann law

$$
u(T) = a T^4
$$

energy density


```
U: total energy of cavity \overline{U}
```
- $Q:$ heat $\overline{Q}:$
	- *p* : pressure
	- *V* : volume
		- Γ : volume β . end opy $\overline{}$ *S* : entropy

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• Stefan-Boltzmann law

$$
u(T) = a T^4
$$

energy density

...relation to intensity*

$$
u(T) = \int u_{\nu} \, d\nu = \iint \frac{I_{\nu}(T)}{c} d\Omega d\nu = \frac{4\pi}{c} \int I_{\nu}(T) \, d\nu
$$

cavity that can be manipulated

 U : total energy of cavity \overline{U} $Q:$ heat $\overline{Q}:$

-
- *p* : pressure
- *V* : volume
	- Γ : volume β . end opy $\overline{}$ *S* : entropy

*see Fundamentals lecture...

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• Stefan-Boltzmann law

$$
u(T) = a T^4
$$

energy density

...relation to intensity*

$$
u(T) = \int u_{\nu} d\nu = \iint \frac{I_{\nu}(T)}{c} d\Omega d\nu = \frac{4\pi}{c} \int B_{\nu}(T) d\nu
$$

cavity that can be manipulated

 U : total energy of cavity \overline{U} $Q:$ heat $\overline{Q}:$

-
- *p* : pressure
- *V* : volume
	- Γ : volume β . end opy $\overline{}$ *S* : entropy

*see Fundamentals lecture...

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• Stefan-Boltzmann law

$$
u(T) = a T^4
$$

energy density

...relation to intensity

$$
u(T) = \int u_{\nu} d\nu = \iint \frac{I_{\nu}(T)}{c} d\Omega d\nu = \frac{4\pi}{c} \int B_{\nu}(T) d\nu
$$

$$
aT^4 = \frac{4\pi}{c} \int B_\nu(T) \, d\nu
$$

cavity that can be manipulated

 U : total energy of cavity \overline{U} $Q:$ heat $\overline{Q}:$

- *p* : pressure
- *V* : volume
	- Γ : volume β . end opy $\overline{}$ *S* : entropy

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• Stefan-Boltzmann law

$$
u(T) = a T^4
$$

energy density

...relation to intensity

$$
u(T) = \int u_{\nu} d\nu = \iint \frac{I_{\nu}(T)}{c} d\Omega d\nu = \frac{4\pi}{c} \int B_{\nu}(T) d\nu
$$

$$
aT^4 = \frac{4\pi}{c} \int B_\nu(T) \, d\nu \qquad \rightarrow \quad B(T) = \int B_\nu(T) \, d\nu = \frac{ac}{4\pi} T^4
$$

cavity that can be manipulated

 U : total energy of cavity \overline{U}

- $Q:$ heat $\overline{Q}:$
	- *p* : pressure
	- *V* : volume
		- Γ : volume β . end opy $\overline{}$ *S* : entropy

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• Stefan-Boltzmann law

$$
u(T) = a T4
$$
 energy density

$$
B(T) = \frac{ac}{4\pi}T^4
$$

egrated intensity

cavity that can be manipulated

 U : total energy of cavity \overline{U} $Q:$ heat \overline{Q} *V* : volume Γ : volume β . end opy $\overline{}$ *p* : pressure *S* : entropy

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• Stefan-Boltzmann law

$$
u(T) = \frac{4\pi}{c} B(T)
$$
\n
$$
B(T) = \frac{ac}{4\pi} T^4
$$

nergy density

ntegrated intensity


```
U: total energy of cavity \overline{U}Q: heat \overline{Q}V : volume
                \Gamma : volume
              \beta . end opy
              \overline{\phantom{a}}p : pressure
                S : entropy
```
- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• Stefan-Boltzmann law

$$
u(T) = a T^4
$$
 energy density

$$
B(T) = \frac{ac}{4\pi} T^4
$$
 integrated intensity

...relation to flux*

$$
F = \int F_v dv = \iint I_v(\Omega) \cos\theta d\Omega dv = \iint B_v \cos\theta d\Omega dv
$$

= $\int B_v dv \int \cos\theta d\Omega = \int B_v dv \int_0^{2\pi} d\varphi \int_0^{\pi/2} \cos\theta \sin\theta d\theta = \pi \int B_v dv = \pi B(T)$

 $*$ see Fundamentals lectu


```
U: total energy of cavity \overline{U}Q: heat \overline{Q}V : volume
                \Gamma : volume
              \beta . end opy
              \overline{\phantom{a}}p : pressure
                S : entropy
```
- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• Stefan-Boltzmann law

$$
u(T) = a T4
$$
 energy density

$$
B(T) = \frac{ac}{4\pi} T^4
$$
 integrated intensity

$$
F(T) = \frac{ac}{4} T^4
$$
 emergent flux

cavity that can be manipulated

 U : total energy of cavity \overline{U} $Q:$ heat \overline{Q} *V* : volume Γ : volume β . end opy $\overline{}$ *p* : pressure *S* : entropy

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• Stefan-Boltzmann law

$$
u(T) = aT^4
$$

energy density

$$
B(T) = \frac{Q}{4\pi} T^4
$$

integrated intensity

$$
F(T) = \frac{a \cdot r}{4} T^4
$$

emergent flux

cavity that can be manipulated

```
U: total energy of cavity \overline{U}Q: heat \overline{Q}V : volume
                \Gamma : volume
              \beta . end opy
              \overline{\phantom{a}}p : pressure
                S : entropy
```
a ?
- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• Stefan-Boltzmann law

$$
u(T) = aT^4
$$

energy density

$$
B(T) = \frac{dx}{4\pi} T^4
$$
 integral

rated intensity

$$
F(T) = \frac{a\mathbf{d}}{4} T^4
$$
 emergent flux

 $a=\frac{4}{a}$ \mathcal{C}_{0}^{0}

cavity that can be manipulated

```
U: total energy of cavity \overline{U}Q: heat \overline{Q}:V : volume
                \Gamma : volume
              \beta . end opy
              \overline{\phantom{a}}p : pressure
                S : entropy
```
 σ_B : Stefan-Boltzman constant

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• Stefan-Boltzmann law

$$
u(T) = \frac{4}{c} \sigma_B T^4
$$
 energy density

$$
B(T) = \frac{1}{\pi} \sigma_B T^4
$$
 integrated intensity

cavity that can be manipulated

```
U: total energy of cavity \overline{U}Q: heat \overline{Q}:V : volume
                \Gamma : volume
              \beta . end opy
              \overline{\phantom{a}}p : pressure
                S : entropy
```

$$
F(T) = \sigma_B T^4
$$
 \t\nemergent flux $(\sigma_B = \frac{2\pi^5 k_B^4}{15c^2 h^3}$: Stefan-Boltzman constant)

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• Stefan-Boltzmann law

$$
u(T) = \frac{4}{c} \sigma_B T^4
$$
 energy density

$$
B(T) = \frac{1}{\pi} \sigma_B T^4
$$
 integrated intensity

cavity that can be manipulated

```
U: total energy of cavity \overline{U}Q: heat \overline{Q}:V : volume
                \Gamma : volume
              \beta . end opy
              \overline{\phantom{a}}p : pressure
                S : entropy
```

$$
F(T) = \sigma_B T^4
$$
 \t\nemergent flux $(\sigma_B = \frac{2\pi^5 k_B^4}{15c^2 h^3}$: Stefan-Boltzman constant)

this factor – and its relation to a – will be derived later...

- thermodynamics
	- first law of thermodynamics

• second law of thermodynamics

$$
dS = \frac{dQ}{T}
$$

• Stefan-Boltzmann law

$$
u(T) = \frac{4}{c} \sigma_B T^4
$$
 energy density

$$
B(T) = \frac{1}{\pi} \sigma_B T^4
$$
 integrated intensity

cavity that can be manipulated

```
U: total energy of cavity \overline{U}Q: heat \overline{Q}:V : volume
                \Gamma : volume
              \beta . end opy
              \overline{\phantom{a}}p : pressure
                S : entropy
```

$$
F(T) = \sigma_B T^4
$$
 \t\nemergent flux $(\sigma_B = \frac{2\pi^5 k_B^4}{15c^2 h^3}$: Stefan-Boltzman constant)

$$
S(T) = \frac{16}{3c} \sigma_B T^3 V
$$
 entropy (exercise)

- **F** thermodynamics
	- first law of thermodynamics **enclosure and depends only on TEMPERATURE.**

BB Intensity

 $dQ = dU + pdV$

- second law of thermodynamics **Any object with a second law** of thermodynamics **above above abo**
	- $dS = \frac{dQ}{T}$ \overline{T}
- **because it reflects in the picture with a picture with a picture it reflects it reflects it reflects it reflects no light it reflects no light it reflects no light it is called a black body, and the radiation is called a** • Stefan-Boltzmann law $\frac{3}{2000 \text{ K}}$ **U** : total energy of cavity 4 since *u* = *(47r/c)jJv* dv and *J,* = B,(T). **Thus** we have $\sigma_B \; T^4$ *Q* : heat energy density $u(T) =$ \overline{c} *p* : pressure $\begin{array}{c}\n\overrightarrow{v_1} & 5 \\
\overrightarrow{v_1} & 4 \\
\overrightarrow{v_2} & 3 \\
\overrightarrow{v_1} & 2\n\end{array}$
 $\overrightarrow{S777 K}$

Visible light 5 V du *U* 1u *V* : volume $\frac{1}{2}$ denotes the Δ -dv- Δ *dependency on wave-length?* $\sqrt{ }$ *S* : entropy 1 $\overline{4}$ $\sum_{\alpha,\beta,\beta,\gamma,\gamma}$ $\sigma_B T^4$ integrated intensity $B_{\nu}(T)$? $\mid B(T) =$ π $3²$ $\begin{array}{ccc} \begin{array}{ccc} \begin{array}{ccc} \end{array} & \end{array}$ $F(T) = \sigma_B T^4$ emergent flux $(\sigma_B$ ()*;+< : Stefan-Boltzman constant) V du *4u* 4000 K Ω 16 400 600 800 1000 1200 1400 200 $\frac{16}{3c}$ $\sigma_B T^3 V$ entropy (exercise) $S(T) =$ Wavelength λ (nm)

- **B** black-body radiation
- thermodynamics of black-body radiation

§**Planck spectrum**

§ local thermal equilibrium

B black-body radiation

■ thermodynamics of black-body radiation

§**Planck spectrum:**

- derivation
- properties
- § local thermal equilibrium

 \blacksquare black-body radiation

■ thermodynamics of black-body radiation

§**Planck spectrum:**

- **derivation**
- properties
- § local thermal equilibrium

$$
B_{\nu}(T) = \frac{c}{4\pi} u_{\nu}(T)
$$

$$
u_{\nu}(T)dv=?
$$

remember: $u_v = 4\pi/c$ *I_v* for isotropic radiation, and $I_v = B_v$ for black-body radiation

$$
B_{\nu}(T) = \frac{c}{4\pi} u_{\nu}(T)
$$

$$
u_{\nu}(T)dv = \frac{dN(\nu)}{dV} \langle E \rangle
$$

average energy per state:

- quantum mechanics \longrightarrow Planck spectrum
	-
- classical thermodynammics \longrightarrow Rayleigh-Jeans law

$$
B_{\nu}(T) = \frac{c}{4\pi} u_{\nu}(T)
$$

number density of possible photon states

average energy per state:

- quantum mechanics \longrightarrow Planck spectrum
	-
- classical thermodynammics \longrightarrow Rayleigh-Jeans law

$$
\frac{dN(v)}{dV} = ?
$$

Planck spectrum - derivation

- number density of possible photon states
	- standing wave

- number density of possible photon states
	- standing wave

$$
n_i A_i = L
$$

\n
$$
\frac{\lambda}{A_i} = \cos(\alpha_i)
$$

\n
$$
n_i \in \mathbb{N}, i = 1, 2, 3
$$

- number density of possible photon states
	- standing wave

$$
n_i A_i = L
$$

\n
$$
\frac{\lambda}{A_i} = \cos(\alpha_i)
$$

\n
$$
n_i \in \mathbb{N}, i = 1, 2, 3
$$

• direction cosine (3D)

$$
1 = \cos^2(\alpha_1) + \cos^2(\alpha_2) + \cos^2(\alpha_3)
$$

- number density of possible photon states
	- standing wave

$$
n_i A_i = L
$$

\n
$$
\frac{\lambda}{A_i} = \cos(\alpha_i)
$$

\n
$$
n_i \in \mathbb{N}, i = 1, 2, 3
$$

• direction cosine (3D)

$$
1 = \cos^2(\alpha_1) + \cos^2(\alpha_2) + \cos^2(\alpha_3)
$$

L

$$
1 = \frac{\lambda^2}{4A_1} + \frac{\lambda^2}{4A_2} + \frac{\lambda^2}{4A_2} = \left(\frac{\lambda}{2}\right)^2 \left(\left(\frac{n_1}{L}\right)^2 + \left(\frac{n_2}{L}\right)^2 + \left(\frac{n_3}{L}\right)^2\right) = \left(\frac{\lambda}{2L}\right)^2 (n_1^2 + n_2^2 + n_3^2)
$$

- number density of possible photon states
	- standing wave

$$
n_i A_i = L
$$

\n
$$
\frac{\lambda}{A_i} = \cos(\alpha_i)
$$

\n
$$
n_i \in \mathbb{N}, i = 1, 2, 3
$$

• direction cosine (3D)

$$
1 = \cos^2(\alpha_1) + \cos^2(\alpha_2) + \cos^2(\alpha_3)
$$

• 'sphere' condition for standing wave

2 λ . $= n_1^2 + n_2^2 + n_3^2$

 $\frac{2}{3}$ describes a sphere w/ radius $\frac{2L}{\lambda}$

- number density of possible photon states
	- standing wave

$$
n_i A_i = L
$$

\n
$$
\frac{\lambda}{2}
$$

\n
$$
\frac{\lambda}{2} = \cos(\alpha_i)
$$

\n
$$
n_i \in \mathbb{N}, i = 1, 2, 3
$$

• direction cosine (3D)

$$
1 = \cos^2(\alpha_1) + \cos^2(\alpha_2) + \cos^2(\alpha_3)
$$

• 'sphere' condition for standing wave

$$
\left(\frac{2L}{\lambda}\right)^2 = n_1^2 + n_2^2 + n_3^2
$$
 describes a sphere w/ radius $\frac{2L}{\lambda}$

how many standing waves fit into octant $n_i > 0$ *?*

- number density of possible photon states
	- standing wave

$$
n_i A_i = L
$$

\n
$$
\frac{\lambda}{2}
$$

\n
$$
\frac{\lambda}{2} = \cos(\alpha_i)
$$

\n
$$
n_i \in \mathbb{N}, i = 1, 2, 3
$$

• direction cosine (3D)

$$
1 = \cos^2(\alpha_1) + \cos^2(\alpha_2) + \cos^2(\alpha_3)
$$

• 'sphere' condition for standing wave

$$
\left(\frac{2L}{\lambda}\right)^2 = n_1^2 + n_2^2 + n_3^2
$$

how many standing waves fit into octant $n_i > 0$ *?*

$$
N(\lambda) = \frac{1}{8} \frac{4\pi}{3} \left(\frac{2L}{\lambda}\right)^3
$$

- number density of possible photon states
	- standing wave

$$
n_i A_i = L
$$

\n
$$
\frac{\lambda}{2}
$$

\n
$$
\frac{\lambda}{2} = \cos(\alpha_i)
$$

\n
$$
n_i \in \mathbb{N}, i = 1, 2, 3
$$

• direction cosine (3D)

$$
1 = \cos^2(\alpha_1) + \cos^2(\alpha_2) + \cos^2(\alpha_3)
$$

• 'sphere' condition for standing wave

$$
\left(\frac{2L}{\lambda}\right)^2 = n_1^2 + n_2^2 + n_3^2
$$

how many standing waves fit into octant $n_i > 0$ *?*

$$
N(\lambda) = \frac{1}{8} \frac{4\pi}{3} \left(\frac{2L}{\lambda}\right)^3 \xrightarrow{\nu = \frac{c}{\lambda}} N(\nu) = \frac{1}{8} \frac{4\pi}{3} \left(\frac{2L\nu}{c}\right)^3 = \frac{4\pi}{3c^3} L^3 \nu^3
$$

- number density of possible photon states
	- standing wave

$$
n_i A_i = L
$$

\n
$$
\frac{\lambda}{2}
$$

\n
$$
\frac{n_i \in \mathbb{N}, i = 1, 2, 3}{A_i}
$$

\n
$$
n_i \in \mathbb{N}, i = 1, 2, 3
$$

• direction cosine (3D)

$$
1 = \cos^2(\alpha_1) + \cos^2(\alpha_2) + \cos^2(\alpha_3)
$$

• 'sphere' condition for standing wave

$$
\left(\frac{2L}{\lambda}\right)^2 = n_1^2 + n_2^2 + n_3^2
$$

how many standing waves fit into octant $n_i > 0$ *?*

$$
N(\lambda) = \frac{1}{8} \frac{4\pi}{3} \left(\frac{2L}{\lambda}\right)^3 \quad \xrightarrow{\nu = \frac{c}{\lambda}} \quad N(\nu) = \frac{1}{8} \frac{4\pi}{3} \left(\frac{2L\nu}{c}\right)^3 = \frac{4\pi}{3c^3} L^3 \nu^3
$$

$$
\frac{dN(v)}{dV} = ?
$$

- number density of possible photon states
	- standing wave

$$
n_i A_i = L
$$

\n
$$
\frac{\lambda}{2}
$$

\n
$$
\frac{n_i \in \mathbb{N}, i = 1, 2, 3}{A_i}
$$

\n
$$
n_i \in \mathbb{N}, i = 1, 2, 3
$$

• direction cosine (3D)

$$
1 = \cos^2(\alpha_1) + \cos^2(\alpha_2) + \cos^2(\alpha_3)
$$

• 'sphere' condition for standing wave

$$
\left(\frac{2L}{\lambda}\right)^2 = n_1^2 + n_2^2 + n_3^2
$$

how many standing waves fit into octant $n_i > 0$ *?*

$$
N(\lambda) = \frac{1}{8} \frac{4\pi}{3} \left(\frac{2L}{\lambda}\right)^3 \xrightarrow{\nu = \frac{c}{\lambda}} N(\nu) = \frac{1}{8} \frac{4\pi}{3} \left(\frac{2Lv}{c}\right)^3 = \frac{4\pi}{3c^3} L^3 \nu^3 \xrightarrow{\qquad} dN(\nu) = \frac{4\pi}{c^3} L^3 \nu^2 d\nu
$$

$$
dV = L^3
$$

$$
\frac{dN(v)}{dV} = ?
$$

- number density of possible photon states
	- standing wave

$$
n_i A_i = L
$$

\n
$$
\frac{\lambda}{2}
$$

\n
$$
\frac{n_i \in \mathbb{N}, i = 1, 2, 3}{A_i}
$$

\n
$$
n_i \in \mathbb{N}, i = 1, 2, 3
$$

• direction cosine (3D)

$$
1 = \cos^2(\alpha_1) + \cos^2(\alpha_2) + \cos^2(\alpha_3)
$$

• 'sphere' condition for standing wave

$$
\left(\frac{2L}{\lambda}\right)^2 = n_1^2 + n_2^2 + n_3^2
$$

how many standing waves fit into octant $n_i > 0$ *?*

$$
N(\lambda) = \frac{1}{8} \frac{4\pi}{3} \left(\frac{2L}{\lambda}\right)^3 \xrightarrow{\nu = \frac{c}{\lambda}} N(\nu) = \frac{1}{8} \frac{4\pi}{3} \left(\frac{2Lv}{c}\right)^3 = \frac{4\pi}{3c^3} L^3 \nu^3 \xrightarrow{\qquad} dN(\nu) = \frac{4\pi}{c^3} L^3 \nu^2 d\nu
$$

$$
dV = L^3
$$

$$
\frac{dN(v)}{dV} = \frac{4\pi}{c^3}v^2dv
$$

- number density of possible photon states
	- standing wave

$$
n_i A_i = L
$$

\n
$$
\frac{\lambda}{2}
$$

\n
$$
\frac{n_i \in \mathbb{N}, i = 1, 2, 3}{A_i}
$$

\n
$$
n_i \in \mathbb{N}, i = 1, 2, 3
$$

• direction cosine (3D)

$$
1 = \cos^2(\alpha_1) + \cos^2(\alpha_2) + \cos^2(\alpha_3)
$$

• 'sphere' condition for standing wave

$$
\left(\frac{2L}{\lambda}\right)^2 = n_1^2 + n_2^2 + n_3^2
$$

how many standing waves fit into octant $n_i > 0$ *?*

$$
N(\lambda) = \frac{1}{8} \frac{4\pi}{3} \left(\frac{2L}{\lambda}\right)^3 \xrightarrow{\nu = \frac{c}{\lambda}} N(\nu) = \frac{1}{8} \frac{4\pi}{3} \left(\frac{2Lv}{c}\right)^3 = \frac{4\pi}{3c^3} L^3 \nu^3 \xrightarrow{\text{d}N(\nu) = \frac{4\pi}{c^3} L^3 \nu^2 d\nu}
$$

$$
dV = L^3
$$

$$
2 \quad \frac{dN(v)}{dV} = \frac{4\pi}{c^3}v^2dv \quad ?
$$

- number density of possible photon states
	- standing wave

$$
n_i A_i = L
$$

\n
$$
\frac{\lambda}{2}
$$

\n
$$
\frac{n_i \in \mathbb{N}, i = 1, 2, 3}{A_i}
$$

\n
$$
n_i \in \mathbb{N}, i = 1, 2, 3
$$

• direction cosine (3D)

$$
1 = \cos^2(\alpha_1) + \cos^2(\alpha_2) + \cos^2(\alpha_3)
$$

• 'sphere' condition for standing wave

$$
\left(\frac{2L}{\lambda}\right)^2 = n_1^2 + n_2^2 + n_3^2
$$

how many standing waves fit into octant $n_i > 0$ *?*

$$
N(\lambda) = \frac{1}{8} \frac{4\pi}{3} \left(\frac{2L}{\lambda}\right)^3 \xrightarrow{\nu = \frac{c}{\lambda}} N(\nu) = \frac{1}{8} \frac{4\pi}{3} \left(\frac{2Lv}{c}\right)^3 = \frac{4\pi}{3c^3} L^3 \nu^3 \xrightarrow{\text{d}N(\nu) = \frac{4\pi}{c^3} L^3 \nu^2 d\nu}
$$

$$
dV = L^3
$$

$$
\frac{dN(v)}{dV} = \frac{4\pi}{c^3}v^2dv
$$
 ? 2 polarisations!

- number density of possible photon states
	- standing wave

$$
n_i A_i = L
$$

\n
$$
\frac{\lambda}{2}
$$

\n
$$
\frac{\lambda}{2} = \cos(\alpha_i)
$$

\n
$$
n_i \in \mathbb{N}, i = 1, 2, 3
$$

• direction cosine (3D)

$$
1 = \cos^2(\alpha_1) + \cos^2(\alpha_2) + \cos^2(\alpha_3)
$$

• 'sphere' condition for standing wave

$$
\left(\frac{2L}{\lambda}\right)^2 = n_1^2 + n_2^2 + n_3^2
$$

how many standing waves fit into octant $n_i > 0$ *?*

$$
N(\lambda) = \frac{1}{8} \frac{4\pi}{3} \left(\frac{2L}{\lambda}\right)^3 \xrightarrow{\nu = \frac{c}{\lambda}} N(\nu) = \frac{1}{8} \frac{4\pi}{3} \left(\frac{2Lv}{c}\right)^3 = \frac{4\pi}{3c^3} L^3 \nu^3 \xrightarrow{\qquad} dN(\nu) = \frac{4\pi}{c^3} L^3 \nu^2 d\nu
$$

$$
dV = L^3
$$

$$
\frac{dN(v)}{dV} = 2\frac{4\pi}{c^3}v^2dv
$$

$$
B_{\nu}(T) = \frac{c}{4\pi} u_{\nu}(T)
$$

number density of possible photon states:

$$
\frac{dN(v)}{dV} = \frac{8\pi}{c^3}v^2dv
$$

average energy per state:

- quantum mechanics \longrightarrow Planck spectrum
	-
- classical thermodynammics \longrightarrow Rayleigh-Jeans law

 $u_{\nu}(T)dv =$

number density of possible photon states:

$$
\frac{dN(v)}{dV} = \frac{8\pi}{c^3}v^2dv
$$

average energy per state:

 $dN(v)$

 $\frac{dV}{dV}$ $\langle E$

• **quantum mechanics → Planck spectrum**

• classical thermodynammics \longrightarrow Rayleigh-Jeans law

■ number density of possible photon states

$$
\frac{dN(v)}{dV} = \frac{8\pi}{c^3}v^2dv
$$

average energy per state

$$
\frac{dN(v)}{dV} = \frac{8\pi}{c^3}v^2dv
$$

- **average energy per state**
	- each state has *n* discrete photons of energy $h v$: $E_n = n h v$
■ number density of possible photon states

$$
\frac{dN(v)}{dV} = \frac{8\pi}{c^3}v^2dv
$$

- average energy per state
	- each state has *n* **discrete photons** of energy $h v$: $E_n = n h v$

quantum mechanical approach!

■ number density of possible photon states

$$
\frac{dN(v)}{dV} = \frac{8\pi}{c^3}v^2dv
$$

- average energy per state
	- each state has *n* discrete photons of energy $h v$: $E_n = n h v$

• population of states* described by Boltzmann statistics:

 $p(E_n) \propto e$ $-\frac{E_n}{k}$

■ number density of possible photon states

$$
\frac{dN(v)}{dV} = \frac{8\pi}{c^3}v^2dv
$$

- **average energy per state**
	- each state has *n* discrete photons of energy $h v$: $E_n = n h v$

• population of states described by Boltzmann statistics:

 $-\frac{E_n}{k}$ k_BT

• average energy: first moment of *p(E)*

■ number density of possible photon states

$$
\frac{dN(v)}{dV} = \frac{8\pi}{c^3}v^2dv
$$

- **average energy per state**
	- each state has *n* discrete photons of energy $h v$: $E_n = n h v$

• population of states described by Boltzmann statistics:

 $-\frac{E_n}{k}$ k_BT

• average energy:

$$
\langle E \rangle = \frac{\sum_{n=0}^{\infty} E_n e^{-\frac{E_n}{k_B T}}}{\sum_{n=0}^{\infty} e^{-\frac{E_n}{k_B T}}}
$$

■ number density of possible photon states

$$
\frac{dN(v)}{dV} = \frac{8\pi}{c^3}v^2dv
$$

- **average energy per state**
	- each state has *n* discrete photons of energy $h v$: $E_n = n h v$

 $-\frac{E_n}{k}$ k_BT

 $p(E_n) \propto e$

• population of states described by Boltzmann statistics:

• average energy:
$$
\langle E \rangle = \frac{\sum_{n=0}^{\infty}}{n}
$$

$$
\langle \zeta \rangle = \frac{\sum_{n=0}^{\infty} E_n e^{-\frac{E_n}{k_B T}}}{\sum_{n=0}^{\infty} e^{-\frac{E_n}{k_B T}}} = -\frac{\partial}{\partial \beta} \ln \left(\sum_{n=0}^{\infty} e^{-\beta E_n} \right)
$$

$$
\beta = (k_B T)^{-1}
$$

■ number density of possible photon states

$$
\frac{dN(v)}{dV} = \frac{8\pi}{c^3}v^2dv
$$

- average energy per state
	- each state has *n* discrete photons of energy $h v$: $E_n = n h v$

 $-\frac{E_n}{k}$ k_BT

 $p(E_n) \propto e$

- population of states described by Boltzmann statistics:
- average energy:

■ number density of possible photon states

$$
\frac{dN(v)}{dV} = \frac{8\pi}{c^3}v^2dv
$$

- average energy per state
	- each state has *n* discrete photons of energy $h v$: $E_n = n h v$
	- population of states described by Boltzmann statistics: $p(E_n) \propto \, e^{-\overline{k_B T}}$

$$
p(E_n) \propto e^{-\frac{E_n}{k_B T}}
$$

• average energy:
$$
\langle E \rangle = \frac{\sum_{n=0}^{\infty} E_n e^{-\frac{E_n}{k_B T}}}{\sum_{n=0}^{\infty} e^{-\frac{E_n}{k_B T}}} = -\frac{\partial}{\partial \beta} \ln \left(\sum_{n=0}^{\infty} e^{-\beta E_n} \right)
$$

\n $\sin p \to \infty$
\n $\beta = (k_B T)^{-1}$
\n $\sum_{n=0}^{\infty} e^{-\beta E_n} = \sum_{n=0}^{\infty} e^{-\beta n h \nu} = (1 - e^{-\beta n h \nu})^{-1}$

" number density of possible photon states

$$
\frac{dN(v)}{dV} = \frac{8\pi}{c^3}v^2dv
$$

- **average energy per state**
	- each state has n discrete photons of energy $h\nu$:

$$
E_n = n h v
$$

 $p(E_n) \propto e^{-\frac{E_n}{k_B T}}$ • population of states described by Boltzmann statistics:

• average energy:
$$
\langle E \rangle = \frac{\sum_{n=0}^{\infty} E_n e^{-\frac{E_n}{k_B T}}}{\sum_{n=0}^{\infty} e^{-\frac{E_n}{k_B T}}} = -\frac{\partial}{\partial \beta} \ln \left(\sum_{n=0}^{\infty} e^{-\beta E_n} \right)
$$

\n $\sinh \beta = \text{geometric series...}$
\n $\beta = (k_B T)^{-1}$ $\sum_{n=0}^{\infty} e^{-\beta E_n} = \sum_{n=0}^{\infty} e^{-\beta n h \nu} = (1 - e^{-\beta n h \nu})^{-1}$

$$
= \frac{h\nu e^{-\beta h\nu}}{1 - e^{-\beta h\nu}} = \frac{h\nu}{e^{\beta h\nu} - 1} = \frac{h\nu}{e^{\frac{h\nu}{k_B T}} - 1}
$$

■ number density of possible photon states

$$
\frac{dN(v)}{dV} = \frac{8\pi}{c^3}v^2dv
$$

- average energy per state
	- each state has *n* discrete photons of energy $h v$: $E_n = n h v$

• population of states described by Boltzmann statistics:

 \boldsymbol{e}

 $h\nu$ $\sqrt{k_B T}-1$ $p(E_n) \propto e$ $-\frac{E_n}{k}$ k_BT

• average energy: $\langle E \rangle = \frac{hv}{h\nu}$

Planck spectrum - derivation

- Planck spectrum

$$
u_{\nu}(T) = \frac{8\pi}{c^3} \frac{h v^3}{\frac{hv}{e^{k_B T}} - 1}
$$

■ Planck spectrum

$$
u_{\nu}(T) = \frac{8\pi}{c^3} \frac{h v^3}{e^{\frac{h v}{k_B T}} - 1}
$$

classical thermodynammics?

■ Planck spectrum

$$
u_{\nu}(T) = \frac{8\pi}{c^3} \frac{h v^3}{e^{\frac{h v}{k_B T}} - 1}
$$

classical thermodynammics \rightarrow Rayleigh-Jeans law

■ Planck spectrum

$$
u_{\nu}(T) = \frac{8\pi}{c^3} \frac{h v^3}{e^{\frac{h v}{k_B T}} - 1}
$$

classical thermodynamics
$$
\rightarrow
$$
 Rayleigh-Jeans law

$$
\langle E \rangle = k_B T
$$
 (classical thermodynamics)

■ Planck spectrum

$$
u_{\nu}(T) = \frac{8\pi}{c^3} \frac{h v^3}{e^{\frac{h v}{k_B T}} - 1}
$$

classical thermodynamics
$$
\rightarrow
$$
 Rayleigh-Jeans law

 E) = $k_B T$ (classical thermodynamics)

$$
\frac{dN(v)}{dV} = \frac{8\pi}{c^3}v^2dv
$$
 (the same)

■ Planck spectrum

$$
u_{\nu}(T) = \frac{8\pi}{c^3} \frac{h \nu^3}{e^{\frac{h\nu}{k_B T}} - 1}
$$

classical thermodynammics \rightarrow Rayleigh-Jeans law

$$
\langle E \rangle = k_B T
$$
 (classical thermodynamics)

$$
\frac{dN(v)}{dV} = \frac{8\pi}{c^3}v^2dv
$$
 (the same)

$$
u_v(T)dv = \frac{dN(v)}{dV} \langle E \rangle
$$

$$
u_{\nu}(T)dv = \frac{u_{\nu}(V)}{dV} \langle E
$$

$$
\left(u_{\nu}(T) = \frac{8\pi}{c^3} \nu^2 k_B T\right)
$$

■ Planck spectrum

$$
u_{\nu}(T) = \frac{8\pi}{c^3} \frac{h \nu^3}{e^{\frac{h\nu}{k_B T}} - 1}
$$

classical thermodynammics \rightarrow Rayleigh-Jeans law

$$
\langle E \rangle = k_B T
$$
 (classical thermodynamics)

$$
\frac{dN(v)}{dV} = \frac{8\pi}{c^3}v^2dv
$$
 (the same)
\n
\n
$$
dN(v)
$$

$$
u_{\nu}(T)dv = \frac{dN(\nu)}{dV} \langle E
$$

$$
u_{\nu}(T) = \frac{8\pi}{c^3} \nu^2 k_B T
$$

$$
u(T) = \int u_{\nu}(T) d\nu = \frac{8\pi}{c^3} k_B T \int \nu^2 d\nu = \infty
$$
 'ultraviolet catastrophe'

Planck spectrum - derivation

- Planck spectrum

$$
u_{\nu}(T) = \frac{8\pi}{c^3} \frac{h v^3}{\frac{hv}{e^{k_B T}} - 1}
$$

 $B_{\nu}(T) = ?$

Planck spectrum - derivation

■ Planck spectrum

- Planck spectrum
	- energy density:

$$
u_{\nu}(T) = \frac{8\pi}{c^3} \frac{h v^3}{e^{\frac{h v}{k_B T}} - 1}
$$

• intensity:

$$
B_{\nu}(T) = \frac{2}{c^2} \frac{h v^3}{e^{\frac{h v}{k_B T}} - 1}
$$

 \blacksquare black-body radiation

■ thermodynamics of black-body radiation

§**Planck spectrum:**

- derivation
- **properties**
- § local thermal equilibrium

§ properties

• properties $B_v(T) = \frac{2}{c^2} \frac{h v^3}{e^{\frac{hv}{k_B T}} - 1}$

Wavelength

 $\lambda \ll \lambda_{max}$: Wien law

 $\lambda \ll \lambda_{max}$: Wien law

$$
\text{Properties} \qquad B_{\nu}(T) = \frac{2}{c^2} \frac{h \nu^3}{e^{\frac{h\nu}{k_B T}} - 1} \qquad B_{\lambda}(T) = 2c^2 \frac{h/\lambda^5}{e^{\frac{hc}{\lambda k_B T}} - 1}
$$

• characteristic temperatures

$$
\text{Properties} \qquad B_{\nu}(T) = \frac{2}{c^2} \frac{h \nu^3}{e^{\frac{h\nu}{k_B T}} - 1} \qquad B_{\lambda}(T) = 2c^2 \frac{h/\lambda^5}{e^{\frac{hc}{\lambda k_B T}} - 1}
$$

• characteristic temperatures:

 \circ brightness temperature T_b

o color temperature *Tc*

o effective temperature *Teff*

• characteristic temperatures:

 \circ brightness temperature T_b

- *we observe* I_v *for fixed* v *and use it to define* T_b

• characteristic temperatures:

 \circ brightness temperature T_b

- *we observe* I_v *for fixed* v *and use it to define* T_b

$$
\text{Properties} \qquad B_{\nu}(T) = \frac{2}{c^2} \frac{h \nu^3}{e^{\frac{h\nu}{k_B T}} - 1} \qquad B_{\lambda}(T) = 2c^2 \frac{h/\lambda^5}{e^{\frac{hc}{\lambda k_B T}} - 1}
$$

• characteristic temperatures:

 \circ brightness temperature T_b

- *we observe* I_v *for fixed* v *and use it to define* T_b
- *frequently used in radio-astronomy*:*

$$
I_{\nu}(T_b) = \frac{2}{c^2} \nu^2 k_B T_b
$$

$$
\text{Properties} \qquad B_{\nu}(T) = \frac{2}{c^2} \frac{h \nu^3}{e^{\frac{h\nu}{k_B T}} - 1} \qquad B_{\lambda}(T) = 2c^2 \frac{h/\lambda^5}{e^{\frac{hc}{\lambda k_B T}} - 1}
$$

• characteristic temperatures:

 \circ brightness temperature T_b

- *we observe* I_v *for fixed* v *and use it to define* T_b
- *frequently used in radio-astronomy (Rayleigh-Jeans limit):*

$$
T_b = \frac{c^2}{2k_B} v^{-2} I_v
$$

• characteristic temperatures:

 \circ brightness temperature T_b

 \circ color temperature T_c

- *temperature of best-fit Planck curve to observed spectrum*

$$
\text{Properties} \qquad B_{\nu}(T) = \frac{2}{c^2} \frac{h \nu^3}{e^{\frac{h\nu}{k_B T}} - 1} \qquad B_{\lambda}(T) = 2c^2 \frac{h/\lambda^5}{e^{\frac{hc}{\lambda k_B T}} - 1}
$$

• characteristic temperatures:

 \circ brightness temperature T_b

o color temperature *Tc*

o effective temperature *Teff*

- *we only have bolometric, but no frequency information, e.g. total flux F*

$$
F = \int I_{\nu}(\Omega) \cos\theta \, d\Omega \, d\nu = \sigma_B \, T_{eff}^4
$$

$$
\text{Properties} \qquad B_{\nu}(T) = \frac{2}{c^2} \frac{h \nu^3}{e^{\frac{h\nu}{k_B T}} - 1} \qquad B_{\lambda}(T) = 2c^2 \frac{h/\lambda^5}{e^{\frac{hc}{\lambda k_B T}} - 1}
$$

• characteristic temperatures:

 \circ brightness temperature T_b

o color temperature *Tc*

o effective temperature *Teff*

- *we only have bolometric, but no frequency information, e.g. total flux F*

Planck spectrum - properties

$$
\text{Properties} \qquad B_{\nu}(T) = \frac{2}{c^2} \frac{h \nu^3}{e^{\frac{h\nu}{k_B T}} - 1} \qquad B_{\lambda}(T) = 2c^2 \frac{h/\lambda^5}{e^{\frac{hc}{\lambda k_B T}} - 1}
$$

• characteristic temperatures:

 \circ brightness temperature T_b - we observe I_{ν} for fixed ν and use it to define T_b

 \circ color temperature T_c $-$ *temperature of best-fit Planck curve to observed spectrum*

 \circ effective temperature T_{eff} $\,$ - $\,$ *no frequency information, only integrated information (e.g.* $F)$

Planck spectrum - properties

$$
\text{Properties} \qquad B_{\nu}(T) = \frac{2}{c^2} \frac{h \nu^3}{e^{\frac{h\nu}{k_B T}} - 1} \qquad B_{\lambda}(T) = 2c^2 \frac{h/\lambda^5}{e^{\frac{hc}{\lambda k_B T}} - 1}
$$

• characteristic temperatures:

 \circ brightness temperature T_b * we observe I_{ν} for fixed ν and use it to define T_b

 \circ color temperature T_c *#- temperature of best-fit Planck curve to observed spectrum*

 \circ effective temperature T_{eff} $\;\;$ $\;\;$ *- no frequency information, only integrated information (e.g. $F)$

* depends on magnitude of the source #depends on spectral shape only

- **B** black-body radiation
- thermodynamics of black-body radiation
- **Planck spectrum**
- § **local thermal equilibrium**

§ global thermal equilibrium

• the whole system of interest has one well defined temperature *T*

- § global thermal equilibrium
	- the whole system of interest has one well defined temperature *T*
- § local thermal equilibrium

but what about this system?

- § global thermal equilibrium
	- the whole system of interest has one well defined temperature *T*
- § local thermal equilibrium

for which the temperature various 3 orders of magnitude! but what about this system,

§ global thermal equilibrium

• the whole system of interest has one well defined temperature *T*

§ local thermal equilibrium

for which the temperature various 3 orders of magnitude! but what about this system,

 dT $\frac{dr}{ }$ $\approx 10^{-4} \frac{K}{\cdot}$ stellar modelling $\rightarrow \frac{d}{dr} \approx 10^{-4} \frac{d}{cm}$

§ global thermal equilibrium

• the whole system of interest has one well defined temperature *T*

§ local thermal equilibrium

for which the temperature various 3 orders of magnitude! but what about this system,

 dT $\frac{dr}{ }$ $\approx 10^{-4} \frac{K}{\cdot}$ stellar modelling $\rightarrow \frac{d}{dr} \approx 10^{-4} \frac{d}{cm}$

 \Rightarrow even for layers several kms thick, the temperature changes only minimally

§ global thermal equilibrium

• the whole system of interest has one well defined temperature *T*

§ local thermal equilibrium

for which the temperature various 3 orders of magnitude! but what about this system,

 dT $\frac{dr}{ }$ $\approx 10^{-4} \frac{K}{\cdot}$ stellar modelling $\rightarrow \frac{d}{dr} \approx 10^{-4} \frac{d}{cm}$

 \Rightarrow even for layers several kms thick, the temperature changes only minimally

and what about the mean free path?

§ global thermal equilibrium

• the whole system of interest has one well defined temperature *T*

§ local thermal equilibrium

for which the temperature various 3 orders of magnitude! but what about this system,

 dT $\frac{dr}{ }$ $\approx 10^{-4} \frac{K}{\cdot}$ stellar modelling $\rightarrow \frac{d}{dr} \approx 10^{-4} \frac{d}{cm}$

 \Rightarrow even for layers several kms thick, the temperature changes only minimally

and what about the mean free path?

 $l=$ 1 $\kappa \rho$ stellar properties $\rightarrow \quad l = \stackrel{\tau}{\rightharpoonup} \approx 2 cm$

§ global thermal equilibrium

• the whole system of interest has one well defined temperature *T*

§ local thermal equilibrium

for which the temperature various 3 orders of magnitude! but what about this system,

 dT $\frac{dr}{ }$ $\approx 10^{-4} \frac{K}{\cdot}$ stellar modelling $\rightarrow \frac{d}{dr} \approx 10^{-4} \frac{d}{cm}$

 \Rightarrow even for layers several kms thick, the temperature changes only minimally

and what about the mean free path?

 $l=$ 1 $\kappa \rho$ stellar properties $\rightarrow \quad l = \stackrel{\tau}{\rightharpoonup} \approx 2 cm$ \Rightarrow layers of several kms are optically thick

■ global thermal equilibrium

• the whole system of interest has one well defined temperature *T*

§ local thermal equilibrium

for which the temperature various 3 orders of magnitude! but what about this system,

 dT $\frac{dr}{ }$ $\approx 10^{-4} \frac{K}{\cdot}$ stellar modelling $\rightarrow \frac{d}{dr} \approx 10^{-4} \frac{d}{cm}$

 \Rightarrow even for layers several kms thick, the temperature changes only minimally

and what about the mean free path?

 $l=$ 1 $\kappa \rho$ stellar properties $\rightarrow \quad l = \stackrel{\tau}{\rightharpoonup} \approx 2 cm$ \Rightarrow layers of several kms are optically thick

the radiation in a layer is considered to be at a local thermal equilibrium

- § global thermal equilibrium
	- the whole system of interest has one well defined temperature *T*
- § local thermal equilibrium
	- the mean free path of any particles that might transport heat (e.g. photons, electrons) is very small compared to the length scale over which the temperature is changing.

-
- § global thermal equilibrium
	- the whole system of interest has one well defined temperature *T*
- § local thermal equilibrium
	- the mean free path of any particles that might transport heat (e.g. photons, electrons) is very small compared to the length scale over which the temperature is changing
	- the system has a well-defined temperature on a scale much greater than the free mean path of a photon

- § global thermal equilibrium
	- the whole system of interest has one well defined temperature *T*
- § local thermal equilibrium
	- the mean free path of any particles that might transport heat (e.g. photons, electrons) is very small compared to the length scale over which the temperature is changing
	- the system has a well-defined temperature on a scale much greater then the free mean path of a photon
		- \rightarrow the radiation locally follows a Planck curve

