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§ astronomy is...

...collecting and counting photons

N(l)
obviously depends 
on the wavelength

and interactions with matter
(radiative processes)
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§ electromagnetic spectrum

N(l)

first discovered by Newton in 1672

caused by dispersion...

photon interaction described by Snell’s law:
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𝐸 = ℎ𝜈

𝑇 =
𝐸
𝑘!

§ electromagnetic spectrum

every photon carries energy and momentum
and interacts with matter in various ways...

𝑝 = ℎ𝜆
for instance, telescopes

particle nature dominateswave nature dominates
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Fermi satelliteGran Telescopio CanariasFAST

different parts of the EM spectrum 
need to be observed with different types of telescopes

particle nature dominateswave nature dominates
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§ electromagnetic spectrum

certain parts of the EM spectrum 
need to be observed from space

Fermi satellite

James Webb Space Telescope

why is the sky blue and not white?

Rayleigh scattering off of molecules in the sky 𝜎! ∝ ⁄" #! → blue gets scattered more than red!

interaction of solar photons with atmosphere:

why is the sky blue?
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𝑑𝐴

𝑑Ω

normal

𝜃

• we seek a description that...

ü describes the intrinsic radiation field, and

ü does not depend on the observer

radiation field

observer

what does the energy observed here depend on?
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description of a radiation field

radiative flux is the total amount of energy that crosses a unit area per unit time

§ radiation field – flux

When we observe a radiation source, we actually measure the 
energy E collected by a detector over a period of time, which 
obviously represents the integrated energy flux over the size of 
the detector and time observed.

→ flux is a measure of the energy carried by all rays𝑑𝐸 = 𝐹	𝑑𝐴	𝑑𝑡
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𝑑Ω𝑑𝐴
normal

• flux is a measure of the energy carried by all rays 𝑑𝐸 = 𝐹	𝑑𝐴	𝑑𝑡

§ radiation field – flux

but the radiation is not necessarily isotropic nor equal for all wavelengths

→ intensity = flux normalized by solid angle (    ) and wavelength interval (   )𝑑Ω 𝑑𝜈

𝜈!

𝜈"
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description of a radiation field

§ radiation field – intensity

𝑑𝐼# Ω
𝑑𝑠 = 0 intensity is conserved* along a ray s (exercise)

• intensity is a measure of the energy carried by individual rays

only effective area dA cosq contributes to measured energy

*if there are no interactions, of course

𝑑𝐸 = 𝐼# Ω 	𝑑Ω	𝑑𝜈	𝑑𝐴	𝑐𝑜𝑠𝜃	𝑑𝑡
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• flux

• intensity

𝑑𝐸 = 𝐹	𝑑𝐴	𝑑𝑡

𝑑𝐸 = 𝐼# Ω 	𝑑𝐴	𝑐𝑜𝑠𝜃	𝑑𝑡	𝑑Ω	𝑑𝜈

§ radiation field – flux vs. intensity

ü intensity defines how the source radiates

ü flux depends on...

...the intensity, and

...the apparent size of the source on the observer’s sky. 

𝐹# = 1𝐼# Ω 	𝑐𝑜𝑠𝜃	𝑑Ω 𝐹 = 1𝐹#	𝑑𝜈,
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energy conservation:  L1 = L2 = L3 𝐹(𝑟) =
𝐿

4𝜋𝑟'
(isotropic source)
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• photons also carry a momentum 𝑝⃗ =
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𝑑Ω
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energy density un...
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§ radiation field – energy density

• energy density 𝑢# Ω =
𝐼# Ω
𝑐 	

𝑢# = 1
𝐼# Ω
𝑐 𝑑Ω =
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𝑐 𝐽#
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4𝜋
𝑐 𝐼#
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§ radiation field – macroscopic description
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•momentum flux
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• radiation pressure
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§ radiation field – radiation pressure

relation between radiation pressure and energy density?
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§ radiation field – macroscopic description
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1
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• flux

• intensity

• luminosity

• energy density

• radiation pressure

description of a radiation field

§ radiation field – macroscopic description

𝑑𝐸 = 𝐹	𝑑𝐴	𝑑𝑡

𝑑𝐸 = 𝐼# Ω 	𝑑𝐴	𝑐𝑜𝑠𝜃	𝑑𝑡	𝑑Ω	𝑑𝜈

𝑑𝐸 = 𝐿	𝑑𝑡

𝑢# Ω =
𝐼# Ω
𝑐 	

𝑑𝐹# = 𝐼# Ω 	𝑐𝑜𝑠𝜃	𝑑Ω

𝑃 =
1
3𝑢#

how do these quantities change along the ray?
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§radiative transfer equation
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𝜌
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§ emission – spontaneous

𝑑𝐸 = 𝐼#	𝑑𝐴	𝑑𝑡	𝑑Ω	𝑑𝜈radiation intensity:

𝑑𝐼# = 𝑗#𝑑𝑠	

no absorption

= 𝑗#	𝑑𝑠	𝑑𝐴	𝑑𝑡	𝑑Ω	𝑑𝜈

= 𝑗#	𝑑𝑉	𝑑𝑡	𝑑Ω	𝑑𝜈

𝑑𝐸 = 𝜖#	𝜌	𝑑𝑉	𝑑𝑡	𝑑𝜈	𝑑Ω 𝜖n : emissivity

𝑗# = 𝜖#
𝜌
4𝜋



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ emission

• matter (atoms, molecules, etc)...

o ...converts thermal motion into photons,

o ...emits photons:

- spontaneous emission = independent of radiation field

- induced emission  = dependent on radiation field

include in absorption!



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

• matter (atoms, molecules, etc) absorbs photons



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

• matter (atoms, molecules, etc) absorbs photons

relation of 𝜶𝝂 to physical properties!?



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

𝑑𝑠 = 𝑐𝑑𝑡

𝑑𝐴 sn

n
n, r : number/mass density of matter
sn : cross-section of individual particles

randomly distributed in tube dA ds

• matter (atoms, molecules, etc) absorbs photons



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

𝑑𝑠 = 𝑐𝑑𝑡

𝑑𝐴 sn

n

change in intensity: 𝑑𝐼# = −𝐼#	𝑛	𝜎#	𝑑𝑠

n, r : number/mass density of matter
sn : cross-section of individual particles

randomly distributed in tube dA ds

• matter (atoms, molecules, etc) absorbs photons



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

𝑑𝑠 = 𝑐𝑑𝑡

𝑑𝐴 sn

n

change in intensity: 𝑑𝐼# = −𝐼#	𝑛	𝜎#	𝑑𝑠

n, r : number/mass density of matter
sn : cross-section of individual particles

randomly distributed in tube dA ds

• matter (atoms, molecules, etc) absorbs photons

𝛼#

no emission: 
!"!
!#
= −𝛼$𝐼$



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

𝑑𝑠 = 𝑐𝑑𝑡

𝑑𝐴 sn

n

change in intensity: 𝑑𝐼# = −𝐼#	𝑛	𝜎#	𝑑𝑠

n, r : number/mass density of matter
sn : cross-section of individual particles

randomly distributed in tube dA ds

• matter (atoms, molecules, etc) absorbs photons

(mean free path-1)𝛼# = 𝑛	𝜎#



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

𝑑𝑠 = 𝑐𝑑𝑡

𝑑𝐴 sn

n

change in intensity: 𝑑𝐼# = −𝐼#	𝑛	𝜎#	𝑑𝑠

n, r : number/mass density of matter
sn : cross-section of individual particles

randomly distributed in tube dA ds

• matter (atoms, molecules, etc) absorbs photons

(mean free path-1)𝛼# = 𝑛	𝜎#
?



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

• matter (atoms, molecules, ...) absorb photons

𝑑𝑠 = 𝑐𝑑𝑡

𝑑𝐴 sn

n

change in intensity: 𝑑𝐼# = −𝐼#	𝑛	𝜎#	𝑑𝑠

𝑑𝐼#
𝑑𝑠 = −𝐼#	𝑛	𝜎# = −𝐼#	𝜌	𝜅# = −𝛼#𝐼#

n, r : number/mass density of matter
sn : cross-section of individual particles

randomly distributed in tube dA ds

(mean free path-1)𝛼# = 𝑛	𝜎#

§mean free path

l =                                    
distance travelled

number of collisions

?



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

• matter (atoms, molecules, ...) absorb photons

𝑑𝐴 sn

n

change in intensity: 𝑑𝐼# = −𝐼#	𝑛	𝜎#	𝑑𝑠

𝑑𝐼#
𝑑𝑠 = −𝐼#	𝑛	𝜎# = −𝐼#	𝜌	𝜅# = −𝛼#𝐼#

n, r : number/mass density of matter
sn : cross-section of individual particles

randomly distributed in tube dA ds

(mean free path-1)𝛼# = 𝑛	𝜎#

§mean free path

l =                                   = 
distance travelled

number of collisions

distance travelled

number of particles per volume * volume of interaction

?



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

• matter (atoms, molecules, ...) absorb photons

𝑑𝑠 = 𝑐𝑑𝑡

𝑑𝐴 sn

n

change in intensity: 𝑑𝐼# = −𝐼#	𝑛	𝜎#	𝑑𝑠

𝑑𝐼#
𝑑𝑠 = −𝐼#	𝑛	𝜎# = −𝐼#	𝜌	𝜅# = −𝛼#𝐼#

n, r : number/mass density of matter
sn : cross-section of individual particles

randomly distributed in tube dA ds

(mean free path-1)𝛼# = 𝑛	𝜎#

𝑙 =
1
𝑛	𝜎

§mean free path

l =                                   = 
distance travelled

number of collisions

distance travelled

number of particles per volume * volume of interaction

𝑑𝑠 = 𝑐𝑑𝑡

sn

n

distance travelled  = ds
number of particles per volume = n
volume of interaction  = s ds

?



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

𝑑𝑠 = 𝑐𝑑𝑡

𝑑𝐴 sn

n

change in intensity: 𝑑𝐼# = −𝐼#	𝑛	𝜎#	𝑑𝑠

𝑑𝐼#
𝑑𝑠 = −𝐼#	𝑛	𝜎# = −𝛼#𝐼#

n, r : number/mass density of matter
sn : cross-section of individual particles

randomly distributed in tube dA ds

• matter (atoms, molecules, etc) absorbs photons

(mean free path-1)𝛼# = 𝑛	𝜎#



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

𝑑𝑠 = 𝑐𝑑𝑡

𝑑𝐴 sn

n

change in intensity: 𝑑𝐼# = −𝐼#	𝑛	𝜎#	𝑑𝑠

𝑑𝐼#
𝑑𝑠 = −𝐼#	𝑛	𝜎# = −𝛼#𝐼#

n, r : number/mass density of matter
sn : cross-section of individual particles

randomly distributed in tube dA ds

• matter (atoms, molecules, etc) absorbs photons

(mean free path-1)𝛼# = 𝑛	𝜎#



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

𝑑𝑠 = 𝑐𝑑𝑡

𝑑𝐴 sn

n

change in intensity: 𝑑𝐼# = −𝐼#	𝑛	𝜎#	𝑑𝑠

𝑑𝐼#
𝑑𝑠 = −𝐼#	𝑛	𝜎# = −𝛼#𝐼# = −𝐼#	𝜌	𝜅#

n, r : number/mass density of matter
sn : cross-section of individual particles

randomly distributed in tube dA ds

• matter (atoms, molecules, etc) absorbs photons

(mean free path-1)𝛼# = 𝑛	𝜎#



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

𝑑𝑠 = 𝑐𝑑𝑡

𝑑𝐴 sn

n

change in intensity: 𝑑𝐼# = −𝐼#	𝑛	𝜎#	𝑑𝑠

𝑑𝐼#
𝑑𝑠 = −𝐼#	𝑛	𝜎# = −𝛼#𝐼# = −𝐼#	𝜌	𝜅#

n, r : number/mass density of matter
sn : cross-section of individual particles

randomly distributed in tube dA ds

• matter (atoms, molecules, etc) absorbs photons

(mean free path-1)𝛼# = 𝑛	𝜎#

kn : mass absorption coefficient𝛼# = 𝜌	𝜅#



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

𝑑𝑠 = 𝑐𝑑𝑡

𝑑𝐴 sn

n

change in intensity: 𝑑𝐼# = −𝐼#	𝑛	𝜎#	𝑑𝑠

𝑑𝐼#
𝑑𝑠 = −𝐼#	𝑛	𝜎# = −𝛼#𝐼# = −𝐼#	𝜌	𝜅#

n, r : number/mass density of matter
sn : cross-section of individual particles

randomly distributed in tube dA ds

• matter (atoms, molecules, etc) absorbs photons

(mean free path-1)𝛼# = 𝑛	𝜎#

kn : mass absorption coefficient𝛼# = 𝜌	𝜅#



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

𝛼# = 𝜌	𝜅#

(mean free path-1)𝛼# = 𝑛	𝜎#

kn : mass absorption coefficient

• matter (atoms, molecules, etc) absorbs photons



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

o cross section must be smaller than inter-particle distance

𝛼# = 𝜌	𝜅#

(mean free path-1)𝛼# = 𝑛	𝜎#

kn : mass absorption coefficient

• matter (atoms, molecules, etc) absorbs photons



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

o cross section must be smaller than inter-particle distance

o absorbers need to be independent and randomly distributed

𝛼# = 𝜌	𝜅#

(mean free path-1)𝛼# = 𝑛	𝜎#

kn : mass absorption coefficient

• matter (atoms, molecules, etc) absorbs photons



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§ absorption

o cross section must be smaller than inter-particle distance

o absorbers need to be independent and randomly distributed

o an can include induced emission that is also proportional to In !

𝛼# = 𝜌	𝜅#

(mean free path-1)𝛼# = 𝑛	𝜎#

kn : mass absorption coefficient

• matter (atoms, molecules, etc) absorbs photons



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

• macroscopic formalism to solve for intensity

• requires knowledge of an and jn



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

• macroscopic formalism to solve for intensity

• requires knowledge of an and jn
• or equivalently mass absorption coefficient kn and emissivity 𝜖!

𝛼# = 𝜌	𝜅# 𝑗# =
1
4𝜋 	𝜌	𝜖#



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

• macroscopic formalism to solve for intensity

• requires knowledge of an and jn
• or equivalently mass absorption coefficient kn and emissivity 𝜖!

• solution to simple limiting cases:

𝛼# = 𝜌	𝜅# 𝑗# =
1
4𝜋 	𝜌	𝜖#



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

• macroscopic formalism to solve for intensity

• requires knowledge of an and jn
• or equivalently mass absorption coefficient kn and emissivity 𝜖!

• solution to simple limiting cases:

𝛼# = 𝜌	𝜅# 𝑗# =
1
4𝜋 	𝜌	𝜖#

o emission-only
𝑑𝐼#
𝑑𝑠 = 𝑗#



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

• macroscopic formalism to solve for intensity

• requires knowledge of an and jn
• or equivalently mass absorption coefficient kn and emissivity 𝜖!

• solution to simple limiting cases:

𝛼# = 𝜌	𝜅# 𝑗# =
1
4𝜋 	𝜌	𝜖#

o emission-only
𝑑𝐼#
𝑑𝑠 = 𝑗# 𝐼# 𝑠 = 𝐼# 𝑠* +1

5!

5
𝑗# 𝑠6 𝑑𝑠6



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

• macroscopic formalism to solve for intensity

• requires knowledge of an and jn
• or equivalently mass absorption coefficient kn and emissivity 𝜖!

• solution to simple limiting cases:

𝛼# = 𝜌	𝜅# 𝑗# =
1
4𝜋 	𝜌	𝜖#

o emission-only
𝑑𝐼#
𝑑𝑠 = 𝑗# 𝐼# 𝑠 = 𝐼# 𝑠* +1

5!

5
𝑗# 𝑠6 𝑑𝑠6

o absorption-only
𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼#



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

• macroscopic formalism to solve for intensity

• requires knowledge of an and jn
• or equivalently mass absorption coefficient kn and emissivity 𝜖!

• solution to simple limiting cases:

𝛼# = 𝜌	𝜅# 𝑗# =
1
4𝜋 	𝜌	𝜖#

o emission-only
𝑑𝐼#
𝑑𝑠 = 𝑗# 𝐼# 𝑠 = 𝐼# 𝑠* +1

5!

5
𝑗# 𝑠6 𝑑𝑠6

o absorption-only
𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# 𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒

7∫"!
" 9# 5$ :5$



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

• macroscopic formalism to solve for intensity

• requires knowledge of an and jn
• or equivalently mass absorption coefficient kn and emissivity 𝜖!

• solution to simple limiting cases:

𝛼# = 𝜌	𝜅# 𝑗# =
1
4𝜋 	𝜌	𝜖#

o emission-only
𝑑𝐼#
𝑑𝑠 = 𝑗# 𝐼# 𝑠 = 𝐼# 𝑠* +1

5!

5
𝑗# 𝑠6 𝑑𝑠6

o absorption-only
𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# 𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒

7∫"!
" 9# 5$ :5$

optical depth:

𝜏# = 1
5!

5
𝛼# 𝑠6 𝑑𝑠6



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

§optical depth tn 𝑑𝜏# = 𝛼#	𝑑𝑠

𝜏# = 1
5!

5
𝛼# 𝑠6 𝑑𝑠6



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒7;#→ absorption:
§optical depth tn 𝑑𝜏# = 𝛼#	𝑑𝑠

𝜏# = 1
5!

5
𝛼# 𝑠6 𝑑𝑠6



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒7;#→ absorption:
§optical depth tn 𝑑𝜏# = 𝛼#	𝑑𝑠

𝜏# = 1
5!

5
𝛼# 𝑠6 𝑑𝑠6

probability of a photons traveling at least one optical depth before being absorbed/scattered

𝑒7;#



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒7;#→ absorption:
§optical depth tn 𝑑𝜏# = 𝛼#	𝑑𝑠

𝜏# = 1
5!

5
𝛼# 𝑠6 𝑑𝑠6

𝜏# = 1𝜏#	𝑒7;#𝑑𝜏#

mean optical depth travelled before being absorbed/scattered



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒7;#→ absorption:
§optical depth tn 𝑑𝜏# = 𝛼#	𝑑𝑠

𝜏# = 1
5!

5
𝛼# 𝑠6 𝑑𝑠6

𝜏# = 1𝜏#	𝑒7;#𝑑𝜏# = 1

mean optical depth travelled before being absorbed/scattered



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒7;#→ absorption:
§optical depth tn 𝑑𝜏# = 𝛼#	𝑑𝑠

𝜏# = 1
5!

5
𝛼# 𝑠6 𝑑𝑠6

tn > 1 : optically thick medium  tn < 1 : optically thin medium
(opaque) (transparent)

𝜏# = 1𝜏#	𝑒7;#𝑑𝜏# = 1



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒7;#→ absorption:
§optical depth tn 𝑑𝜏# = 𝛼#	𝑑𝑠

𝜏# = 1
5!

5
𝛼# 𝑠6 𝑑𝑠6

𝜏# = 1𝜏#	𝑒7;#𝑑𝜏# = 1

tn > 1 : optically thick medium  tn < 1 : optically thin medium
(opaque) (transparent)

https://www.youtube.com/watch?v=hGqKOwBRKwA



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒7;#→ absorption:
§optical depth tn 𝑑𝜏# = 𝛼#	𝑑𝑠

𝜏# = 1
5!

5
𝛼# 𝑠6 𝑑𝑠6

tn > 1 : optically thick medium (opaque)

𝜏# = 1𝜏#	𝑒7;#𝑑𝜏# = 1
tn < 1 : optically thin medium (transparent)



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒7;#→ absorption:
§optical depth tn 𝑑𝜏# = 𝛼#	𝑑𝑠

𝜏# = 1
5!

5
𝛼# 𝑠6 𝑑𝑠6

tn > 1 : optically thick medium (opaque)

𝜏# = 1𝜏#	𝑒7;#𝑑𝜏# = 1
tn < 1 : optically thin medium (transparent)
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with a lower opacity and/or density might block exactly the same fraction of light,

If all we care about is the fraction of light which is blocked, or makes it through the slab, we might combine the three factors

size
density
opacity

into a single value which expresses "ability to block light." Mathematically,

𝐼$ 𝑠% 	 → 𝐼$ 𝑠𝐼$ 𝑠% 	 → 𝐼$ 𝑠
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with a lower opacity and/or density might block exactly the same fraction of light,

If all we care about is the fraction of light which is blocked, or makes it through the slab, we might combine the three factors

size
density
opacity

into a single value which expresses "ability to block light." Mathematically,

𝐼$ 𝑠% 	 → 𝐼$ 𝑠

assume same In(s0) and In(s) for both situations

𝐼$ 𝑠% 	 → 𝐼$ 𝑠
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with a lower opacity and/or density might block exactly the same fraction of light,

If all we care about is the fraction of light which is blocked, or makes it through the slab, we might combine the three factors

size
density
opacity

into a single value which expresses "ability to block light." Mathematically,

𝐼$ 𝑠% 	 → 𝐼$ 𝑠

assume same In(s0) and In(s) for both situations, and
write down absorption solution...

𝐼$ 𝑠% 	 → 𝐼$ 𝑠
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with a lower opacity and/or density might block exactly the same fraction of light,

If all we care about is the fraction of light which is blocked, or makes it through the slab, we might combine the three factors
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with a lower opacity and/or density might block exactly the same fraction of light,

If all we care about is the fraction of light which is blocked, or makes it through the slab, we might combine the three factors

size
density
opacity

into a single value which expresses "ability to block light." Mathematically,

𝐼$ 𝑠% 	𝑒& ∫&'
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𝛼$' 𝑠& 𝑑𝑠&
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with a lower opacity and/or density might block exactly the same fraction of light,

If all we care about is the fraction of light which is blocked, or makes it through the slab, we might combine the three factors

size
density
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with a lower opacity and/or density might block exactly the same fraction of light,

If all we care about is the fraction of light which is blocked, or makes it through the slab, we might combine the three factors

size
density
opacity

into a single value which expresses "ability to block light." Mathematically,

𝐼$ 𝑠% 	𝑒& ∫&'
&( ()( !* )!* 	 = 𝐼$ 𝑠 𝐼$ 𝑠% 	𝑒& ∫&'
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𝜏% = 𝜏' = 𝜏$ 𝐼#(𝑠) = 𝐼# 0 	𝑒$%(
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3. How does the mfp of a photon compare to that of a hydrogen atom?
4. How does the mfp of a photon compare to the scale height? Is the photosphere in local thermodynamic equilibrium?

Optical Depth

Consider a beam of light entering some slab of material. The slab might be relatively narrow,

yet still block a considerable fraction of the light, if its atoms are densely packed and efficient at interacting with light.

On the other hand, a much wider slab of material
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with a lower opacity and/or density might block exactly the same fraction of light,

If all we care about is the fraction of light which is blocked, or makes it through the slab, we might combine the three factors

size
density
opacity

into a single value which expresses "ability to block light." Mathematically,

𝐼$ 𝑠% 	𝑒& ∫&'
&( ()( !* )!* 	 = 𝐼$ 𝑠 𝐼$ 𝑠% 	𝑒& ∫&'

&+ ()+ !* )!* 	 = 𝐼$ 𝑠

𝜏% = -
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𝛼$' 𝑠& 𝑑𝑠&

𝜏% = 𝜏' = 𝜏$ 𝐼#(𝑠) = 𝐼# 0 	𝑒$%(

same net decrease of intensity,
perfectly described by tn !
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𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#
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3. How does the mfp of a photon compare to that of a hydrogen atom?
4. How does the mfp of a photon compare to the scale height? Is the photosphere in local thermodynamic equilibrium?

Optical Depth

Consider a beam of light entering some slab of material. The slab might be relatively narrow,

yet still block a considerable fraction of the light, if its atoms are densely packed and efficient at interacting with light.

On the other hand, a much wider slab of material
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with a lower opacity and/or density might block exactly the same fraction of light,

If all we care about is the fraction of light which is blocked, or makes it through the slab, we might combine the three factors

size
density
opacity

into a single value which expresses "ability to block light." Mathematically,

𝐼$ 𝑠% 	𝑒& ∫&'
&( ()( !* )!* 	 = 𝐼$ 𝑠 𝐼$ 𝑠% 	𝑒& ∫&'

&+ ()+ !* )!* 	 = 𝐼$ 𝑠

𝜏% = -
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𝜏' = -
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𝛼$' 𝑠& 𝑑𝑠&

𝜏% = 𝜏' = 𝜏$ 𝐼#(𝑠) = 𝐼# 0 	𝑒$%(

same net decrease of intensity,
perfectly described by tn !

we prefer to use optical depth, because
we only care about the fraction of light that is absorbed!
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§ equation of radiative transfer
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𝜏# = 1
5!

5
𝛼# 𝑠6 𝑑𝑠6

tn > 1 : optically thick medium (opaque)

𝜏# = 1𝜏#	𝑒7;#𝑑𝜏# = 1
tn < 1 : optically thin medium (transparent)

17/3/22, 12:22

Page 5 of 15http://spiff.rit.edu/classes/phys440/lectures/optd/optd.html

3. How does the mfp of a photon compare to that of a hydrogen atom?
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Optical Depth

Consider a beam of light entering some slab of material. The slab might be relatively narrow,

yet still block a considerable fraction of the light, if its atoms are densely packed and efficient at interacting with light.

On the other hand, a much wider slab of material
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with a lower opacity and/or density might block exactly the same fraction of light,

If all we care about is the fraction of light which is blocked, or makes it through the slab, we might combine the three factors

size
density
opacity

into a single value which expresses "ability to block light." Mathematically,

𝐼$ 𝑠% 	𝑒& ∫&'
&( ()( !* )!* 	 = 𝐼$ 𝑠 𝐼$ 𝑠% 	𝑒& ∫&'

&+ ()+ !* )!* 	 = 𝐼$ 𝑠
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𝜏% = 𝜏' = 𝜏$ 𝐼#(𝑠) = 𝐼# 0 	𝑒$%(

same net decrease of intensity,
perfectly described by tn !

we prefer to use optical depth, because
we only care about the fraction of light that is absorbed!

the optical depth fully characterizes

the absorption properties of a given medium
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§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒7;#→ absorption:
§optical depth tn 𝑑𝜏# = 𝛼#	𝑑𝑠

𝜏# = 1
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𝛼# 𝑠6 𝑑𝑠6

tn > 1 : optically thick medium (opaque)

𝜏# = 1𝜏#	𝑒7;#𝑑𝜏# = 1
tn < 1 : optically thin medium (transparent)

we prefer to use optical depth!



Fundamentals radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒7;#→ absorption:
§optical depth tn 𝑑𝜏# = 𝛼#	𝑑𝑠

𝜏# = 1
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5
𝛼# 𝑠6 𝑑𝑠6

tn > 1 : optically thick medium (opaque)

𝜏# = 1𝜏#	𝑒7;#𝑑𝜏# = 1
tn < 1 : optically thin medium (transparent)

we prefer to use optical depth!

change of variables: 
s → t
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§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒7;#→ absorption:
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𝑑𝐼#
𝑑𝜏#

= −𝐼# +
𝑗#
𝛼#

𝜏# = 1𝜏#	𝑒7;#𝑑𝜏# = 1
tn > 1 : optically thick medium (opaque)

tn < 1 : optically thin medium (transparent)

change of variables: 
s → t
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§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#
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𝛼#

𝜏# = 1𝜏#	𝑒7;#𝑑𝜏# = 1
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change of variables: 
s → t

yet another definition...
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§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#
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§ source function
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= −𝐼# + 𝑆# source function
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tn < 1 : optically thin medium (transparent)
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𝑆# =
𝑗#
𝛼#
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§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒7;#→ absorption:
§optical depth tn 𝑑𝜏# = 𝛼#	𝑑𝑠

𝜏# = 1
5!

5
𝛼# 𝑠6 𝑑𝑠6

§ source function
𝑑𝐼#
𝑑𝜏#

= −𝐼# + 𝑆# source function

𝜏# = 1𝜏#	𝑒7;#𝑑𝜏# = 1
tn > 1 : optically thick medium (opaque)

tn < 1 : optically thin medium (transparent)

change of variables: 
s → t

𝑆# =
𝑗#
𝛼#

the source function describes the ratio between newly created and absorped photons
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§ equation of radiative transfer
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𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝑑𝐼#
𝑑𝜏#

= −𝐼# + 𝑆# source function𝑆# =
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§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝑑𝐼#
𝑑𝜏#

= −𝐼# + 𝑆# source function𝑆# =
𝑗#
𝛼#

§ solution in general

𝐼#(𝜏#) = 𝐼#(0)𝑒7;# +1
*

;#
𝑒7(;#7;#$ )	𝑆# 𝜏#6 	𝑑𝜏#6 (exercise)
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§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝑑𝐼#
𝑑𝜏#

= −𝐼# + 𝑆# source function𝑆# =
𝑗#
𝛼#

absorption of incident radiation In(0)

§ solution in general

𝐼#(𝜏#) = 𝐼#(0)𝑒7;# +1
*

;#
𝑒7(;#7;#$ )	𝑆# 𝜏#6 	𝑑𝜏#6
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§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝑑𝐼#
𝑑𝜏#

= −𝐼# + 𝑆# source function𝑆# =
𝑗#
𝛼#

§ solution in general

absorption of incident radiation In(0) integral over newly created photons as they propagate to optical depth tn

𝐼#(𝜏#) = 𝐼#(0)𝑒7;# +1
*

;#
𝑒7(;#7;#$ )	𝑆# 𝜏#6 	𝑑𝜏#6
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§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝑑𝐼#
𝑑𝜏#

= −𝐼# + 𝑆# source function𝑆# =
𝑗#
𝛼#

§ solution in general

absorption of incident radiation In(0) integral over newly created photons as they propagate to optical depth tn

𝐼#(𝜏#) = 𝐼#(0)𝑒7;# +1
*

;#
𝑒7(;#7;#$ )	𝑆# 𝜏#6 	𝑑𝜏#6

2 Formation of Emission Lines

I�(0) I�(��)

���� = 0 ���� = ��

S�

Figure 2.1: Schematic sketch of a beam of radiation passing an optical depth �� through a
medium that has source function S� .

bound electron to a higher bound state, and bound-free, whereby the photon gives an initially
bound electron enough energy to escape the atom entirely (i.e. photo-ionisation). The cross-
section for bound-bound transitions, �bb� , is a narrow spike centered at h� equal to the energy
di�erence between levels (with the width due to quantum e�ects we will brie�y discuss later).
The cross-section for a given bound free transition, �bf� , is zero for h� below the ionisation
potential energy and drops o� as ��3 for h� above that energy, such that a photon has no
hope of liberating an electron in a given shell if it has energy less than the relevant ionisation
potential but always has a chance of liberating the electron if its energy is greater than the
ionisation potential. The absorption coe�cient for a particular species of a particular element
in the medium is

�� =
’
i

"’
j>i

ni (�bb� )i j + ni (�bf� )i
#
, (2.8)

where ni is the number density of electrons in the ith energy level. We then need to sum the
absorption coe�cients for each ionic species of each element in order to get the absorption
coe�cient for the medium. As is illustrated in Fig 2.2, this means that the absorption coe�cient
has a number of narrow spikes from bound-bound absorption and a number of ‘edges’ from
bound-free interactions.

The spikes in the absorption coe�cient will imprint narrow dips in the emergent spectrum
– absorption lines. However, electrons decaying from a higher to a lower energy level in the
medium will emit �uorescence lines at the same frequency as the absorption lines. So, when
do we see absorption lines and when do we see emission lines? Well, we can get an intuitive
handle on this by considering the optically thin case: �� << 1, such that e��� ⇡ 1 � �� . In this
case, Equation 2.6 becomes:

I� (�� ) = I� (0) + �� [S� � I� (0)]. (2.9)
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• emission-only

• absorption-only

radiative transfer equation

§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝑑𝐼#
𝑑𝜏#

= −𝐼# + 𝑆# source function𝑆# =
𝑗#
𝛼#

§ solution – special cases

𝐼# 𝑠 = 𝐼# 𝑠* +1
5!

5
𝑗# 𝑠6 𝑑𝑠6

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒
7∫"!

" 9# 5$ :5$

§ solution in general

𝐼#(𝜏#) = 𝐼#(0)𝑒7;# +1
*

;#
𝑒7(;#7;#$ )	𝑆# 𝜏#6 	𝑑𝜏#6
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§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝑑𝐼#
𝑑𝜏#

= −𝐼# + 𝑆# source function𝑆# =
𝑗#
𝛼#

§ solution – special cases

𝐼# 𝑠 = 𝐼# 𝑠* +1
5!

5
𝑗# 𝑠6 𝑑𝑠6

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒
7∫"!

" 9# 5$ :5$

§ solution in general

• Sn = const.

𝐼#(𝜏#) = 𝐼#(0)𝑒7;# +1
*

;#
𝑒7(;#7;#$ )	𝑆# 𝜏#6 	𝑑𝜏#6

𝐼#(𝜏#) = 𝐼#(0)𝑒7;# +	𝑆# 1 − 𝑒7;#
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§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝑑𝐼#
𝑑𝜏#

= −𝐼# + 𝑆# source function𝑆# =
𝑗#
𝛼#

§ solution – special cases

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒
7∫"!

" 9# 5$ :5$

§ solution in general

• Sn = const.

𝐼#(𝜏#) = 𝐼#(0)𝑒7;# +1
*

;#
𝑒7(;#7;#$ )	𝑆# 𝜏#6 	𝑑𝜏#6

𝐼#(𝜏#) = 𝐼#(0)𝑒7;# +	𝑆# 1 − 𝑒7;#

o 𝜏# ≫ 1: 𝐼#(𝜏#) =	𝑆#

𝐼# 𝑠 = 𝐼# 𝑠* +1
5!

5
𝑗# 𝑠6 𝑑𝑠6
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§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝑑𝐼#
𝑑𝜏#

= −𝐼# + 𝑆# source function𝑆# =
𝑗#
𝛼#

§ solution – special cases

𝐼# 𝑠 = 𝐼# 𝑠* +1
5!

5
𝑗# 𝑠6 𝑑𝑠6

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒
7∫"!

" 9# 5$ :5$

§ solution in general

• Sn = const.

𝐼#(𝜏#) = 𝐼#(0)𝑒7;# +1
*

;#
𝑒7(;#7;#$ )	𝑆# 𝜏#6 	𝑑𝜏#6

𝐼#(𝜏#) = 𝐼#(0)𝑒7;# +	𝑆# 1 − 𝑒7;#

o 𝜏# ≫ 1: 𝐼#(𝜏#) =	𝑆#

𝐼% 0 >	𝑆% → photons will be absorbed from the beam until 𝐼%(𝜏%) =	𝑆%
𝐼% 0 <	𝑆% → photons will be added to the beam until 𝐼%(𝜏%) =	𝑆%
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§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝑑𝐼#
𝑑𝜏#

= −𝐼# + 𝑆# source function𝑆# =
𝑗#
𝛼#

§ solution – special cases

𝐼# 𝑠 = 𝐼# 𝑠* +1
5!

5
𝑗# 𝑠6 𝑑𝑠6

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒
7∫"!

" 9# 5$ :5$

§ solution in general

• Sn = const.

𝐼#(𝜏#) = 𝐼#(0)𝑒7;# +1
*

;#
𝑒7(;#7;#$ )	𝑆# 𝜏#6 	𝑑𝜏#6

𝐼#(𝜏#) = 𝐼#(0)𝑒7;# +	𝑆# 1 − 𝑒7;#

o 𝜏# ≫ 1: 𝐼#(𝜏#) =	𝑆#

o 𝜏# ≪ 1: 𝐼# 𝜏# = 𝐼# 0 1 − 𝜏# + 𝜏#	𝑆#
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• emission-only
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§ equation of radiative transfer

𝑑𝐼#
𝑑𝑠 = −𝛼#𝐼# + 𝑗#

𝑑𝐼#
𝑑𝜏#

= −𝐼# + 𝑆# source function𝑆# =
𝑗#
𝛼#

§ solution – special cases

𝐼# 𝑠 = 𝐼# 𝑠* +1
5!

5
𝑗# 𝑠6 𝑑𝑠6

𝐼# 𝑠 = 𝐼# 𝑠* 	𝑒
7∫"!

" 9# 5$ :5$

§ solution in general

• Sn = const.

𝐼#(𝜏#) = 𝐼#(0)𝑒7;# +1
*

;#
𝑒7(;#7;#$ )	𝑆# 𝜏#6 	𝑑𝜏#6

𝐼#(𝜏#) = 𝐼#(0)𝑒7;# +	𝑆# 1 − 𝑒7;#

o 𝜏# ≫ 1: 𝐼#(𝜏#) =	𝑆#

o 𝜏# ≪ 1: 𝐼# 𝜏# = 𝐼# 0 1 − 𝜏# + 𝜏#	𝑆# 	 → 	 𝐼# 0
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Fundamentals

• flux

• intensity

• luminosity

• energy density

• radiation pressure

• optical depth

•mean free path          𝑙$ =
"
()

summary

§ radiation field – macroscopic description

𝑑𝐸 = 𝐹	𝑑𝐴	𝑑𝑡

𝑑𝐸 = 𝐼# Ω 	𝑑𝐴	𝑐𝑜𝑠𝜃	𝑑𝑡	𝑑Ω	𝑑𝜈

𝑑𝐸 = 𝐿	𝑑𝑡

𝑢# Ω =
𝐼# Ω
𝑐 	

𝑑𝐹# = 𝐼# Ω 	𝑐𝑜𝑠𝜃	𝑑Ω

𝑝# =
1
3𝑢#

§ equation of radiative transfer

𝑑𝜏# = 𝛼#	𝑑𝑠       , absorption coefficient an

𝑑𝐸 = 𝑗#	𝑑𝑉	𝑑𝑡	𝑑Ω	𝑑𝜈emission coefficient  jn

𝑑𝐼#
𝑑𝜏#

= −𝐼# + 𝑆# source function 𝑆# =
𝑗#
𝛼#


