Alexander Knebe, Universidad Autonoma de Madrid

... subtle differences of the same underlying phenomenon!

strong lensing

- lensing of background sources by foreground galaxies, clusters, ...
 - $(\rightarrow$ strong distortion, magnification, and multiple images)

microlensing

mainly referred to as lensing by objects of stellar (point) masses
 (→ no distortion, mainly magnification)

weak lensing

- lensing via large-scale structure
 - $(\rightarrow$ weak distortion and magnification)

strong lensing

• lensing of background $(\rightarrow \text{ strong distortion})$

microlensing

"Gravitational microlensing can be thought of as a version of strong gravitational lensing where the image separation is too small to be resolved." (Wambsganss, Living Review)

• mainly referred to as lensing by objects of stellar (point) masses $(\rightarrow$ no distortion, mainly magnification)

weak lensing

- lensing via large-scale structure
 - $(\rightarrow$ weak distortion and magnification)

• . . .

strong lensing:

• macrolensing > 0.1 arcsec

• millilensing ~ 10⁻³ arcsec

• microlensing ~ 10⁻⁶ arcsec

• nanolensing ~ 10⁻⁹ arcsec

theory

applications

- theory
- applications

I. lens mass distribution

2. source location

 α_1

I. lens mass distribution determines type of images

I. lens mass distribution determines type of images

I. lens mass distribution determines type of images

images from strong lenses

I. lens mass distribution determines type of images

^{*}just a repetition of results presented in the lecture "The Basics of Gravitational Lensing"

theory Strong Gravitational Lensing *α* << 1 $|\Phi| \ll c^2$ in general $v_{lens} << c$ • deflection angle $\vec{\alpha}(\vec{\theta}) = \nabla_{\theta} \varphi(\vec{\theta}) \quad \text{with} \quad \nabla_{\theta}^{2} \varphi(\vec{\theta}) = 2 \frac{\Sigma(\vec{\theta})}{\Sigma_{crit}}$ and $\Sigma_{crit} = \frac{c^{2}}{4\pi G} \frac{D_{S}}{D_{LS}D_{L}}$ • lens (ray-tracing) equation $\Sigma(\theta) = \int \rho(\theta, z) dz$ $\vec{\beta}\left(\vec{\theta}\right) = \vec{\theta} - \vec{\alpha}\left(\vec{\theta}\right)$

Strong Gravitational Lensing					theory
 in general 					$\hat{\alpha} << 1$ $ \Phi << c^{2}$ $v_{lens} << c$
 deflection angle 					→
	$\vec{\alpha}(\vec{\theta}) = \nabla_{\theta} \varphi(\vec{\theta})$	with	$ abla_{ heta}^2 arphi($	$(\vec{\theta}) = 2 - \frac{2}{3}$	$rac{\Sigma(heta)}{\Sigma_{crit}}$
• lens (ray-tracing)	equation			and	$\Sigma_{crit} = \frac{c^2}{4\pi G} \frac{D_s}{D_{Ls} D_L}$
	$\vec{\beta}\left(\vec{\theta}\right) = \vec{\theta} - \vec{\alpha}\left(\vec{\theta}\right)$			Σ	$\rho(\theta) = \int \rho(\theta, z) dz$
 magnification 	$\mu = \left \det \left(\frac{\partial \vec{\beta}}{\partial \vec{\theta}} \right) \right ^{-1}$				
• distortion	$A_{ij} = (1 - \kappa) \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$-\gamma \left(\begin{array}{c} \gamma \\ \gamma \end{array} \right)$	$\cos 2\varphi$ $\sin 2\varphi$	$\sin 2\varphi$ $-\cos 2\varphi$

- Iensing by point masses
 - deflection angle

$$\alpha = \frac{D_{LS}}{D_S D_L} \frac{4GM}{c^2 \theta}$$

• lens (ray-tracing) equation

$$\theta_{\pm} = \frac{1}{2} \left(\beta \pm \sqrt{\beta^2 + 4\theta_E^2} \right) \qquad \qquad \theta_E = \sqrt{\frac{D_{LS}}{D_S D_L}} \frac{4GM}{c^2}$$

 θ_E : Einstein radius

• magnification

$$\mu = |\mu_{+}| + |\mu_{-}| = \frac{u^{2} + 2}{u\sqrt{u^{2} + 4}} \qquad u = \frac{\beta}{\theta_{E}}$$

- Iensing by point masses
 - deflection angle

$$\alpha = \frac{D_{LS}}{D_S D_L} \frac{4GM}{c^2 \theta}$$

• magnification

$$\mu = |\mu_{+}| + |\mu_{-}| = \frac{u^{2} + 2}{u\sqrt{u^{2} + 4}} \qquad u = \frac{\beta}{\theta_{E}}$$

theory

- Iensing by extended masses
 - surface mass density:

$$\Sigma\left(\vec{\xi}\right) = \int \rho\left(\vec{\xi}, z\right) dz$$

$$dM\left(\vec{\xi}\right) = \Sigma\left(\vec{\xi}\right)d^2\xi$$

• deflection angles are additive:

$$\vec{\hat{\alpha}}(\vec{\xi}) = \frac{4G}{c^2} \int \frac{\vec{b}}{b^2} dM = \frac{4G}{c^2} \int \frac{\left(\vec{\xi} - \vec{\xi}'\right)}{\left(\vec{\xi} - \vec{\xi}'\right)^2} \Sigma\left(\vec{\xi}'\right) d^2 \xi'$$

- Iensing by extended masses:
 - deflection angle

$$\alpha = \frac{D_{LS}}{D_S} \frac{4GM(<\xi)}{c^2\xi} \quad \text{with } M(<\xi) = 2\pi \int \Sigma(\xi')\xi'd\xi'$$

• lens (ray-tracing) equation

$$\beta(\theta) = \theta - \frac{D_{LS}}{D_S D_L} \frac{4GM(<\theta)}{c^2\theta}$$

• magnification

$$\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta}$$

theory

circular lens

Iensing by extended masses: lens with constant surface mass density

• deflection angle

$$\alpha = \frac{\Sigma}{\Sigma_{crit}} \theta$$

• critical surface mass density

$$\Sigma_{crit} = \frac{c^2}{4\pi G} \frac{D_S}{D_{LS} D_L}$$

• lens with critical surface mass density

theory

- Iensing by extended masses:
 - deflection angle

$$\alpha = \frac{D_{LS}}{D_S} \frac{4\pi\sigma_v^2}{c^2}$$

• lens (ray-tracing) equation

$$\beta(\theta) = \theta - \alpha = \theta \pm \theta_E$$

• magnification

$$\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta} = \frac{\theta}{\beta} = \frac{\theta}{\theta \pm \theta_E} = \frac{1}{1 \pm \frac{\theta_E}{\theta}}$$

singular isothermal sphere

$$\rho(r) = \frac{\sigma_v^2}{2\pi G} \frac{1}{r^2}$$

theory

applications

theory

• applications:

micro-lensingstrong lensing

theory

• applications:

\circ micro-lensing:

- planet detection
- dark matter detection
- \odot strong lensing

theory

• applications:

\circ micro-lensing:

- planet detection
- dark matter detection
- \odot strong lensing

application

microlensing - planet detection

double feature in microlensing lightcurve

application

double feature in microlensing lightcurve

microlensing - planet detection

double feature in microlensing lightcurve

application

Strong Gravitational Lensing

-20

0

days since 31.0 July 2005 UT

20

microlensing - planet detection

theory

• applications:

o micro-lensing:

- planet detection
- dark matter detection
- \odot strong lensing

microlensing – dark matter detection

OGLE experiment (Optical Gravitational Lensing Experiment)

PLANET collaboration (Probing Lensing Anomalies Network)

MOA collaboration (Microlensing Observations in Astrophysics)

MACHO collaboration (Massive Compact Halo Object) (Udalski et al. 1992)

(Albrow et al. 1998)

(Muraki et al. 1999)

(Alcock et al. 2000)

POINT-AGAPE experiment (Kerins et al. 2001) (Pixel-lensing Observations with the Isaac Newton Telescope - Andromeda Galaxy Amplified Pixels Experiment)

EROS experiment (Expérience pour la Recherche d'Objets Sombres) (Afonso et al. 2003)

microlensing – dark matter detection

OGLE experiment (Optical Gravitational Lensing Experiment)

PLANET collaboration (Probing Lensing Anomalies Network)

MOA collaboration (Microlensing Observations in Astrophysics) (Muraki et al. 1999)

(Albrow et al. 1998)

(Udalski et al. 1992)

MACHO collaboration towards LMC (Alcock et al. 2000)

(Massive Compact Halo Object)

POINT-AGAPE experiment towards M31 (Kerins et al. 2001) (Pixel-lensing Observations with the Isaac Newton Telescope - Andromeda Galaxy Amplified Pixels Experiment)

EROS experiment towards SMC (Afonso et al. 2003) (Expérience pour la Recherche d'Objets Sombres)

application

microlensing – POINT-AGAPE survey

microlensing – results

MACHO	(LMC)	$f_{\rm MACHO} \sim 16\%$	(Bennett 2005)
POINT-AGAPE	(M3I)	$f_{\rm MACHO} > 20\%$	(Calchi Novati et al. 2005)
EROS-2	(SMC)	$f_{\rm MACHO} \sim 8\%$	(Tisserand et al. 2007)
OGLE-II	(LMC)	$f_{\rm MACHO} \sim 8\%$	(Wyrzykowski et al. 2009)

=> consistent with self-lensing!?

=> MACHO's are not the sought after dark matter...

concept

theory

• applications:

 \circ micro-lensing

 \circ strong lensing

strong lensing

CASTLES project (CfA-Arizona Space Telescope Lens Survey)

LSD survey (Lenses, Structures & Dynamics)

CLASS survey (Cosmic Lens All-Sky Survey) (Munoz et al. 1999)

(Koopmans & Treu 2002)

(Browne et al. 2003)

ANGLES network (Browne et al. 2004)

(Astrophysics Network for Galaxy Lensing Studies)

COSMOGRAIL (Eigenbrod et al. 2005)

(Cosmological Monitoring of Gravitational Lenses)

SLACS survey (Sloan Lens ACS Survey) (Bolton et al. 2006)

OMEGA mission (Moustakas et al. 2008) (Observatory for Multi-Epoch Gravitational Lens Astrophysics)

Note: this list does not claim to be complete!

concept

theory

• applications:

 \circ micro-lensing

\circ strong lensing:

- cosmic telescopes
- *H*₀ determination
- missing satellite problem

concept

theory

• applications:

 \circ micro-lensing

\circ strong lensing:

- cosmic telescopes
- *H*₀ determination
- missing satellite problem

strong lensing – cosmic telescopes

(a galaxy at redshift z=5.34, behind CL1358+62)

application

Strong Gravitational Lensing

strong lensing – cosmic telescopes

application

Strong Gravitational Lensing

strong lensing – cosmic telescopes

NASA, A. Fruchter and the ERO Team (STScl) • STScl-PRC00-08

HST • WFPC2

concept

theory

• applications:

 \circ micro-lensing

\circ strong lensing:

- cosmic telescopes
- H_0 determination
- missing satellite problem

- strong lensing measuring H₀
 - gravitational time delay ("Shapiro delay") Δt_{grav}

• gravitational time delay ("Shapiro delay") Δt_{grav}

$$n = 1 - \frac{2}{c^2} \Phi \approx \frac{c}{v}$$
 (cf. lecture "basics of lensing")

- strong lensing measuring H₀
 - gravitational time delay ("Shapiro delay") Δt_{grav}

strong lensing – measuring H₀

• gravitational time delay ("Shapiro delay") Δt_{grav}

$$\frac{c}{v} \approx 1 - \frac{2}{c^2} \Phi$$
$$\frac{c}{v} = \frac{c}{\Delta x / \Delta t} = \frac{c \Delta t}{\Delta x} = 1 - \frac{2}{c^2} \Phi \implies \Delta t = \frac{1}{c} \Delta x - \frac{2}{c^3} \Phi \Delta x$$

(integrate only the extra gravitational term...)

strong lensing – measuring H₀

• gravitational time delay ("Shapiro delay") Δt_{grav}

strong lensing – measuring H₀

• gravitational time delay ("Shapiro delay") Δt_{grav}

 $\Delta t_{grav} = \frac{2(1+z_L)}{c^3} \int_{c}^{observer} |\Phi| dl$ source

application

• gravitational time delay ("Shapiro delay") Δt_{grav}

• geometrical time delay (between lensed and un-lensed image) Δt_{geom}

• geometrical time delay (between lensed and un-lensed image) Δt_{geom}

application

...let's measure cosmological distances!

application

strong lensing – measuring H₀

- angular diameter distances*
 - $D_{S} = d_{A}(0, z_{S})$ $D_{L} = d_{A}(0, z_{L})$ $D_{LS} = d_{A}(z_{L}, z_{S})$

*because they ensure that the lens equation is fulfilled (as they are defined that way...)

application

application

strong lensing – measuring H₀

• time delay:

 $\Delta t = \frac{1 + z_L}{c} \frac{D_S D_L}{D_{LS}} \left(\frac{1}{2} (\theta - \beta)^2 - \varphi \right)$

cosmology

lens

angular diameter distances

$$\begin{split} D_{S} &= d_{A}(0, z_{S}) \\ D_{L} &= d_{A}(0, z_{L}) \\ D_{L} &= d_{A}(0, z_{L}) \\ D_{LS} &= d_{A}(z_{L}, z_{S}) \\ \approx \frac{1}{H_{0}} \\ R &= \frac{1}{H_{$$

application

application

strong lensing – measuring H₀

Kochanek et al. (2002)

	strong	lensing	 measuring 	H_0
--	--------	---------	-------------------------------	-------

method	H_0 [km/sec/Mpc]	reference
СМВ	/3	(Spergel et al. 2007)
SN Type la	62	(Sandage et al. 2006)
SN Type Ia	73	(Riess et al. 2005)
SZ effect	66	(Jones et al. 2005)
lensing	68	(Oguri et al. 2007, 16 lenses)
lensing	72	(Saha et al. 2007, 10 lenses)

strong lensing – measuring H₀

method	H_0 [km/sec/Mpc]	reference				
СМВ	73	(Spergel et al. 2007)				
SN Type Ia	62	(Sandage et al. 2006)				
SN Type la	73	(Riess et al. 2005)				
SZ effect	66	(Jones et al. 2005)				
lensing <u>20</u>						
check COSMOGRAIL & HULICOW IOI Interestion (https://shsuyu.github.io/H0LiCOW/site)						
(http://cosmogramepinen / Jana et al. 2007, 10 lenses)						

strong lensing – measuring H₀

Remember the tension for H0 measurements:

• local (Cepheids method) vs CMB measurements

Remember the tension for H0 measurements:

•local (Cepheids method) vs CMB measurements

concept

theory

• applications:

 \circ micro-lensing

\circ strong lensing:

- cosmic telescopes
- *H*₀ determination
- missing satellite problem

strong lensing - the "missing satellite problem"

ca. 50 satellites observed

application

- strong lensing the "missing satellite problem"
 - anomalous flux ratio are (frequently) observed...

A, B, C, and D are images of a background source

- strong lensing the "missing satellite problem"
 - anomalous flux ratio are (frequently) observed...

A, B, C, and D are images of a background source, but...

...image A is brighter than B, even though a smooth lens model predicts the opposite

- strong lensing the "missing satellite problem"
 - anomalous flux ratio are (frequently) observed...

A, B, C, and D are images of a background source, but...

...image A is brighter than B, even though a smooth lens model predicts the opposite

application

- strong lensing the "missing satellite problem"
 - anomalous flux ratio are (frequently) observed, but in general...

...there are too few subhaloes (in the central region) to explain the observed signal!?

Xu et al., astro-ph/0903.4559 (Aquarius simulation)

strong lei

anomal

...there

Meneghetti et al. (2020)

COSMOLOGY

An excess of small-scale gravitational lenses observed in galaxy clusters

Massimo Meneghetti^{1,2,3}*, Guido Davoli^{1,4}, Pietro Bergamini¹, Piero Rosati^{5,1}, Priyamvada Natarajan⁶, Carlo Giocoli^{1,5,7}, Gabriel B. Caminha⁸, R. Benton Metcalf⁷, Elena Rasia³¹⁰, Stefano Borgani^{9,10,11,12}, Francesco Calura¹, Claudio Grillu^{13,14}, Amata Mercurio¹⁵, Eros Vanzella¹

Cold dark matter (CDM) constitutes most of the matter in the Universe. The interplay between dark and luminous matter in dense cosmic environments, such as galaxy clusters, is studied theoretically using cosmological simulations. Observations of gravitational lensing are used to characterize the properties of substructures—the small-scale distribution of dark matter—in clusters. We derive a metric, the probability of strong lensing events produced by dark-matter substructure, and compute it for 11 galaxy clusters. The observed cluster substructures are more efficient lenses than predicted by CDM simulations, by more than an order of magnitude. We suggest that systematic issues with simulations or incorrect assumptions about the properties of dark matter could explain our results.

n the standard cosmological model, the matter content of the Universe is dominated by cold dark matter (CDM), collisionless particles that interact with ordinary matter (baryons) only through gravity. Gravitationally bound dark-matter halos form hierarchically, with the most massive systems forming through mergers of smaller ones. As structure assembles in this fashion large dark-

matter halos contain smaller-scale substructure in the form of embedded subhalos. The most massive dark-matter halos at the present time are galaxy clusters, with masses of $\sim 10^{16}$ to $\sim 10^{16}$ solar masses (M_{\odot}) one solar mass is $\sim 2 \times 10^{50}$ kg). Galaxy clusters contain about a thousand member galaxies that are hosted in subhalos. The detailed spatial distribution of dark matter in galaxy clusters can be mapped by observing gravitational lensing of distant background galaxies. When distant background galaxies are in near perfect alignment with the massive foreground cluster, strong gravitational

¹Osservatorio di Astrofisica e Scienza dello Spazio di Bologna Istituto Nazionale di Astrofisica Via Gobetti 93/3, I-40129, Bologna, Italy. ²National Institute for Nuclear Physics, viale Berti Pichat 6/2 I-40127 Bologna Italy ³Division of Physics Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA. ⁴Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), viale Berti Pichat 6/2, I-40127 Bologna, Italy. ⁵Dipartimento di Fisica e Scienza della Terra, Università di Ferrara, via Saragat 1, I-44122 Ferrara, Italy, ⁶Department of Astronomy, 52 Hillhouse Avenue, Steinbach Hall, Yale University, New Haven, CT 06511. USA. ⁷Dipartimento di Fisica e Astronomia, Università di Bologna, via Gobetti 93/2, 40129 Bologna, Italy, Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen, Netherlands. 9Osservatorio Astronomico di Trieste, Istituto Nazionale di Astrofisica. Via Tiepolo, 11, I-34131 Trieste, Italy. ¹⁰Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy. Department of Physics, University of Trieste, via Tiepolo 11 I-34131 Trieste, Italy. 12 National Institute for Nuclear Physics, Via Valerio 2, I-34127 Trieste, Italy. 13 Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy. 14Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, 4. sal 2100 Copenhagen. Denmark *Corresponding author. Email: massimo.meneghetti@inaf.it

Meneghetti et al., Science 369, 1347-1351 (2020) 11 September 2020

lensing occurs. Strong lensing—nonlinear effects produced by the deflection of light—results in multiple distorted images of individual background galaxies that can be detected in Hubble Space Telescope (HST) imaging.

The probability and strength of these nonlinear strong lensing effects can be predicted theoretically from simulations of structure formation (1) We test these predictions using observations of galaxy clusters, combining lensing data from the HST with spectroscopic data from the Very Large Telescope (VLT). Our observed sample of lensing clusters is split into three sets for this analysis: (i) a reference sample comprising three clusters with wellconstrained mass distributions (mass models): MACS J1206.2-0847 (MACSJ1206) at redshift z = 0.439, MACS J0416.1-2403 (MACSJ0416) at z = 0.397, and Abell S1063 (AS1063) at z = 0.348 (2-6); (ii) a sample that includes the publicly available mass models for four Hubble Frontier Fields clusters [HFF, (7)], namely Abell 2744 at z = 0.308. Abell 370 at z = 0.375. MACS J1149.5+2223 (MACSJ1149) at z = 0.542. and MACS J0717.5+3745 (MACSJ0717) at z =0.545; and (iii) four clusters from the Cluster Lensing and Supernova Survey with Hubble [CLASH, (8)] project, with recent mass reconstructions [(9), their "Gold" sample]: RX J2129.7+0005 (RXJ2129) at z = 0.234, MACS J1931.8-2635 (MACSJ1931) at z = 0.352, MACS J0329.7-0211 (MACSJ0329) at z = 0.450, and MACS J2129.4-0741 (MACSJ2129) at z = 0.587. A color-composite image of MACSJ1206, one of the clusters in our reference sample (i), is shown in Fig. 1. Images of the other clusters are shown in figs. S1 to S3.

Owing to their large masses, all these galaxy clusters act as strong lenses, producing multiple images of numerous background galaxies. To reconstruct their mass distributions, we combine the images with available spectroscopic data (3, 10). For each cluster, the mem-

bership of hundreds of galaxies is confirmed spectroscopically, and their redshifts have been measured. The spectroscopy has also allowed identification of tens of multiply imaged background sources per cluster.

Mass models for the reference cluster sample were constructed by using the publicly available parametric lens inversion code LENSTOOL (11) and published previously (6). Clusters were modeled as a superposition of large-scale components to account for the large-scale cluster dark-matter halos, and small-scale components that describe the substructure. We associate the spatial positions of cluster member galaxies with the locations of dark-matter substructure. The detailed mass distribution in these cluster galaxies is constrained using stellar kinematics measurements of cluster member galaxies from the VLT spectroscopy The mass models for the clusters in the other two samples are built similarly (12): however. unlike the reference sample, the mass distribution in the cluster member galaxies is not constrained using data from stellar kinematics. For the HFF sample, a suite of lensing mass models constructed independently by several groups are publicly available from the Mikulski Archive for Space Telescopes (MAST); we used only those built using LENSTOOL for consistency [e.g., (13, 14)]. For the "Gold" sample, we use published models (9) that were also built with LENSTOOL.

The multiple images of distant sources lensed by foreground galaxy clusters have angular separations of several tens of arcseconds. The most distorted gravitational arcs occur near lines that enclose the inner regions of the cluster, referred to as critical lines. which delineate the region where strong lensing occurs. The size of the critical lines depends on the redshifts of the background sources. Substructures within each cluster act as smaller-scale gravitational lenses embedded within the larger lens. If these substructures are massive enough and compact enough, they can also produce additional local strong lensing events on much smaller scales with separations of less than a few arcseconds. These small-scale features are expected to appear around the critical lines produced by individual cluster galaxies. We refer to these localized features as Galaxy-Galaxy Strong Lensing (GGSL) events, Sufficiently highresolution mass reconstructions are necessary to recover these smaller-scale critical lines. For example, Fig. 1 shows the network of critical lines in MACSJ1206 for two possible source redshifts, z = 1 and z = 7. The cluster produces a large-scale critical line extending to 15 to 30 arc sec and many smaller-scale critical lines around individual substructures, as shown in the insets. The presence of secondary critical lines indicates that the substructures are centrally concentrated and massive enough to act as individual strong lenses.

general...

ll region)

1 of 5

application

- strong lensing the "missing satellite problem"
 - time-ordering reversals...

Morgan et al., astro-ph/0605321

• is all about (resolved) images:

I. lens mass distribution: determines type of images

2. source location: determines position of images (and their number)

has application in:

- search for dark matter (substructure)
- planet detection
- $\ensuremath{\,^\circ}$ determination of H_0
- mass modelling of lens' mass distrribution
- ...

Alexander Knebe, Universidad Autonoma de Madrid

