

E description of a radiation field

• radiative transfer equation

What the university thinks I do

What I think I do

What I really do

What the university thinks I do

What I think I do

What I really do

■ astronomy is...

■ astronomy is...

■ astronomy is...

■ astronomy is...

and interactions with matter (radiative processes)

 $N(\lambda)$

E electromagnetic spectrum

$N(\lambda)$

E electromagnetic spectrum

$N(\lambda)$

photon interaction with matter!

photon interaction described by Snell's law:

wave nature dominates particle nature dominates

different parts of the EM spectrum need to be observed with different types of telescopes

E electromagnetic spectrum

E electromagnetic spectrum

E electromagnetic spectrum

why is the sky blue and not white?

why is the sky blue and not white?

certain parts of the EM spectrum need to be observed from space

why is the sky blue?

why is the sky blue and not white?

certain parts of the EM spectrum need to be observed from space

why is the sky blue?

interaction of solar photons with atmosphere...

why is the sky blue and not white?

certain parts of the EM spectrum need to be observed from space

why is the sky blue?

interaction of solar photons with atmosphere:

Rayleigh scattering off of molecules in the sky $\sigma_{s} \propto \frac{1}{\lambda^{4}}$

why is the sky blue and not white?

certain parts of the EM spectrum need to be observed from space

why is the sky blue?

interaction of solar photons with atmosphere:

Rayleigh scattering off of molecules in the sky $\sigma_s \propto \frac{1}{\lambda^4}$ \rightarrow *blue* gets scattered more than red!

Fundamentals *description of a radiation field* ■ radiation field – macroscopic description dA *radiation field* • we seek a description that... \checkmark describes the intrinsic radiation field

- radiation field macroscopic description
	- we seek a description that...
		- \checkmark describes the intrinsic radiation field, and
		- \checkmark does not depend on the observer

- radiation field macroscopic description
	- we seek a description that...
		- \checkmark describes the intrinsic radiation field, and
		- \checkmark does not depend on the observer

■ radiation field – macroscopic description

• flux

- intensity
- luminosity
- momentum
- energy density
- radiation pressure

■ radiation field – macroscopic description

• **flux**

- intensity
- luminosity
- momentum
- energy density
- radiation pressure

radiative flux is the total amount of energy that crosses a unit area per unit time

Flux F is the amount of energy crossing unit area in unit time

unit area oriented perpendicular to direction of photons

 $dE = F dA dt$

radiative flux is the total amount of energy that crosses a unit area per unit time

Flux F is the amount of energy crossing unit area in unit time

unit area oriented perpendicular to direction of photons

 $dE = F dA dt$ \rightarrow flux is a measure of the energy carried by all rays

radiative flux is the total amount of energy that crosses a unit area per unit time

Flux F is the amount of energy crossing unit area in unit time

unit area oriented perpendicular to direction of photons

$dE = F dA dt$ \rightarrow flux is a measure of the energy carried by all rays

When we observe a radiation source, we actually measure the energy *E* collected by a detector over a period of time, which obviously represents the integrated energy flux over the size of the detector and time observed.

• flux is a measure of the energy carried by *all* rays $dE = F dA dt$

• flux is a measure of the energy carried by *all* rays $dE = F dA dt$

but the radiation is not necessarily isotropic nor equal for all wavelengths

• flux is a measure of the energy carried by *all* rays $dE = F dA dt$

but the radiation is not necessarily isotropic nor equal for all wavelengths

 \rightarrow *intensity* = flux normalized by solid angle ($d\Omega$) and wavelength interval (dv)

■ radiation field – macroscopic description

• flux

• **intensity**

- luminosity
- momentum
- energy density
- radiation pressure

• intensity is a measure of the energy carried by *individual* rays

• intensity is a measure of the energy carried by *individual* rays

 $dE = I_{\nu}(\Omega) d\Omega dv dA dt$

• intensity is a measure of the energy carried by *individual* rays

 $F_v(\Omega)$ $dE = I_{\nu}(\Omega) d\Omega dv dA dt$

• intensity is a measure of the energy carried by *individual* rays

 $dE = I_v(\Omega) d\Omega dv dA_{eff} dt$

 \blacksquare radiation field $-$ intensity

• intensity is a measure of the energy carried by *individual* rays

 $dE = I_v(\Omega) d\Omega dv dA_{eff} dt$

 \blacksquare radiation field $-$ intensity

• intensity is a measure of the energy carried by *individual* rays

 $dE = I_{\nu}(\Omega) d\Omega dv dA cos\theta dt$

 \blacksquare radiation field – intensity

• intensity is a measure of the energy carried by *individual* rays

 $dI_{\nu}(\Omega)$ $\frac{\partial (x^2)}{\partial (x^2)} = 0$ intensity is conserved* along a ray *s* (exercise)

 $dE = I_{\nu}(\Omega) d\Omega dv dA cos\theta dt$

■ radiation field – flux vs. intensity

- flux $dE = F dA dt$
- intensity $dE = I_{\nu}(\Omega) dA \cos\theta dt d\Omega dv$

■ radiation field – flux vs. intensity

- flux $dE = F dA dt$ → *all rays*
- intensity

 $dE = I_{\nu}(\Omega) dA \cos\theta dt d\Omega dv$

→ *individual ray*

Fundamentals

■ radiation field – flux vs. intensity

- flux $dE = F dA dt$ → *all rays*
- intensity

 $dE = I_{\nu}(\Omega) dA cos\theta dt d\Omega dv$

→ *individual ray*

\blacksquare radiation field – flux vs. intensity

• flux $dE = F dA dt$ $dF_v = I_v(\Omega) cos\theta d\Omega$, $dF = F_v dv$

• intensity $dE = I_{\nu}(\Omega) dA \cos\theta dt d\Omega dv$

■ radiation field – flux vs. intensity

• flux
$$
dE = F dA dt
$$
 $F_v = \int I_v(\Omega) \cos\theta d\Omega$, $F = \int F_v dv$

• intensity $dE = I_{\nu}(\Omega) dA \cos\theta dt d\Omega dv$

■ radiation field – flux vs. intensity

• flux
$$
dE = F dA dt
$$
 $F_v = \int I_v(\Omega) \cos\theta d\Omega$, $F = \int F_v dv$

• intensity $dE = I_{\nu}(\Omega) dA \cos\theta dt d\Omega dv$

ü *intensity defines how the source radiates*

ü *flux depends on...*

...the intensity, and

...the apparent size of the source on the observer's sky.

■ radiation field – macroscopic description

• flux

- intensity
- **luminosity**
- momentum
- energy density
- radiation pressure

§ radiation field – luminosity

- flux $dE = F dA dt$
- intensity $dE = I_{\nu}(\Omega) dA \cos\theta dt d\Omega dv$
- luminosity

■ radiation field – luminosity

- flux $dE = F dA dt$
- intensity $dE = I_{\nu}(\Omega) dA \cos\theta dt d\Omega dv$
- luminosity $dE = L dt$ luminosity is the total amount of energy per unit time

- flux • intensity $dE = F dA dt$ $dE = I_{\nu}(\Omega) dA \cos\theta dt d\Omega dv$ $dL = F dA$
- luminosity $dE = L dt$ *luminosity is the total amount of energy per unit time*

- flux • intensity $dE = F dA dt$ $dE = I_{\nu}(\Omega) dA \cos\theta dt d\Omega dv$ $dL = F dA$
- luminosity $dE = L dt$ *luminosity is the total amount of energy per unit time*

 $L_1 = F_1 4\pi r_1^2$ $L_2 = F_2 4\pi r_2^2$ $L_3 = F_3 4\pi r_3^2$

■ radiation field – macroscopic description

• flux

• intensity

• luminosity

• **momentum**

- energy density
- radiation pressure

 \blacksquare radiation field – momentum

• photons also carry a momentum
$$
\vec{p} = \frac{E}{c}\vec{n}
$$

 \blacksquare radiation field – momentum

- photons also carry a momentum $\vec{p} = \frac{E}{a}$ \overline{c} \vec{n}
- energy $dE = I_{\nu}(\Omega) dA \cos\theta dt d\Omega dv$

 \blacksquare radiation field – momentum

• photons also carry a momentum $\vec{p} = \frac{E}{\epsilon}$ \overline{c} \vec{n} • energy $dE = I_v(\Omega) dA \cos\theta dt d\Omega dv \times \frac{\vec{n}}{c}$ \overline{c}

 \blacksquare radiation field – momentum

- photons also carry a momentum $\vec{p} = \frac{E}{a}$ \overline{c} \vec{n}
- energy $dE = I_v(\Omega) dA \cos\theta dt d\Omega dv$
- momentum

$$
d\vec{p}_v = \frac{I_v(\Omega)}{c} \vec{n} \, dA \cos\theta \, dt \, d\Omega \, dv
$$

normal $\vec{p} = \frac{E}{\vec{p}}$ \overline{c} \vec{n}

- \blacksquare radiation field momentum
	- photons also carry a momentum $\vec{p} = \frac{E}{a}$ \overline{c} \vec{n}
	- energy $dE = I_v(\Omega) dA cos\theta dt d\Omega dv$
	- momentum

$$
dp_{v} = \frac{I_{v}(\Omega)}{c} dA \cos^{2} \theta dt d\Omega dv
$$

 $\sum_{n=-\infty}^{\infty}$ $dA \qquad \vec{p} =$ \overline{c} \vec{n} $d\Omega$ $p_{\perp} = |p|cos\theta$ θ (but only $|p|cos\theta$ will be observed)

- \blacksquare radiation field momentum
	- photons also carry a momentum $\vec{p} = \frac{E}{a}$ \overline{c} \vec{n}
	- dp_{ν} = \mathcal{C} $\frac{1}{2}$ dA cos² θ dt d Ω dv • energy $dE = I_{\nu}(\Omega) dA \cos\theta dt d\Omega dv$ • momentum

energy density u_{ν} ...

 $\vec{v} =$ \overline{c} \vec{n} $p_{\perp} = |p|cos\theta$ (but only $|p|cos\theta$ will be observed) $\sum_{n=-\infty}^{\infty}$ dA $dΩ$ θ

■ radiation field – macroscopic description

• flux

- intensity
- luminosity
- momentum
- **energy density**
- radiation pressure

Fundamentals *description of a radiation field*

• how much energy escapes $dV = dA ds$ after time dt?

• how much energy escapes $dV = dA \, ds = dA \, cdt$ after time dt ?

 $dE = u_v(\Omega) dA cdt d\Omega dv$, $u_{\nu}(\Omega)$: energy density

 $dE = I_{\nu}(\Omega) dA dt d\Omega dv$

• how much energy escapes $dV = dA \, ds = dA \, cdt$ after time dt ?

$$
u_{\nu}(\Omega) = \frac{I_{\nu}(\Omega)}{c} \begin{cases} dE = u_{\nu}(\Omega) \, dA \, cdt \, d\Omega \, d\nu, \quad u_{\nu}(\Omega) \text{: energy density} \\ dE = I_{\nu}(\Omega) \, dA \, dt \, d\Omega \, d\nu \end{cases}
$$

• energy density
$$
u_{\nu}(\Omega) = \frac{I_{\nu}(\Omega)}{c}
$$

• energy density
$$
u_{\nu}(\Omega) = \frac{I_{\nu}(\Omega)}{c}
$$

$$
u_{\nu} = \int \frac{I_{\nu}(\Omega)}{c} d\Omega = \frac{4\pi}{c} J_{\nu} \qquad , J_{\nu} \text{: mean intensity}
$$

• energy density
$$
u_v(\Omega) = \frac{I_v(\Omega)}{c}
$$

$$
v(\Omega) = \frac{I_v(\Omega)}{c}
$$

$$
u_{\nu} = \int \frac{I_{\nu}(\Omega)}{c} d\Omega = \frac{4\pi}{c} J_{\nu} \qquad , J_{\nu} \text{: mean intensity}
$$

• isotropic radiation
$$
I_v = J_v
$$
 $u_v = \frac{4\pi}{c} I_v$

■ radiation field – macroscopic description

• flux

- intensity
- luminosity
- momentum flux
- energy density
- **radiation pressure**

§ radiation field – radiation pressure

relation between radiation pressure and energy density?

§ radiation field – radiation pressure

• energy density
\n• momentum
\n
$$
u_{\nu}(\Omega) = \frac{I_{\nu}(\Omega)}{c}
$$
\n• momentum
\n
$$
dp_{\nu} = \frac{I_{\nu}(\Omega)}{c} dA \cos^{2} \theta dt d\Omega dv
$$

- § radiation field radiation pressure
	- energy density

• momentum

$$
u_{\nu}(\Omega) = \frac{I_{\nu}(\Omega)}{c}
$$

$$
dp_{\nu} = \frac{I_{\nu}(\Omega)}{c} dA \cos^2 \theta dt d\Omega dv
$$

 $= u_v(\Omega) dA cos² \theta dt d\Omega dv$

• energy density
\n• momentum
\n
$$
u_{\nu}(\Omega) = \frac{I_{\nu}(\Omega)}{c}
$$
\n• momentum
\n
$$
dp_{\nu} = \frac{I_{\nu}(\Omega)}{c} dA \cos^{2} \theta dt d\Omega dv
$$
\n
$$
= u_{\nu}(\Omega) dA \cos^{2} \theta dt d\Omega dv
$$
\n
$$
= u_{\nu} dA \cos^{2} \theta dt d\Omega dv
$$

- radiation field radiation pressure for isotropic radiation
	- energy density • momentum $u_{\nu}(\Omega) = \frac{I_{\nu}(\Omega)}{c}$ $dp_{\nu} = \frac{I_{\nu}(\Omega)}{c}$ $dA\ cos^2\theta\ dt\ d\Omega\, d\nu$ $= u_{\nu}(\Omega) dA \cos^2 \theta dt d\Omega dv$ $= u_v dA cos² \theta dt d\Omega dv$ $p = \int u_v dv \int cos^2 \theta d\Omega dA dt$

• energy density
\n• momentum
\n
$$
u_{\nu}(\Omega) = \frac{l_{\nu}(\Omega)}{c}
$$
\n• momentum
\n
$$
dp_{\nu} = \frac{l_{\nu}(\Omega)}{c} dA \cos^{2}\theta dt d\Omega dv
$$
\n
$$
= u_{\nu}(\Omega) dA \cos^{2}\theta dt d\Omega dv
$$
\n
$$
= u_{\nu} dA \cos^{2}\theta dt d\Omega dv
$$
\n
$$
p = \int u_{\nu} dv \int \cos^{2}\theta d\Omega dA dt
$$
\n
$$
= u \int \cos^{2}\theta d\Omega dA dt
$$

• energy density
\n• momentum
\n
$$
u_{\nu}(\Omega) = \frac{I_{\nu}(\Omega)}{c} dA \cos^{2}\theta dt d\Omega dv
$$
\n
$$
= u_{\nu}(\Omega) dA \cos^{2}\theta dt d\Omega dv
$$
\n
$$
= u_{\nu} dA \cos^{2}\theta dt d\Omega dv
$$
\n
$$
p = \int u_{\nu} dv \int \cos^{2}\theta d\Omega dA dt
$$
\n
$$
= u \int \cos^{2}\theta d\Omega dA dt
$$
\n
$$
= u \int \cos^{2}\theta d\Omega dA dt
$$
\n
$$
= u \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2} \cos^{2}\theta \sin\theta d\theta dA dt
$$

• energy density
\n• momentum
\n
$$
u_{\nu}(\Omega) = \frac{I_{\nu}(\Omega)}{c} dA \cos^{2}\theta dt d\Omega dv
$$
\n
$$
= u_{\nu}(\Omega) dA \cos^{2}\theta dt d\Omega dv
$$
\n
$$
= u_{\nu} dA \cos^{2}\theta dt d\Omega dv
$$
\n
$$
= u_{\nu} dA \cos^{2}\theta dt d\Omega dt
$$
\n
$$
p = \int u_{\nu} dv \int \cos^{2}\theta d\Omega dA dt
$$
\n
$$
= u \int \cos^{2}\theta d\Omega dA dt
$$
\n
$$
= u \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2} \cos^{2}\theta \sin\theta d\theta dA dt
$$
\n
$$
= u \frac{1}{3} dA dt
$$

energy density

\n
$$
u_{\nu}(\Omega) = \frac{I_{\nu}(\Omega)}{c}
$$
\nmomentum

\n
$$
d p_{\nu} = \frac{I_{\nu}(\Omega)}{c} \, dA \cos^{2} \theta \, dt \, d\Omega \, d\nu
$$
\n
$$
= u_{\nu} \, dA \cos^{2} \theta \, dt \, d\Omega \, d\nu
$$
\n
$$
= u_{\nu} \, dA \cos^{2} \theta \, dt \, d\Omega \, d\nu
$$
\n
$$
p = \int u_{\nu} \, d\nu \int \cos^{2} \theta \, d\Omega \, dA \, d\theta
$$
\n
$$
= u \int \cos^{2} \theta \, d\Omega \, dA \, d\theta
$$
\n
$$
= u \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2} \cos^{2} \theta \sin \theta \, d\theta \, dA \, d\theta
$$
\n
$$
= u \qquad \frac{1}{3} \qquad dA \, d\theta
$$
\nradiation pressure

\n
$$
P = \frac{p}{dA dt} = \frac{1}{3} \, u
$$

■ radiation field – macroscopic description

• flux • intensity • luminosity • energy density $u_{\nu}(\Omega) = \frac{I_{\nu}(\Omega)}{c}$ • radiation pressure $P = \frac{1}{2}$ $dE = F dA dt$ $dE = I_{\nu}(\Omega) dA \cos\theta dt d\Omega dv$ $dE = L dt$ $dF_v = I_v(\Omega) \cos\theta \ d\Omega$ $\frac{1}{3}u_{\nu}$

■ radiation field – macroscopic description

• flux • intensity • luminosity $dE = L dt$ • energy density $u_{\nu}(\Omega) = \frac{I_{\nu}(\Omega)}{c}$ • radiation pressure $P = \frac{1}{2}$ $dE = F dA dt$ $dE = I_{\nu}(\Omega) dA \cos\theta dt d\Omega dv$ $dF_v = I_v(\Omega) \cos\theta \, d\Omega$ $\frac{1}{3}u_{\nu}$

how do these quantities change along the ray?

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

- is assumed that the radiation propagates like particles, i.e. the wave nature of radiation is neglected:
	- no refraction,
	- no diffraction,
	- no interference

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

- is assumed that the radiation propagates like particles, i.e. the wave nature of radiation is neglected:
	- no refraction,
	- no diffraction,
	- no interference

→ *in astronomy, especially at radio wavelengths, this assumption is not appropriate.*

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu}\left(+ j_{\nu} \right)
$$

■ emission

- matter (atoms, molecules, etc)...
	- o ...converts thermal motion into photons,
	- o ...emits photons

Fundamentals *radiative transfer equation* **• equation of radiative transfer** dI_{ν} $\frac{\partial}{\partial s} = -\alpha_{\nu} I_{\nu} \left(\frac{1}{\nu} \right)$ \blacksquare emission • matter (atoms, molecules, etc)... o ...converts thermal motion into photons, o ...emits photons: - spontaneous emission - induced emission

Fundamentals *radiative transfer equation* **• equation of radiative transfer** dI_{ν} $\frac{\partial}{\partial s} = -\alpha_{\nu} I_{\nu} \left(\frac{1}{\nu} \right)$ \blacksquare emission • matter (atoms, molecules, etc)... o ...converts thermal motion into photons, o ...emits photons: - spontaneous emission $=$ independent of radiation field - induced emission = dependent on radiation field

Fundamentals *radiative transfer equation* **• equation of radiative transfer** dI_{ν} $\frac{\partial}{\partial s} = -\alpha_{\nu} I_{\nu} \left(\frac{1}{\nu} \right)$ \blacksquare emission • matter (atoms, molecules, etc)... o ...converts thermal motion into photons, o ...emits photons: - *spontaneous emission = independent of radiation field* - induced emission = dependent on radiation field

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu}\left(+ j_{\nu} \right)
$$

 \blacksquare emission – spontaneous

Fundamentals

equation of radiative transfer

$$
\frac{dI_v}{ds} = -\alpha_v I_v \left(\frac{1}{1/v} \right) \xrightarrow{\text{no absorption}} dI_v = j_v ds
$$

$$
\blacksquare
$$
 emission \blacksquare spontaneous

Fundamentals

equation of radiative transfer

emission - spontaneous

radiation intensity: $dE = I_v dA dt d\Omega dv$

Fundamentals radiative transfer equation **equation of radiative transfer** no absorption $\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} \sqrt{1 + j_{\nu}}$ $\implies dI_{\nu} = j_{\nu} ds$ **emission** - spontaneous

radiation intensity:

 $dE = I_v dA dt d\Omega dv$ $= j_v ds dA dt d\Omega dv$

 $ds = cdt$

Fundamentals *radiative transfer equation*

mass density of emitting material

$$
j_{\nu} = \epsilon_{\nu} \frac{\rho}{4\pi}
$$

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu} I_{\nu} \left(\frac{1}{2} j_{\nu} \right)
$$

\blacksquare emission

- matter (atoms, molecules, etc)...
	- o ...converts thermal motion into photons,
	- o ...emits photons:
		- spontaneous emission $=$ independent of radiation field
		- *induced emission = dependent on radiation field*

include in absorption!

■ absorption

• matter (atoms, molecules, etc) absorbs photons

■ absorption

• matter (atoms, molecules, etc) absorbs photons

relation of α_{ν} to physical properties!?

■ absorption

• matter (atoms, molecules, etc) absorbs photons

 n, p : number/mass density of matter σ_{v} : cross-section of individual particles

randomly distributed in tube *dA ds*

 $ds = cdt$

■ absorption

• matter (atoms, molecules, etc) absorbs photons

 n, p : number/mass density of matter σ_{v} : cross-section of individual particles

randomly distributed in tube *dA ds*

 $ds = cdt$

 $\alpha_{1} = n \sigma_{1}$ (mean free path⁻¹)

■ absorption

• matter (atoms, molecules, etc) absorbs photons

 n, p : number/mass density of matter σ_{v} : cross-section of individual particles

randomly distributed in tube *dA ds*

 $ds = cdt$

■ absorption

• matter (atoms, molecules, etc) absorbs photons

 dI_{ν}

 $\frac{\partial}{\partial s} = -\alpha_{\nu} I_{\nu} + j_{\nu}$

 n, p : number/mass density of matter σ_{v} : cross-section of individual particles

randomly distributed in tube *dA ds*

 $ds = cdt$

 $\alpha_{1} = n \sigma_{1}$ (mean free path⁻¹)

■ absorption

• matter (atoms, molecules, etc) absorbs photons

 n, p : number/mass density of matter σ_{v} : cross-section of individual particles

randomly distributed in tube *dA ds*

 $ds = cdt$

$$
\frac{dI_{\nu}}{ds} = -I_{\nu} n \sigma_{\nu} = -\alpha_{\nu} I_{\nu}
$$
$\alpha_{1} = n \sigma_{1}$ (mean free path⁻¹)

■ absorption

• matter (atoms, molecules, etc) absorbs photons

 $n, p:$ number/**mass density** of matter σ_{v} : cross-section of individual particles

randomly distributed in tube *dA ds*

 $ds = cdt$

change in intensity: $dI_v = -I_v n \sigma_v ds$

$$
\frac{dI_{\nu}}{ds} = -I_{\nu} n \sigma_{\nu} = -\alpha_{\nu} I_{\nu}
$$

 $\alpha_{1} = n \sigma_{1}$ (mean free path⁻¹)

■ absorption

• matter (atoms, molecules, etc) absorbs photons

 $n, p:$ number/**mass density** of matter σ_{v} : cross-section of individual particles

randomly distributed in tube *dA ds*

 $ds = cdt$

change in intensity: $dI_v = -I_v n \sigma_v ds$

$$
\frac{dI_{\nu}}{ds} = -I_{\nu} n \sigma_{\nu} = -\alpha_{\nu} I_{\nu} = -I_{\nu} \rho \kappa_{\nu}
$$

 $\alpha_{1} = n \sigma_{1}$ (mean free path⁻¹)

■ absorption

• matter (atoms, molecules, etc) absorbs photons

 dI_{ν}

 $\frac{\partial}{\partial s} = -\alpha_{\nu} I_{\nu} + j_{\nu}$

 n, ρ : number/mass density of matter σ_{v} : cross-section of individual particles

randomly distributed in tube *dA ds*

 $ds = cdt$

change in intensity: $dI_v = -I_v n \sigma_v ds$

$$
\frac{dI_{\nu}}{ds} = -I_{\nu} n \sigma_{\nu} = -\alpha_{\nu} I_{\nu} = -I_{\nu} \rho \kappa_{\nu}
$$

 $\alpha_{\nu} = n \sigma_{\nu}$ (mean free path⁻¹)

 $\alpha_{\nu} = \rho \kappa_{\nu}$ κ_{ν} : mass absorption coefficient

 $\alpha_{\nu} = n \sigma_{\nu}$ (mean free path⁻¹)

 $\alpha_{\nu} = \rho \; \kappa_{\nu}$ $\; \; \kappa_{\nu}$: mass absorption coefficient

■ absorption

• matter (atoms, molecules, etc) absorbs photons

 $\alpha_{1} = n \sigma_{1}$ (mean free path⁻¹)

 $\alpha_{\nu} = \rho \; \kappa_{\nu}$ $\; \; \kappa_{\nu}$: mass absorption coefficient

■ absorption

• matter (atoms, molecules, etc) absorbs photons

o cross section must be smaller than inter-particle distance

o absorbers need to be independent and randomly distributed

 \circ α_{ν} can include induced emission that is also proportional to I_{ν} !

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

- macroscopic formalism to solve for intensity
- requires knowledge of α_{v} and j_{v}

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

- macroscopic formalism to solve for intensity
- requires knowledge of α_{ν} and j_{ν}
- or equivalently mass absorption coefficient κ_{ν} and emissivity ϵ_{ν}

$$
\alpha_\nu = \rho \, \kappa_\nu \qquad j_\nu = \frac{1}{4\pi} \; \rho \, \epsilon_\nu
$$

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

- macroscopic formalism to solve for intensity
- requires knowledge of α_{ν} and j_{ν}
- or equivalently mass absorption coefficient κ_{ν} and emissivity ϵ_{ν}

$$
\alpha_{\nu} = \rho \,\kappa_{\nu} \qquad j_{\nu} = \frac{1}{4\pi} \,\rho \,\epsilon_{\nu}
$$

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

• macroscopic formalism to solve for intensity

 dI_{ν}

 $\frac{\partial}{\partial s} = j_{\nu}$

- requires knowledge of α_{ν} and j_{ν}
- or equivalently mass absorption coefficient κ_{ν} and emissivity ϵ_{ν}

$$
\alpha_{\nu} = \rho \,\kappa_{\nu} \qquad j_{\nu} = \frac{1}{4\pi} \,\rho \,\epsilon_{\nu}
$$

$$
\circ \text{ emission-only}
$$

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

- macroscopic formalism to solve for intensity
- requires knowledge of α_{ν} and j_{ν}
- or equivalently mass absorption coefficient κ_{ν} and emissivity ϵ_{ν}

$$
\alpha_{\nu} = \rho \,\kappa_{\nu} \qquad j_{\nu} = \frac{1}{4\pi} \,\rho \,\epsilon_{\nu}
$$

$$
\text{ a emission-only} \qquad \frac{dI_{\nu}}{ds} = j_{\nu} \qquad I_{\nu}(s) = I_{\nu}(s_0) + \int_{s_0}^{s} j_{\nu}(s')ds'
$$

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

- macroscopic formalism to solve for intensity
- requires knowledge of α_v and j_v
- or equivalently mass absorption coefficient κ_{ν} and emissivity ϵ_{ν}

$$
\alpha_{\nu} = \rho \,\kappa_{\nu} \qquad j_{\nu} = \frac{1}{4\pi} \,\rho \,\epsilon_{\nu}
$$

• solution to simple limiting cases:

o emission-only dI_{ν} $\frac{dI_V}{ds} = j_V$ $I_V(s) = I_V(s_0) + \int_s$ $s₀$ 5 $j_{\nu}(s')ds'$ o absorption-only dI_{ν} $\frac{\partial u}{\partial s} = -\alpha_v I_v$

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

- macroscopic formalism to solve for intensity
- requires knowledge of α_{ν} and j_{ν}
- or equivalently mass absorption coefficient κ_{ν} and emissivity ϵ_{ν}

$$
\alpha_{\nu} = \rho \,\kappa_{\nu} \qquad j_{\nu} = \frac{1}{4\pi} \,\rho \,\epsilon_{\nu}
$$

$$
\text{ a function-only} \quad \frac{dI_{\nu}}{ds} = j_{\nu} \quad I_{\nu}(s) = I_{\nu}(s_{0}) + \int_{s_{0}}^{s} j_{\nu}(s')ds'
$$
\n
$$
\text{ a absorption-only} \quad \frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} \quad I_{\nu}(s) = I_{\nu}(s_{0}) \, e^{-\int_{s_{0}}^{s} \alpha_{\nu}(s')ds'}
$$

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

- macroscopic formalism to solve for intensity
- requires knowledge of α_v and j_v
- or equivalently mass absorption coefficient κ_{ν} and emissivity ϵ_{ν}

$$
\alpha_{\nu} = \rho \,\kappa_{\nu} \qquad j_{\nu} = \frac{1}{4\pi} \,\rho \,\epsilon_{\nu}
$$

• solution to simple limiting cases:

o emission-only dI_{ν} $\frac{dI_V}{ds} = j_V$ $I_V(s) = I_V(s_0) + \int_s$ $s₀$ 5 $j_{\nu}(s')ds'$ o absorption-only dI_{ν} $\frac{dI_v}{ds} = -\alpha_v I_v$ $I_v(s) = I_v(s_0) e^{-\int_{s_0}^{s} \alpha_v(s')ds'}$ optical depth: $\tau_{\nu} = |$ s_0 5 $\alpha_{v}(s')ds'$

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

• optical depth τ_v

$$
d\tau_{\nu} = \alpha_{\nu} \, ds
$$

$$
\tau_{\nu} = \int_{s_0}^{s} \alpha_{\nu}(s')ds'
$$

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

• optical depth τ_v $d\tau_v = \alpha_v ds$

$$
a\tau_{\nu} = \alpha_{\nu} \, ds
$$

 $s₀$

 $\alpha_{v}(s')ds'$

 $\tau_{\nu} = |$

$$
\rightarrow
$$
 absorption: $I_{\nu}(s) = I_{\nu}(s_0) e^{-\tau_{\nu}}$

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

• optical depth τ_v $d\tau_v = \alpha_v ds$

probability of a photons traveling at least one optical depth before being absorbed/scattered

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

• optical depth τ_v $d\tau_v = \alpha_v ds$

$$
\tau_{\nu} = \int_{s_0}^{s} \alpha_{\nu}(s')ds'
$$

$$
\rightarrow
$$
 absorption: $I_{\nu}(s) = I_{\nu}(s_0) e^{-\tau_{\nu}}$

$$
\langle \tau_{\nu} \rangle = \int \tau_{\nu} e^{-\tau_{\nu}} d\tau_{\nu}
$$

mean optical depth travelled before being absorbed/scattered

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

• optical depth τ_v $d\tau_v = \alpha_v ds$

$$
\tau_{\nu} = \int_{s_0}^{s} \alpha_{\nu}(s')ds'
$$

$$
\rightarrow
$$
 absorption: $I_{\nu}(s) = I_{\nu}(s_0) e^{-\tau_{\nu}}$

$$
\langle \tau_{\nu} \rangle = \int \tau_{\nu} e^{-\tau_{\nu}} d\tau_{\nu} = 1
$$

mean optical depth travelled before being absorbed/scattered

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

• optical depth τ_v $d\tau_v = \alpha_v ds$

$$
\tau_{\nu} = \int_{s_0}^{s} \alpha_{\nu}(s')ds'
$$

$$
\rightarrow \text{absorption: } I_{\nu}(s) = I_{\nu}(s_0) e^{-\tau_{\nu}}
$$

$$
\langle \tau_{\nu} \rangle = \int \tau_{\nu} e^{-\tau_{\nu}} d\tau_{\nu} = 1
$$

 τ_{ν} > 1 : optically thick medium τ_{ν} < 1 : optically thin medium

(opaque) (transparent)

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

• optical depth τ_v $d\tau_v = \alpha_v ds$

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

• optical depth τ_v $d\tau_v = \alpha_v ds$

$$
\tau_{\nu} = \int_{s_0}^{s} \alpha_{\nu}(s')ds'
$$

 $\langle \tau_\nu \rangle = \int \! \tau_\nu \, e^{-\tau_\nu} d\tau_\nu = 1$

$$
\rightarrow
$$
 absorption: $I_{\nu}(s) = I_{\nu}(s_0) e^{-\tau_{\nu}}$

 τ_{ν} > 1 : optically thick medium (opaque)

 τ_v < 1 : optically thin medium (transparent)

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

• optical depth τ_v $d\tau_v = \alpha_v ds$

$$
\tau_{\nu} = \int_{s_0}^{s} \alpha_{\nu}(s') ds'
$$

$$
\rightarrow \text{absorption: } I_{\nu}(s) = I_{\nu}(s_0) e^{-\tau_{\nu}}
$$

$$
\tau_{\nu}\rangle=\int\!\tau_{\nu}\;e^{-\tau_{\nu}}d\tau_{\nu}=1
$$

 τ_{ν} > 1 : optically thick medium (opaque)

 τ_{ν} < 1 : optically thin medium (transparent)

why do we prefer to use optical depth?

p://spiff.rit.edu/classes/phys440/lectures/optd/optd.html

Page 5 of 15

why..do..we.prefer.to.use.optical depth? why..do

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$

• optical depth τ_v $d\tau_v = \alpha_v ds$

$$
\tau_{\nu} = \int_{s_0}^{s} \alpha_{\nu}(s') ds'
$$

$$
\rightarrow \text{absorption: } I_{\nu}(s) = I_{\nu}(s_0) e^{-\tau_{\nu}}
$$

 $\langle \tau_\nu \rangle = \int \! \tau_\nu \, e^{-\tau_\nu} d\tau_\nu = 1$

 τ_{ν} > 1 : optically thick medium (opaque)

 τ_v < 1 : optically thin medium (transparent)

we prefer to use optical depth!

change of variables:

 $s \rightarrow \tau$

 \rightarrow absorption: $I_{\nu}(s) = I_{\nu}(s_0) e^{-\tau_{\nu}}$

 τ_{V} > 1 : optically thick medium (opaque)

 τ_{ν} < 1 : optically thin medium (transparent)

we prefer to use optical depth!

 dI_{ν}

 $\frac{\partial u}{\partial s} = -\alpha_v I_v + j_v$

 $s₀$

5

 $\alpha_{v}(s')ds'$

 $\langle \tau_\nu \rangle = \int \tau_\nu \, e^{-\tau_\nu} d\tau_\nu = 1$

• optical depth τ_v $\left(\begin{array}{cc} d\tau_v = \alpha_v ds\end{array}\right)$

change of variables:

 $s \rightarrow \tau$

$$
\Big/ \qquad \Big/ \qquad \Big. d\tau_{\iota}
$$

$$
\Big/ \qquad \Big/ \qquad \qquad
$$

 dI_{ν}

 $\tau_{\nu} = |$

 $s₀$

 $\langle \tau_\nu \rangle = \int \tau_\nu \, e^{-\tau_\nu} d\tau_\nu = 1$

5

 $\alpha_{v}(s')ds'$

 $\frac{\partial u}{\partial s} = -\alpha_v I_v + j_v$

$$
f_{\text{vanishlex}} \mid
$$

$$
_{\text{I} \text{a} \text{d} \text{c} \text{b}}.
$$

$$
\rightarrow \text{absorption: } I_{\nu}(s) = I_{\nu}(s_0) e^{-\tau_{\nu}}
$$

 τ_{ν} > 1 : optically thick medium (opaque)

 τ_{ν} < 1 : optically thin medium (transparent)

$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + \frac{j_{\nu}}{\alpha_{\nu}}
$$

the source function describes the ratio between newly created and absorped photons

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$
\n
$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}
$$
\n
$$
S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}
$$
 source function

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$
\n
$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}
$$
\n
$$
S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}
$$
 source function

§ solution in general

$$
I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int_0^{\tau_{\nu}} e^{-(\tau_{\nu} - \tau_{\nu}')} S_{\nu}(\tau_{\nu}') d\tau_{\nu}'
$$
 (exercise)

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$
\n
$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}
$$
\n
$$
S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}
$$
 source function

§ solution in general

$$
I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int_0^{\tau_{\nu}} e^{-(\tau_{\nu}-\tau_{\nu}')} S_{\nu}(\tau_{\nu}') d\tau_{\nu}'
$$

absorption of incident radiation $I_{\nu}(0)$

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$
\n
$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}
$$
\n
$$
S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}
$$
 source function

§ solution in general

$$
I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int_0^{\tau_{\nu}} e^{-(\tau_{\nu}-\tau_{\nu}')} S_{\nu}(\tau_{\nu}') d\tau_{\nu}'
$$

absorption of incident radiation $I_v(0)$ integral over newly created photons as they propagate to optical depth τ_v

■ equation of radiative transfer

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$
\n
$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}
$$
\n
$$
S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}
$$
 source function

■ solution in general

$$
I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int_0^{\tau_{\nu}} e^{-(\tau_{\nu}-\tau_{\nu}')} S_{\nu}(\tau_{\nu}') d\tau_{\nu}'
$$

■ solution – special cases

\n- emission-only
\n- absorption-only
\n- $$
I_{\nu}(s) = I_{\nu}(s_0) + \int_{s_0}^{s} j_{\nu}(s')ds'
$$
\n- absorption-only
\n- $$
I_{\nu}(s) = I_{\nu}(s_0) e^{-\int_{s_0}^{s} \alpha_{\nu}(s')ds'}
$$
\n

■ equation of radiative transfer

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$
\n
$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}
$$
\n
$$
S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}
$$
 source function

■ solution in general

$$
I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int_0^{\tau_{\nu}} e^{-(\tau_{\nu} - \tau_{\nu}')} S_{\nu}(\tau_{\nu}') d\tau_{\nu}'
$$

■ solution – special cases

\n- emission-only
\n- $$
I_{\nu}(s) = I_{\nu}(s_0) + \int_{s_0}^{s} j_{\nu}(s')ds'
$$
\n- absorption-only
\n- $$
I_{\nu}(s) = I_{\nu}(s_0) e^{-\int_{s_0}^{s} \alpha_{\nu}(s')ds'}
$$
\n

•
$$
S_v
$$
 = const. $I_v(\tau_v) = I_v(0)e^{-\tau_v} + S_v(1 - e^{-\tau_v})$

equation of radiative transfer

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$
\n
$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}
$$
\n
$$
S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}
$$
 source function

solution in general

$$
I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} e^{-(\tau_{\nu} - \tau_{\nu}')} S_{\nu}(\tau_{\nu}') d\tau_{\nu}'
$$

solution - special cases

\n- emission-only
\n- absorption-only
\n- $$
I_{\nu}(s) = I_{\nu}(s_0) + \int_{s_0}^{s} j_{\nu}(s')ds'
$$
\n- absorption-only
\n- $$
I_{\nu}(s) = I_{\nu}(s_0) e^{-\int_{s_0}^{s} \alpha_{\nu}(s')ds'}
$$
\n

•
$$
S_v
$$
 = const. $I_v(\tau_v) = I_v(0)e^{-\tau_v} + S_v(1 - e^{-\tau_v})$

$$
\circ \tau_{\nu} \gg 1: \qquad I_{\nu}(\tau_{\nu}) = S_{\nu}
$$

• equation of radiative transfer

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$
\n
$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}
$$
\n
$$
S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}
$$
 source function

■ solution in general

$$
I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int_0^{\tau_{\nu}} e^{-(\tau_{\nu} - \tau_{\nu}')} S_{\nu}(\tau_{\nu}') d\tau_{\nu}'
$$

§ solution – special cases

\n- emission-only
\n- absorption-only
\n- $$
I_{\nu}(s) = I_{\nu}(s_0) + \int_{s_0}^{s} j_{\nu}(s')ds'
$$
\n- absorption-only
\n- $$
I_{\nu}(s) = I_{\nu}(s_0) e^{-\int_{s_0}^{s} \alpha_{\nu}(s')ds'}
$$
\n

•
$$
S_v
$$
 = const. $I_v(\tau_v) = I_v(0)e^{-\tau_v} + S_v(1 - e^{-\tau_v})$

$$
\circ \tau_{\nu} \gg 1: \qquad I_{\nu}(\tau_{\nu}) = S_{\nu}
$$

 $I_{\nu}(0) > S_{\nu} \rightarrow$ photons will be absorbed from the beam until $I_{\nu}(\tau_{\nu}) = S_{\nu}$ $I_{\nu}(0) < S_{\nu} \rightarrow$ photons will be added to the beam until $I_{\nu}(\tau_{\nu}) = S_{\nu}$

equation of radiative transfer

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$
\n
$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}
$$
\n
$$
S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}
$$
 source function

solution in general

$$
I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} e^{-(\tau_{\nu} - \tau_{\nu}')} S_{\nu}(\tau_{\nu}') d\tau_{\nu}'
$$

solution - special cases

\n- emission-only
\n- absorption-only
\n- $$
I_{\nu}(s) = I_{\nu}(s_0) + \int_{s_0}^{s} j_{\nu}(s')ds'
$$
\n- absorption-only
\n- $$
I_{\nu}(s) = I_{\nu}(s_0) e^{-\int_{s_0}^{s} \alpha_{\nu}(s')ds'}
$$
\n

•
$$
S_v
$$
 = const. $I_v(\tau_v) = I_v(0)e^{-\tau_v} + S_v(1 - e^{-\tau_v})$

$$
\begin{aligned}\n\circ \tau_{\nu} &\gg 1; \qquad l_{\nu}(\tau_{\nu}) = S_{\nu} \\
\circ \tau_{\nu} &\ll 1; \qquad l_{\nu}(\tau_{\nu}) = l_{\nu}(0) \left(1 - \tau_{\nu}\right) + \tau_{\nu} \, S_{\nu}\n\end{aligned}
$$

equation of radiative transfer

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu}
$$
\n
$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}
$$
\n
$$
S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}
$$
 source function

solution in general

$$
I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} e^{-(\tau_{\nu} - \tau_{\nu}')} S_{\nu}(\tau_{\nu}') d\tau_{\nu}'
$$

solution - special cases

\n- emission-only
\n- absorption-only
\n- $$
I_{\nu}(s) = I_{\nu}(s_0) + \int_{s_0}^{s} j_{\nu}(s')ds'
$$
\n- absorption-only
\n- $$
I_{\nu}(s) = I_{\nu}(s_0) e^{-\int_{s_0}^{s} \alpha_{\nu}(s')ds'}
$$
\n

•
$$
S_v
$$
 = const. $I_v(\tau_v) = I_v(0)e^{-\tau_v} + S_v(1 - e^{-\tau_v})$

$$
\begin{aligned}\n\circ \tau_{\nu} &\gg 1: \qquad l_{\nu}(\tau_{\nu}) = S_{\nu} \\
\circ \tau_{\nu} &\ll 1: \qquad l_{\nu}(\tau_{\nu}) = l_{\nu}(0) \left(1 - \tau_{\nu}\right) + \tau_{\nu} \, S_{\nu} \qquad \rightarrow \qquad l_{\nu}(0)\n\end{aligned}
$$

■ equation of radiative transfer

$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}
$$
 source function $S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}}$