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Strong Gravitational Lensing flavours
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“Gravitational microlensing can be 
thought of as a version of strong 
gravitational lensing where the image 
separation is too small to be resolved.”

(Wambsganss, Living Review)



Strong Gravitational Lensing

§ strong lensing:

• lensing of background sources by foreground galaxies, clusters, …

(® strong distortion, magnification, and multiple images)

§ microlensing

• mainly referred to as lensing by objects of stellar (point) masses

(® no distortion, mainly magnification)

§ weak lensing

• lensing via large-scale structure

(® weak distortion and magnification)

flavours

• macrolensing > 0.1 arcsec

• millilensing ~ 10-3 arcsec

• microlensing ~ 10-6 arcsec

• nanolensing ~ 10-9 arcsec

• …
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Strong Gravitational Lensing concept

caustics
(source plane)

critical curves
(lens plane)

1. lens mass distribution
determines type of images

§ images from strong lenses depend on...

2. source location
determines position of images

(and their number)



Strong Gravitational Lensing itinerary

§ concept

§ theory*

§ applications

*just a repetition of results presented in the lecture “The Basics of Gravitational Lensing”

skip theory...



Strong Gravitational Lensing theory

§ in general
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Strong Gravitational Lensing theory

§ in general
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Strong Gravitational Lensing theory

• deflection angle

§ lensing by point masses

• lens (ray-tracing) equation
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Strong Gravitational Lensing theory

§ lensing by extended masses
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• surface mass density:
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Strong Gravitational Lensing theory

§ lensing by extended masses: circular lens

• deflection angle
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Strong Gravitational Lensing theory

§ lensing by extended masses:     lens with constant surface mass density

• deflection angle

Σcrit =
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• critical surface mass density

perfectly focusing lens!

• lens with critical surface mass density
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Strong Gravitational Lensing theory

§ lensing by extended masses: singular isothermal sphere
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§ microlensing - planet detection

2020:  more than 4000 confirmed exoplanets
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Strong Gravitational Lensing application

§ microlensing – dark matter detection

‘massive compact halo objects’ causing micro-lensing!?



Strong Gravitational Lensing application

OGLE experiment (Udalski et al. 1992)
(Optical Gravitational Lensing Experiment)

PLANET collaboration (Albrow et al. 1998)
(Probing Lensing Anomalies Network)

MOA collaboration (Muraki et al. 1999)
(Microlensing Observations in Astrophysics)

MACHO collaboration (Alcock et al. 2000)
(Massive Compact Halo Object)

POINT-AGAPE experiment (Kerins et al. 2001)
(Pixel-lensing Observations with the Isaac Newton Telescope - Andromeda Galaxy Amplified Pixels Experiment)

EROS experiment (Afonso et al. 2003)
(Expérience pour la Recherche d'Objets Sombres)

§ microlensing – dark matter detection
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OGLE experiment (Udalski et al. 1992)
(Optical Gravitational Lensing Experiment)

PLANET collaboration (Albrow et al. 1998)
(Probing Lensing Anomalies Network)

MOA collaboration (Muraki et al. 1999)
(Microlensing Observations in Astrophysics)

MACHO collaboration (Alcock et al. 2000)
(Massive Compact Halo Object)

POINT-AGAPE experiment (Kerins et al. 2001)
(Pixel-lensing Observations with the Isaac Newton Telescope - Andromeda Galaxy Amplified Pixels Experiment)
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(Expérience pour la Recherche d'Objets Sombres)

towards LMC

towards SMC

towards M31

§ microlensing – dark matter detection



Strong Gravitational Lensing application

§ microlensing – MACHO experiment

MW HALO

fMACHO   ~ 20%

MMACHO ~ 0.15-0.9 M¤



Strong Gravitational Lensing application

§ microlensing – EROS experiment

MW HALO

fMACHO   < 25%

MMACHO < 1 M¤



Strong Gravitational Lensing application

§ microlensing – POINT-AGAPE survey

fMACHO   ~ 20%

MMACHO ~ 0.5-1 M¤



Strong Gravitational Lensing application

§ microlensing – results

MACHO (LMC) fMACHO ~ 16% (Bennett 2005)

POINT-AGAPE (M31) fMACHO > 20% (Calchi Novati et al. 2005)

EROS-2 (SMC) fMACHO ~ 8% (Tisserand et al. 2007)

OGLE-II (LMC) fMACHO ~ 8% (Wyrzykowski et al. 2009)

=> consistent with self-lensing!?

=> MACHO’s are not the sought after dark matter…
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Strong Gravitational Lensing application

§ strong lensing

CASTLES project (Munoz et al. 1999)
(CfA-Arizona Space Telescope Lens Survey)

LSD survey (Koopmans & Treu 2002)
(Lenses, Structures & Dynamics)

CLASS survey (Browne et al. 2003)
(Cosmic Lens All-Sky Survey)

ANGLES network (Browne et al. 2004)
(Astrophysics Network for Galaxy Lensing Studies)

COSMOGRAIL (Eigenbrod et al. 2005)
(Cosmological Monitoring of Gravitational Lenses)

SLACS survey (Bolton et al. 2006)
(Sloan Lens ACS Survey)

OMEGA mission (Moustakas et al. 2008)
(Observatory for Multi-Epoch Gravitational Lens Astrophysics)

Note: this list does not claim to be complete!
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Strong Gravitational Lensing

(a galaxy at redshift z=5.34, behind CL1358+62)

application

§ strong lensing – cosmic telescopes
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§ strong lensing – cosmic telescopes
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• gravitational time delay (“Shapiro delay”)

€ 

n =1− 2
c 2
Φ≈

c
v

€ 

Δtgrav

(cf. lecture “basics of lensing”)
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• gravitational time delay (“Shapiro delay”)

gravitational potential effectively lowers speed of light ray…

€ 

Δtgrav

§ strong lensing – measuring H0

c
v
≈1− 2

c2
Φ



Strong Gravitational Lensing application

c
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≈1− 2
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Φ

• gravitational time delay (“Shapiro delay”)
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(integrate only the extra gravitational term...)
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• geometrical time delay (between lensed and un-lensed image)
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Strong Gravitational Lensing application

§ strong lensing – measuring H0

• geometrical time delay (between lensed and un-lensed image)
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60 3 The General Lens

Let n = 1 − 2!/c2 be the effective refractive index. We have that

tgrav =
∫

dz

c′
−
∫

dz

c
= 1

c

∫
(n− 1)dz = − 2

c3

∫
!dz. (3.77)

Using the definition of the lensing potential, this can be written as

tgrav = −DLDS

DLS

1
c
"̂ . (3.78)

The second term in the time delay is called geometrical and is due to the different
path length of the deflected light rays compared to the unperturbed ones. This time
delay is proportional to the squared angular separation between the source’s intrinsic
position and the location of its image. This result can be derived from the metric,
but it can be estimated also through a simple geometrical construction, shown in
Fig. 3.6. The dashed line shows the path of a light-ray emitted by the source S, being
deflected by an angle α̂, and reaching the observer at O . This light path should be
compared to the solid line connecting S and O , which represents the path that the
light would follow in absence of the lens. One can trace two circles centered on S

and O , which are tangent at the point H along the line SO . The extra-path of the
light in presence of the lens is given by

$l ≈ ξ ĉ , (3.79)

Fig. 3.6 Illustration of the geometrical time delay
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3.6 Time Delay Surface 61

using the notation in the figure. On the other hand, since the triangles SHK and
OHK ′ are isosceles, it can be easily shown that the following relations hold

d̂ = π − α̂ ,

â + b̂ + ĉ = π ,

â + b̂ = ĉ + d̂ . (3.80)

Thus, the angle ĉ can be written in terms of the deflection angle α̂ as

ĉ = α̂

2
. (3.81)

Inserting this result in Eq. 3.79, we obtain

#l ≈ ξ
$̂α
2
= ($θ − $β)DLDS

DLS

$α
2
= 1

2
($θ − $β)2DLDS

DLS
, (3.82)

and the corresponding geometrical time delay is

tgeom = #l

c
. (3.83)

Both the gravitational and the geometrical time delays occur at the lens position,
thus they need to be multiplied by a factor (1+ zL) for accounting for the expansion
of the universe. Then, the total time delay introduced by gravitational lensing at the
position $θ on the lens plane is2

t ($θ) = (1+ zL)

c

DLDS

DLS

[
1
2
($θ − $β)2 − '̂($θ)

]

= D#t

c
τ ($θ). (3.84)

The quantities

D#t = (1+ zL)
DSDL

DLS
(3.85)

and

τ ($θ) = 1
2
($θ − $β)2 − '̂($θ) , (3.86)

are often called time delay distance and Fermat potential, respectively.

2The dimensionless form of the time delay can be obtained by multiplying and dividing by the
factor (ξ0/DL)

2.

3.6 Time Delay Surface 61

using the notation in the figure. On the other hand, since the triangles SHK and
OHK ′ are isosceles, it can be easily shown that the following relations hold

d̂ = π − α̂ ,
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Both the gravitational and the geometrical time delays occur at the lens position,
thus they need to be multiplied by a factor (1+ zL) for accounting for the expansion
of the universe. Then, the total time delay introduced by gravitational lensing at the
position $θ on the lens plane is2
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are often called time delay distance and Fermat potential, respectively.

2The dimensionless form of the time delay can be obtained by multiplying and dividing by the
factor (ξ0/DL)
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Let n = 1 − 2!/c2 be the effective refractive index. We have that
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∫

dz
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−
∫
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= 1
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∫
(n− 1)dz = − 2
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∫
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Using the definition of the lensing potential, this can be written as

tgrav = −DLDS

DLS

1
c
"̂ . (3.78)

The second term in the time delay is called geometrical and is due to the different
path length of the deflected light rays compared to the unperturbed ones. This time
delay is proportional to the squared angular separation between the source’s intrinsic
position and the location of its image. This result can be derived from the metric,
but it can be estimated also through a simple geometrical construction, shown in
Fig. 3.6. The dashed line shows the path of a light-ray emitted by the source S, being
deflected by an angle α̂, and reaching the observer at O . This light path should be
compared to the solid line connecting S and O , which represents the path that the
light would follow in absence of the lens. One can trace two circles centered on S

and O , which are tangent at the point H along the line SO . The extra-path of the
light in presence of the lens is given by

$l ≈ ξ ĉ , (3.79)

Fig. 3.6 Illustration of the geometrical time delay
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â + b̂ = ĉ + d̂ . (3.80)
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Thus, the angle ĉ can be written in terms of the deflection angle α̂ as
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Thus, the angle ĉ can be written in terms of the deflection angle α̂ as
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cosmology lens

...let’s measure cosmological distances!

§ strong lensing – measuring H0
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§ strong lensing – measuring H0

*because they ensure that the lens equation is fulfilled (as they are defined that way…)
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Strong Gravitational Lensing application

• time delay:

cosmology lens
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direct dependence on H0

indirect (and weak) dependence on
W0,  Wk,  Wde, w

§ strong lensing – measuring H0



Strong Gravitational Lensing

Biggs et al. (1999)

B0218+357

Dt = 10.5 days

H0 = 69 km/sec/Mpc (isothermal ellipsoid)

application

§ strong lensing – measuring H0



Strong Gravitational Lensing

Kochanek et al. (2002)

lens Dt     

RXJ0911+0551 146

Q0957+561 417

PG1115+080 12

SBS1520+530 129

B1600+434 51

PKS1830–211 26

HE2149–2745 103

H0 = 51 km/sec/Mpc   (isothermal ellipsoid)

application

§ strong lensing – measuring H0



Strong Gravitational Lensing

Wucknitz et al. (2004)

B0218+357

Dt = 10.5 days

H0 = 78 km/sec/Mpc (isothermal sphere)

application

§ strong lensing – measuring H0



Strong Gravitational Lensing

SDSS J1650+4251

Dt = 46.7 days

H0 = 52 km/sec/Mpc   (isothermal sphere)

H0 = 72 km/sec/Mpc (de Vaucouleur)

Vuissoz et al. (2007)

application

§ strong lensing – measuring H0
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Coles et al. (2008)

method H0 [km/sec/Mpc] reference

CMB 73 (Spergel et al. 2007)

SN Type Ia 62 (Sandage et al. 2006)

SN Type Ia 73 (Riess et al. 2005)

SZ effect 66 (Jones et al. 2005)

lensing 68 (Oguri et al. 2007, 16 lenses)

lensing 72 (Saha et al. 2007, 10 lenses)

application

§ strong lensing – measuring H0
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Coles et al. (2008)

method H0 [km/sec/Mpc] reference

CMB 73 (Spergel et al. 2007)

SN Type Ia 62 (Sandage et al. 2006)

SN Type Ia 73 (Riess et al. 2005)

SZ effect 66 (Jones et al. 2005)

lensing 68 (Oguri et al. 2007, 16 lenses)

lensing 72 (Saha et al. 2007, 10 lenses)

application

§ strong lensing – measuring H0

check COSMOGRAIL & H0LiCOW for latest developments

(http://cosmograil.epfl.ch & https://shsuyu.github.io/H0LiCOW/site)

http://cosmograil.epfl.ch/
https://shsuyu.github.io/H0LiCOW/site


Strong Gravitational Lensing

Freedman (2017)

method H0 [km/sec/Mpc] reference

CMB 73 (Spergel et al. 2007)

SN Type Ia 62 (Sandage et al. 2006)

SN Type Ia 73 (Riess et al. 2005)

SZ effect 66 (Jones et al. 2005)

lensing 68 (Oguri et al. 2007, 16 lenses)

lensing 72 (Saha et al. 2007, 10 lenses)

application

§ strong lensing – measuring H0

check COSMOGRAIL for latest developments

(http://cosmograil.epfl.ch)

Remember the tension for H0 measurements:
• local (Cepheids method) vs CMB measurements

 
Figures: 

Figure 1: The Current Tension in the Determination of Ho   

 

 

Figure 1: Recent values of Ho as a function of publication date since the Hubble Key 

Project (adapted from Beaton et al. 2016). Symbols in blue represent values of Ho 

determined in the nearby universe with a calibration based on the Cepheid distance scale. 

Symbols in red represent derived values of Ho based on an adopted cosmological model 

and measurements of the CMB. The blue and red shaded regions show the evolution of 

the uncertainties in these values, which have been decreasing for both methods. The most 

recent measurements disagree at greater than 3-σ.  

http://cosmograil.epfl.ch
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Freedman (2017)

method H0 [km/sec/Mpc] reference

CMB 73 (Spergel et al. 2007)

SN Type Ia 62 (Sandage et al. 2006)

SN Type Ia 73 (Riess et al. 2005)

SZ effect 66 (Jones et al. 2005)

lensing 68 (Oguri et al. 2007, 16 lenses)

lensing 72 (Saha et al. 2007, 10 lenses)

application

§ strong lensing – measuring H0
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Remember the tension for H0 measurements:
• local (Cepheids method) vs CMB measurements

 
Figures: 

Figure 1: The Current Tension in the Determination of Ho   

 

 

Figure 1: Recent values of Ho as a function of publication date since the Hubble Key 

Project (adapted from Beaton et al. 2016). Symbols in blue represent values of Ho 

determined in the nearby universe with a calibration based on the Cepheid distance scale. 

Symbols in red represent derived values of Ho based on an adopted cosmological model 

and measurements of the CMB. The blue and red shaded regions show the evolution of 

the uncertainties in these values, which have been decreasing for both methods. The most 

recent measurements disagree at greater than 3-σ.  

H0LiCOW XIII paper
(https://arxiv.org/abs/1907.04869)

http://cosmograil.epfl.ch
https://arxiv.org/abs/1907.04869


Strong Gravitational Lensing itinerary

§ concept

§ theory

§ applications:

o micro-lensing

o strong lensing:
• cosmic telescopes

• H0 determination

• missing satellite problem
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§ strong lensing - the “missing satellite problem”

ca. 50 satellites observed
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Strong Gravitational Lensing application

§ strong lensing - the “missing satellite problem”

> 1000 subhaloes simulated ca. 50 satellites observed

maybe detectable via lensing!?



Strong Gravitational Lensing

Zackrisson & Riehm (2009)

application

ray only lensed by cluster

ray lensed by cluster & subhalo

§ strong lensing - the “missing satellite problem”



Strong Gravitational Lensing

• presence of substructure can cause…

…flux ratio anomalies

…astrometric effects

…time-delay effects

Zackrisson & Riehm (2009)

application

§ strong lensing - the “missing satellite problem”



Strong Gravitational Lensing

• presence of substructure can cause…

…flux ratio anomalies

…astrometric effects

…time-delay effects

Zackrisson & Riehm (2009)

application

§ strong lensing - the “missing satellite problem”



Strong Gravitational Lensing

• anomalous flux ratio are (frequently) observed…

B2045+265 (McKean et al. 2007)

application

galaxy lens

§ strong lensing - the “missing satellite problem”

A, B, C, and D are images of a background source



Strong Gravitational Lensing

• anomalous flux ratio are (frequently) observed…

B2045+265 (McKean et al. 2007)

application

galaxy lens

...image A is brighter than B, even though a smooth lens model predicts the opposite

§ strong lensing - the “missing satellite problem”

A, B, C, and D are images of a background source, but...



Strong Gravitational Lensing

• anomalous flux ratio are (frequently) observed…

B2045+265 (McKean et al. 2007)

application

galaxy lens

...image A is brighter than B, even though a smooth lens model predicts the opposite

§ strong lensing - the “missing satellite problem”

A, B, C, and D are images of a background source, but...

explained by substructure in lens (i.e. G2)

galaxy lens!?
(responsible for anomaly?)



Strong Gravitational Lensing

• anomalous flux ratio are (frequently) observed, but in general…

…there are too few subhaloes (in the central region)
to explain the observed signal!?

“Einstein Cross”

Xu et al., astro-ph/0903.4559 (Aquarius simulation)

application

§ strong lensing - the “missing satellite problem”



Strong Gravitational Lensing

• anomalous flux ratio are (frequently) observed, but in general…

…there are too few subhaloes (in the central region)
to explain the observed signal!?

“Einstein Cross”

Xu et al., astro-ph/0903.4559 (Aquarius simulation)

application

§ strong lensing - the “missing satellite problem”COSMOLOGY

An excess of small-scale gravitational lenses
observed in galaxy clusters
Massimo Meneghetti1,2,3*, Guido Davoli1,4, Pietro Bergamini1, Piero Rosati5,1, Priyamvada Natarajan6,
Carlo Giocoli1,5,7, Gabriel B. Caminha8, R. Benton Metcalf7, Elena Rasia9,10, Stefano Borgani9,10,11,12,
Francesco Calura1, Claudio Grillo13,14, Amata Mercurio15, Eros Vanzella1

Cold dark matter (CDM) constitutes most of the matter in the Universe. The interplay between
dark and luminous matter in dense cosmic environments, such as galaxy clusters, is studied
theoretically using cosmological simulations. Observations of gravitational lensing are used to
characterize the properties of substructures—the small-scale distribution of dark matter—in
clusters. We derive a metric, the probability of strong lensing events produced by dark-matter
substructure, and compute it for 11 galaxy clusters. The observed cluster substructures are more
efficient lenses than predicted by CDM simulations, by more than an order of magnitude. We suggest
that systematic issues with simulations or incorrect assumptions about the properties of dark
matter could explain our results.

I
n the standard cosmologicalmodel, themat-
ter content of the Universe is dominated by
cold dark matter (CDM), collisionless par-
ticles that interact with ordinary matter
(baryons) only through gravity. Gravita-

tionally bound dark-matter halos form hier-
archically, with the most massive systems
forming through mergers of smaller ones. As
structure assembles in this fashion, large dark-
matter halos contain smaller-scale substruc-
ture in the form of embedded subhalos.
The most massive dark-matter halos at the

present time are galaxy clusters, with masses of
∼1014 to∼1015 solar masses (M⊙, one solar mass
is∼2! 1030 kg). Galaxy clusters contain about
a thousand member galaxies that are hosted
in subhalos. The detailed spatial distribution of
dark matter in galaxy clusters can bemapped
by observing gravitational lensing of distant
backgroundgalaxies.Whendistant background
galaxies are in near perfect alignment with the
massive foreground cluster, strong gravitational

lensingoccurs. Strong lensing—nonlinear effects
produced by the deflection of light—results in
multiple distorted images of individual back-
ground galaxies that can be detected inHubble
Space Telescope (HST) imaging.
The probability and strength of these non-

linear strong lensing effects can be predicted
theoretically from simulations of structure
formation (1). We test these predictions using
observations of galaxy clusters, combining
lensing data from the HST with spectroscopic
data from the Very Large Telescope (VLT). Our
observed sample of lensing clusters is split
into three sets for this analysis: (i) a reference
sample comprising three clusters with well-
constrained mass distributions (mass models):
MACS J1206.2-0847 (MACSJ1206) at redshift
z ¼ 0:439, MACS J0416.1-2403 (MACSJ0416)
at z ¼ 0:397 , and Abell S1063 (AS1063) at
z ¼ 0:348 (2–6); (ii) a sample that includes the
publicly available mass models for four Hub-
ble Frontier Fields clusters [HFF, (7)], namely
Abell 2744 at z ¼ 0:308, Abell 370 at z ¼ 0:375,
MACS J1149.5+2223 (MACSJ1149) at z ¼ 0:542,
and MACS J0717.5+3745 (MACSJ0717) at z ¼
0:545; and (iii) four clusters from the Cluster
Lensing and Supernova Survey with Hubble
[CLASH, (8)] project, with recent mass re-
constructions [(9), their “Gold” sample]: RX
J2129.7+0005 (RXJ2129) at z ¼ 0:234, MACS
J1931.8-2635 (MACSJ1931) atz ¼ 0:352,MACS
J0329.7-0211 (MACSJ0329) at z ¼ 0:450, and
MACS J2129.4-0741 (MACSJ2129) at z ¼ 0:587.
A color-composite image of MACSJ1206, one
of the clusters in our reference sample (i), is
shown in Fig. 1. Images of the other clusters
are shown in figs. S1 to S3.
Owing to their large masses, all these galaxy

clusters act as strong lenses, producing multi-
ple images of numerous background galaxies.
To reconstruct their mass distributions, we
combine the images with available spectro-
scopic data (3, 10). For each cluster, the mem-

bership of hundreds of galaxies is confirmed
spectroscopically, and their redshifts have been
measured. The spectroscopy has also allowed
identification of tens of multiply imaged back-
ground sources per cluster.
Mass models for the reference cluster sam-

ple were constructed by using the publicly avail-
able parametric lens inversion code LENSTOOL
(11) and published previously (6). Clusters were
modeled as a superposition of large-scale com-
ponents to account for the large-scale cluster
dark-matter halos, and small-scale components
that describe the substructure. We associate
the spatial positions of cluster member gal-
axies with the locations of dark-matter sub-
structure. The detailed mass distribution in
these cluster galaxies is constrained using
stellar kinematics measurements of cluster
member galaxies from the VLT spectroscopy.
The mass models for the clusters in the other

two samples are built similarly (12); however,
unlike the reference sample, themass distribu-
tion in the cluster member galaxies is not con-
strained using data from stellar kinematics.
For the HFF sample, a suite of lensing mass
models constructed independently by several
groups are publicly available from the Mikulski
Archive for Space Telescopes (MAST); we used
only those built using LENSTOOL for con-
sistency [e.g., (13, 14)]. For the “Gold” sam-
ple, we use publishedmodels (9) that were also
built with LENSTOOL.
The multiple images of distant sources lensed

by foreground galaxy clusters have angular
separations of several tens of arcseconds. The
most distorted gravitational arcs occur near
lines that enclose the inner regions of the clus-
ter, referred to as critical lines, which delineate
the region where strong lensing occurs. The
size of the critical lines depends on the red-
shifts of the background sources. Substructures
within each cluster act as smaller-scale gra-
vitational lenses embedded within the larger
lens. If these substructures are massive enough
and compact enough, they can also produce
additional local strong lensing events on much
smaller scales with separations of less than a
few arcseconds. These small-scale features are
expected to appear around the critical lines
produced by individual cluster galaxies. We re-
fer to these localized features as Galaxy-Galaxy
Strong Lensing (GGSL) events. Sufficiently high-
resolution mass reconstructions are necessary
to recover these smaller-scale critical lines. For
example, Fig. 1 shows the network of critical
lines in MACSJ1206 for two possible source
redshifts, z ¼ 1 and z ¼ 7. The cluster produces
a large-scale critical line extending to 15 to
30 arc sec and many smaller-scale critical lines
around individual substructures, as shown in
the insets. The presence of secondary critical
lines indicates that the substructures are cen-
trally concentrated and massive enough to
act as individual strong lenses.

RESEARCH

Meneghetti et al., Science 369, 1347–1351 (2020) 11 September 2020 1 of 5

1Osservatorio di Astrofisica e Scienza dello Spazio di Bologna,
Istituto Nazionale di Astrofisica Via Gobetti 93/3, I-40129,
Bologna, Italy. 2National Institute for Nuclear Physics, viale
Berti Pichat 6/2, I-40127 Bologna, Italy. 3Division of Physics,
Mathematics, and Astronomy, California Institute of
Technology, Pasadena, CA 91125, USA. 4Centro Euro-
Mediterraneo sui Cambiamenti Climatici (CMCC), viale Berti
Pichat 6/2, I-40127 Bologna, Italy. 5Dipartimento di Fisica e
Scienza della Terra, Università di Ferrara, via Saragat 1,
I-44122 Ferrara, Italy. 6Department of Astronomy, 52 Hillhouse
Avenue, Steinbach Hall, Yale University, New Haven, CT 06511,
USA. 7Dipartimento di Fisica e Astronomia, Università di
Bologna, via Gobetti 93/2, 40129 Bologna, Italy.
8Kapteyn Astronomical Institute, University of Groningen,
Postbus 800, 9700 AV Groningen, Netherlands. 9Osservatorio
Astronomico di Trieste, Istituto Nazionale di Astrofisica, Via
Tiepolo, 11, I-34131 Trieste, Italy. 10Institute for Fundamental
Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy.
11Department of Physics, University of Trieste, via Tiepolo 11,
I-34131 Trieste, Italy. 12National Institute for Nuclear Physics,
Via Valerio 2, I-34127 Trieste, Italy. 13Dipartimento di Fisica,
Università degli Studi di Milano, via Celoria 16, I-20133 Milano,
Italy. 14Niels Bohr Institute, University of Copenhagen,
Lyngbyvej 2, 4. sal 2100 Copenhagen, Denmark.
*Corresponding author. Email: massimo.meneghetti@inaf.it

on April 29, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

Meneghetti et al. (2020)



Strong Gravitational Lensing

• presence of substructure can cause…

…flux ratio anomalies

…astrometric effects

…time-delay effects

Zackrisson & Riehm (2009)

application

§ strong lensing - the “missing satellite problem”



Strong Gravitational Lensing

• astrometric effects…

…produce deflections of a few tens of milliarcsec
(and are therefore difficult to detect!)

application

Zackrisson & Riehm (2009)

§ strong lensing - the “missing satellite problem”
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Strong Gravitational Lensing

• time-delay

application

Zackrisson & Riehm (2009)

§ strong lensing - the “missing satellite problem”



Strong Gravitational Lensing

• time-ordering reversals…

Morgan et al., astro-ph/0605321

image B appears to lead image C
while all smooth models predict the opposite!

application

§ strong lensing - the “missing satellite problem”



Strong Gravitational Lensing

• time-ordering reversals…

…may be explained by the presence of a substructure population

Keeton & Moustakas, astro-ph/0805.0309

B

C

A

D
contours swapped
due to subhaloes

application

§ strong lensing - the “missing satellite problem”



Strong Gravitational Lensing application

• flux ratio anomalies unclear (possibly no?)

• image splitting upcoming…

• time ordering reversals possibly

§ strong lensing - the “missing satellite problem”



Strong Gravitational Lensing summary

2. source location: determines position of images (and their number)

1. lens mass distribution: determines type of images

§ is all about (resolved) images:

§ has application in:

• search for dark matter (substructure)
• planet detection
• determination of H0

• mass modelling of lens’ mass distrribution
• ...



Strong Gravitational Lensing
Alexander Knebe, Universidad Autonoma de Madrid


