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§ lensing in general

• accelerated laboratory:
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light ray
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strong equivalence principle:*
the forces of gravitation and acceleration are equivalent.

v(t)

*see Cosmology lecture #1
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figure taken from Narayan & Bartelmann (1995)

• deflection angle (in gravity)

theory

x

§ gravitational lensing

• effective index of refraction (in gravity, post-Newtonian…)

α̂ = − ∇⊥n dz∫ =
2
c2

∇ξΦ(ξ, z) dz∫
€ 

n =1− 2
c 2
Φ

𝜉0 = 𝑥0 + 𝑦0



The Basics of Gravitational Lensing

§ gravitational lensing - assumptions

theory



The Basics of Gravitational Lensing

§ gravitational lensing - assumptions

theory



The Basics of Gravitational Lensing

§ gravitational lensing - assumptions

thin screen approximation:

€ 

DLS ≈1Gpc
DL ≈1Gpc

Rcluster ≈1Mpc
Mcluster ≈10

14M⊗

vcluster ≈1000km /sec

theory



The Basics of Gravitational Lensing

§ gravitational lensing - assumptions

• deflection angles are small

• matter inhomogeneities causing lensing are local perturbations:
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Φ << c 2

vlens << c
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ˆ α <<1

theory
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DLS ≈1Gpc
DL ≈1Gpc

Rcluster ≈1Mpc
Mcluster ≈10

14M⊗

vcluster ≈1000km /sec

thin screen approximation:
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§ the lens equation

• reduced deflection angle:
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β = θ −α θ( )

important note:

• all angles are in fact 2D, i.e.

• in Astronomy the two angles are RA and DEC

• for the setup used here, we rotated

the system so that it becomes 1D
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§ the lens equation uses angular diameter distances dA:
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§ the lens equation uses angular diameter distances dA:
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• separates ‘weak’ from ‘strong’ lenses:

S > Scrit => multiple images possible
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334 Chapter 23. Gravitational lenses

to the galaxy. So these get bent more, and the result is that the whole beam is given
a little extra divergence.

The net effect is the same as with a glass lens: the extra divergence makes the
image appear closer, and therefore brighter. The figure shows that the overall bend-
ing of the path of the light moves the image away from the galaxy that acts as the
lens.

Why images get brighter
It is not difficult to see from Figure 23.3 on the previous page that the image shouldIn this section: we explain why a

diverging lens makes images
brighter. This applies to glass lenses

as well as gravitational lenses.

seem closer, but why should it be brighter? After all, the light rays are diverging
faster when they reach the astronomer; should not that make the image dimmer?

 

Astronomer

Galaxy acting as 
gravitational lens 

Galaxy 
being 
observed 

Figure 23.4. The brightness of the image depends on
how much light from the source arrives at a point in
the astronomer’s telescope. Therefore we draw light

rays that originate at the astronomer, the opposite of
the rays we drew for working out where the lensed
image was, in Figure 23.3 on the previous page. The

divergence of the rays means that they cover more of
the surface of the object (a galaxy in this diagram)
than they would have covered if the lens had not

been there. This compensates the divergence of the
rays from the galaxy, so that the brightness of any
small angular part it is the same as if the lens were

absent.

This apparent paradox is present in the theory of the glass lens, too.
Its resolution is to realize that the brightness of the image is not repre-
sented by the rays in Figure 23.3. They show the light from one point
on the star as it reaches many places in the telescope. The brightness
of the image, on the other hand, is determined by the rays that reach
a given place on the telescope from different places on the star: how
much light do they bring from the star?

As a first step in understanding what happens, we discuss what hap-
pens when the observer looks through the telescope at a distant galaxy,
rather than a tiny star. Consider a small pencil of rays from the ob-
server that reach the galaxy, as in Figure 23.4. Suppose in fact that
the pencil is so narrow that when it reaches the galaxy it covers only
a small part of the surface of the galaxy. (These are the rays that, say,
will bring the light to one pixel of the image of the galaxy on the ob-
server’s photographic plate.) Since the lens has made the pencil diverge
more than it would have if the lens were not there, these rays intersect
more of the surface of the galaxy than if the lens were not there. This
tends to bring more light into the observer’s eye. In fact, it exactly
compensates the divergence we noted in the first paragraph of this sec-

tion: the light from the surface of the galaxy is indeed being spread out more by the
lens, so less of it reaches us from any part of the galaxy. But the lens allows us to fit
more of the surface of the star into our pencil of rays, with the following net result.

A pencil of rays with a given angular width receives the same amount
of light from the galaxy regardless of whether the lens is present or
absent, provided that the pencil is smaller than the angular size of the
galaxy.

Naturally, this is true only if the lens is transparent; we don’t worry here about
absorption or scattering of the light by the lensing objects.

Therefore in Figure 23.4 we draw the same situation, but we trace rays back
from the astronomer to the star. They pass the galaxy and are lensed in exactly the
same way, which means they are given a little extra divergence. The effect of this is
that when they reach the star, they occupy more area on the star than they would
have if the galaxy had not been there.

The extra brightness of the image of the star comes from the fact that
more of the star is contributing light to this point at the entrance to the
telescope: the image of the star is brighter because more light from it
arrives at the telescope than if the lens were not there.

The word that astronomers use for the amount of light received from a piece
of the surface of an object into a given angle at the telescope (into a given pixel)

(Bernard Schutz, http://www.gravityfromthegroundup.org) 

http://www.gravityfromthegroundup.org
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*surface brightness = apparent brightness per unit angular area
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o singular isothermal sphere
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§ caustics and critical curves

• magnification:

theory

𝜇 =
𝑑Ω$2
𝑑Ω$3

= 𝑑𝑒𝑡
𝜕𝛽
𝜕�⃗�

%!
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§ caustics and critical curves
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µ =∞ ⇔ det ∂
! 
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∂
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θ 
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* 

+ 
, = 0• (formally) infinite magnification:

theory
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§ caustics and critical curves

(elliptical lens, figure taken from Natarayan & Bartelmann1995)
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µ =∞ ⇔ det ∂
! 
β 

∂
! 
θ 
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( 
) 
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+ 
, = 0• (formally) infinite magnification:
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det ∂
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β 

∂
! 
θ 

% 
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' 

( 

) 
* = 0

  

€ 

! 
β µ=∞ :

  

€ 

! 
θ µ=∞ :

caustics (in source plane)

critical curves (in lens plane)

caustics
(source plane)

critical curves
(lens plane)

theory
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§ caustics and critical curves

(elliptical lens, figure taken from Natarayan & Bartelmann1995)

  

€ 

µ =∞ ⇔ det ∂
! 
β 

∂
! 
θ 

' 

( 
) 

* 

+ 
, = 0• (formally) infinite magnification:

  

€ 

det ∂
! 
β 

∂
! 
θ 

% 

& 
' 

( 

) 
* = 0

  

€ 

! 
β µ=∞ :

  

€ 

! 
θ µ=∞ :

caustics
(source plane)

critical curves
(lens plane)

theory

sources close to a caustic…

…lead to spectacular arcs

caustics (in source plane)

critical curves (in lens plane)
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§ theory

• the basics of lensing…

o the lens equation

o the lensing potential

o critical surface mass density

o magnification

o caustics and critical curves

o distortion

o mass-sheet degeneracy

• some sample lenses…

o point mass

o extended mass

o singular isothermal sphere
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€ 

β1€ 

β2

€ 

θ1€ 

θ2

coordinate transformation from b to q :

(the lens equation)

€ 

β = θ −α θ( )

§ the distortion matrix

source image
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β1€ 

β2
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θ1€ 

θ2

§ the distortion matrix

€ 

Aij =
∂βi
∂θ j

=
1 0
0 1
% 

& 
' 

( 

) 
* −

∂α i

∂θ j

=
1 0
0 1
% 

& 
' 

( 

) 
* −

κ + γ1 γ 2
γ 2 κ − γ1

% 

& 
' 

( 

) 
* =

1 0
0 1
% 

& 
' 

( 

) 
* −

κ 0
0 κ

% 

& 
' 

( 

) 
* +

γ1 γ 2
γ 2 −γ1

% 

& 
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' 

( 

) 
* −

γ1 γ 2
γ 2 −γ1

% 

& 
' 

( 

) 
* 

coordinate transformation from b to q :

source image

€ 

β = θ −α θ( )
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β1€ 

β2
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θ1€ 

θ2

§ the distortion matrix
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coordinate transformation from b to q :

decomposition of a symmetric matrix* into a diagonal and a trace-free part... 

source image

€ 

β = θ −α θ( )

*why symmetric?
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€ 

β1€ 

β2
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θ1€ 

θ2

§ the distortion matrix
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coordinate transformation from b to q :

decomposition of a symmetric matrix* into a diagonal and a trace-free part... 

source image

€ 

β = θ −α θ( )

*Aij is symmetric, because a =▽j and hence ∂ai/∂qj=∂aj/∂qi
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β1€ 

β2
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θ1€ 

θ2

§ the distortion matrix
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β = θ −α θ( )
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β2
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Aij = (1−κ)
1 0
0 1
$ 

% 
& 

' 

( 
) −

γ1 γ 2
γ 2 −γ1

$ 

% 
& 

' 

( 
) 

§ the distortion matrix

source image
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€ 

β1€ 

β2

€ 

θ1€ 

θ2

§ the distortion matrix
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Aij = (1−κ)
1 0
0 1
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& 
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) −

γ1 γ 2
γ 2 −γ1

$ 

% 
& 
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κ =
Σ(θ )
Σcrit

=
1
2
∇θ
2ϕ(θ ) (exercise)

source image

magnification
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β1€ 

β2
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θ1€ 

θ2

§ the distortion matrix
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Aij = (1−κ)
1 0
0 1
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) −
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γ 2 −γ1
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source image

shear
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β1€ 

β2
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θ1€ 

θ2

§ the distortion matrix
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Aij = (1−κ)
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0 1
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) −
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γ 2 −γ1
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€ 

β1€ 

β2

€ 

θ1€ 

θ2

§ the distortion matrix
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Aij = (1−κ)
1 0
0 1
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& 
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) −

γ1 γ 2
γ 2 −γ1

$ 
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& 
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R

€ 

ϕ

€ 

a

€ 

b

how are k and g related to j, a, b?

source image
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β1€ 

β2

€ 

θ1€ 

θ2

§ the distortion matrix
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Aij = (1−κ)
1 0
0 1
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) −

γ1 γ 2
γ 2 −γ1
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ϕ
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a
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b
γ = γ ei2ϕ

a = R
1−κ − γ

b = R
1−κ + γ

γ = γ1
2 +γ2

2

source image
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β1€ 

β2

€ 

θ1€ 

θ2

§ the distortion matrix
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Aij = (1−κ)
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γ 2 −γ1
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b

2j because rotation about 180o maps ellipse onto itself
source imageγ = γ ei2ϕ

a = R
1−κ − γ

b = R
1−κ + γ

γ = γ1
2 +γ2

2
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β1€ 

β2

€ 

θ1€ 

θ2

§ the distortion matrix

€ 

R

€ 

ϕ

€ 

a

€ 

b

2j because rotation about 180o maps ellipse onto itself
source imageγ = γ ei2ϕ

a = R
1−κ − γ

b = R
1−κ + γ

γ = γ1
2 +γ2

2

Aij = (1−κ )
1 0
0 1
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%
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"
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$

%

&
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β1€ 

β2

€ 

θ1€ 

θ2

§ the distortion matrix

€ 

R

€ 

ϕ

€ 

a

€ 

b

source imageγ = γ ei2ϕ

a = R
1−κ − γ

b = R
1−κ + γ

γ = γ1
2 +γ2
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1 0
0 1

"

#
$
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&
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#
$
$

%

&
'
'

eigenvalues of the distortion matrix (exercise)
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€ 

β1€ 

β2

€ 

θ1€ 

θ2

§ the distortion matrix

€ 

R

€ 

ϕ

€ 

a

€ 

b

circular source  =>   measuring a and b gives reduced shear g=|g|/(1-k)

source imageγ = γ ei2ϕ

a = R
1−κ − γ

b = R
1−κ + γ

γ = γ1
2 +γ2

2

Aij = (1−κ )
1 0
0 1

"

#
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%

&
'−γ

cos2ϕ sin2ϕ
sin2ϕ −cos2ϕ

"

#
$
$

%

&
'
'

(exercise)
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• the basics of lensing…

o the lens equation

o the lensing potential

o critical surface mass density

o magnification

o caustics and critical curves

o distortion

o mass-sheet degeneracy

• some sample lenses…

o point mass

o extended mass

o singular isothermal sphere
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§ mass-sheet degeneracy – visualisation

theory
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θ
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O
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κ1

η1

b1 a1
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§ mass-sheet degeneracy – visualisation

theory

€ 

O

€ 

κ2

€ 

˜ S 

€ 

S1

€ 

θ

€ 

O

€ 

κ1

η1

b1 a1

<

a larger k2 > k1 leads to stronger deflection
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§ mass-sheet degeneracy – visualisation

theory
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S2

€ 

O

€ 

κ2

€ 

˜ S 

€ 

S1

€ 

θ

€ 

O

€ 

κ1

a larger k2 > k1 leads to stronger deflection,
but for h2<h1 we might get the same q  in the end

η1 η2

b1 a1
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§ mass-sheet degeneracy – visualisation

theory
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˜ S 
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S2

€ 

θ

€ 

O

€ 

κ2

€ 

˜ S 

€ 

S1

€ 

θ

€ 

O

€ 

κ1

a larger k2 > k1 leads to stronger deflection,
but for h2<h1 we might get the same q  in the end

η1 η2

b1 b2a1 a2
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§ mass-sheet degeneracy

theory

€ 

β = θ −α θ( )

€ 

αλ (θ) = (1− λ)θ + λα(θ)[ ]
...corresponds to transformation of deflection angle...

€ 

κλ (θ) = (1− λ) + λκ(θ)
transformation of projected surface mass...

€ 

α(θ) =∇θϕ(θ )

∇θα(θ) = Δθϕ(θ ) = 2κ(θ )

€ 

β = θ −αλ(θ) = θ − (1− λ)θ + λα(θ)[ ] = λθ − λα(θ)

€ 

β
λ

= θ −α(θ)

...which leads to an effective transformation of coordinates in source plane

=> such a shift is not observable!
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§ summary

• deflection angle

• lens (ray-tracing) equation

  

€ 

µ = det ∂
! 
β 
∂
! 
θ 

% 

& 
' 

( 

) 
* 

−1
• magnification

!
β
!
θ( ) =

!
θ −
!
α
!
θ( )

theory

• distortion
∂
!
β
∂
!
θ
= (1−κ ) 1 0

0 1

"

#
$

%

&
'−

γ1 γ2
γ2 −γ1

"

#

$
$

%

&

'
'

!
α(
!
θ ) =∇θϕ(

!
θ ) with ∇θ

2ϕ(
!
θ ) = 2κ (

!
θ )

€ 

Σcrit =
c 2

4πG
DS

DLSDL

κ (
!
θ ) = Σ(

!
θ )

Σcrit

Σ 𝜃 = .𝜌 𝜃, 𝑧 𝑑𝑧
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and now for some examples…

theory
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§ theory

• the basics of lensing…

o the lens equation

o the lensing potential

o critical surface mass density

o magnification

o caustics and critical curves

o distortion

o mass-sheet degeneracy

• some sample lenses…

o point mass

o extended mass

o singular isothermal sphere
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§ lensing by point masses

€ 

ˆ α =
2
c 2 ∇ξΦ(ξ) dz∫

€ 

ˆ α =
4GM
c 2

1
ξ=>

• deflection angle

sample lenses

x
…

(exercise)
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§ lensing by point masses

figure taken from Narayan & Bartelmann (1995)

€ 

ˆ α =
4GM
c 2ξ

object mass M impact parameter x deflection angle a

sun 1 M¤ 7x105 km 1.75”
star 1 M¤ 10-2pc 3x10-6”

galaxy 1011 M¤ 104pc 0.4”

galaxy cluster 1014 M¤ 2x105pc 20”

• deflection angle

• examples

x

sample lenses



The Basics of Gravitational Lensing

§ lensing by point masses

• lens (ray-tracing) equation

β θ( ) =θ −α θ( )

sample lenses



The Basics of Gravitational Lensing

β θ( ) =θ −α θ( )

§ lensing by point masses

• lens (ray-tracing) equation point mass:

α =
DLS

DS

α̂ =
DLS

DS

4GM
c2ξ

sample lenses



The Basics of Gravitational Lensing

β θ( ) =θ −α θ( )

§ lensing by point masses

• lens (ray-tracing) equation point mass:

α =
DLS

DS

α̂ =
DLS

DS

4GM
c2ξ

ξ = DLθ

sample lenses
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§ lensing by point masses

• lens (ray-tracing) equation

sample lenses

β θ( ) =θ − DLS

DSDL

4GM
c2

1
θ
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§ lensing by point masses

• lens (ray-tracing) equation

sample lenses

β θ( ) =θ − DLS

DSDL

4GM
c2

1
θ

€ 

θE =
DLS

DSDL

4GM
c 2

qE: Einstein radius
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€ 

θE =
DLS

DSDL

4GM
c 2

qE: Einstein radius

§ lensing by point masses

• lens (ray-tracing) equation

β θ( ) =θ −θE
2

θ

sample lenses
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€ 

θE =
DLS

DSDL

4GM
c 2

qE: Einstein radius

§ lensing by point masses

• lens (ray-tracing) equation

β θ( ) =θ −θE
2

θ

sample lenses

what are the possible images q for a given source b ?
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€ 

θE =
DLS

DSDL

4GM
c 2

§ lensing by point masses

• lens (ray-tracing) equation

β θ( ) =θ −θE
2

θ

0 =θ 2 −θβ −θE
2

=θ 2 −θβ +
1
2
β

"

#
$

%

&
'
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−
1
2
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"

#
$

%

&
'
2

−θE
2

=θ 2 −θβ +
1
2
β

"

#
$

%

&
'
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−
1
2
β

"

#
$

%

&
'
2

+θE
2

(

)
*
*

+

,
-
-

= θ −
β
2

"

#
$

%

&
'
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−
1
2
β

"

#
$

%

&
'
2

+θE
2

(

)
*
*

+

,
-
-

θ± −
β
2

"

#
$

%

&
'=

1
2
β

"

#
$

%

&
'
2

+θE
2

qE: Einstein radius

sample lenses
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€ 

θE =
DLS

DSDL

4GM
c 2

§ lensing by point masses

• lens (ray-tracing) equation

€ 

θ± =
1
2
β ± β 2 + 4θE

2( )=>

β θ( ) =θ −θE
2

θ

qE: Einstein radius

sample lenses
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€ 

θE =
DLS

DSDL

4GM
c 2

§ lensing by point masses

• lens (ray-tracing) equation

€ 

θ± =
1
2
β ± β 2 + 4θE

2( )=>

β θ( ) =θ −θE
2

θ

θ ±=θE =
DLS

DSDL

4GM
c2

b = 0:

€ 

θE

Einstein Ring

qE: Einstein radius

sample lenses
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€ 

θE =
DLS

DSDL

4GM
c 2

§ lensing by point masses

• lens (ray-tracing) equation

€ 

θ± =
1
2
β ± β 2 + 4θE

2( )=>

β θ( ) =θ −θE
2

θ

b = 0:

b ≠ 0:

€ 

θ± =
1
2
β ± β 2 + 4θE

2( )

€ 

θ+ > θE
θ− < θE

image outside Einstein ring

image inside Einstein ring

θ ±=θE =
DLS

DSDL

4GM
c2

qE: Einstein radius

sample lenses



The Basics of Gravitational Lensing

€ 

θE =
DLS

DSDL

4GM
c 2

§ lensing by point masses

• lens (ray-tracing) equation

€ 

θ± =
1
2
β ± β 2 + 4θE

2( )=>

β θ( ) =θ −θE
2

θ

b = 0:

b ≠ 0:

€ 

θ± =
1
2
β ± β 2 + 4θE

2( )

€ 

θ+ > θE
θ− < θE

image outside Einstein ring

image inside Einstein ring
Wambsganss (1998)

θ ±=θE =
DLS

DSDL

4GM
c2

qE: Einstein radius

sample lenses
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€ 

θE =
DLS

DSDL

4GM
c 2

§ lensing by point masses

• lens (ray-tracing) equation

b = 0:

b ≠ 0:

€ 

θ± =
1
2
β ± β 2 + 4θE

2( )

€ 

θ+ > θE
θ− < θE

image outside Einstein ring

image inside Einstein ring
B1030+074

€ 

θ± =
1
2
β ± β 2 + 4θE

2( )=>

β θ( ) =θ −θE
2

θ

θ ±=θE =
DLS

DSDL

4GM
c2

qE: Einstein radius

sample lenses
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§ lensing by point masses

• lens (ray-tracing) equation ... now in full 2D

sample lenses

𝜃!,±
𝜃",±

=
1
2
𝛽 ± 𝛽" + 4𝜃("

𝛽!
𝛽

𝛽"
𝛽 𝛽 = 𝛽!" + 𝛽""€ 

θE =
DLS

DSDL

4GM
c 2

qE: Einstein radius
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§ lensing by point masses

• magnification

µ± =
θ±
β
dθ±
dβ

= 1− θE
θ±

"

#
$

%

&
'

4"

#
$
$

%

&
'
'

−1

€ 

θ± =
1
2
β ± β 2 + 4θE

2( )

sample lenses



The Basics of Gravitational Lensing

§ lensing by point masses

• magnification

θ− <θE ⇒ € 

θ± =
1
2
β ± β 2 + 4θE

2( )

the image inside the Einstein radius has negative magnification,
meaning it is mirror-inverted

µ± =
θ±
β
dθ±
dβ

= 1− θE
θ±

"

#
$

%

&
'

4"

#
$
$

%

&
'
'

−1

sample lenses
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§ lensing by point masses

• magnification

µ± =
θ±
β
dθ±
dβ

= 1− θE
θ±

"

#
$

%

&
'

4"

#
$
$

%

&
'
'

−1

€ 

u =
β
θE

€ 

θ± =
1
2
β ± β 2 + 4θE

2( )

sample lenses
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§ lensing by point masses

• magnification

€ 

µ± =
θ±

β
dθ±

dβ
= 1− θE

θ±

% 

& 
' 

( 

) 
* 

4% 

& 
' 
' 

( 

) 
* 
* 

−1

=
u2 + 2

2u u2 + 4
±
1
2

€ 

µ = µ+ + µ− =
u2 + 2

u u2 + 4
=>

µ = µ+ +µ− =1

€ 

u =
β
θE

sample lenses
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• deflection angle

• lens (ray-tracing) equation

€ 

θE =
DLS

DSDL

4GM
c 2

€ 

θ± =
1
2
β ± β 2 + 4θE

2( )

• magnification

α =
DLS

DSDL

4GM
c2θ

€ 

u =
β
θE

€ 

µ = µ+ + µ− =
u2 + 2

u u2 + 4

§ lensing by point masses

qE: Einstein radius

sample lenses
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§ theory

• the basics of lensing…

o the lens equation

o the lensing potential

o critical surface mass density

o magnification

o caustics and critical curves

o distortion

o mass-sheet degeneracy

• some sample lenses…

o point mass

o extended mass
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figure adapted from Narayan & Bartelmann (1995)
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§ lensing by extended masses:     lens with constant surface mass density

• deflection angle

€ 

ˆ α =
4GM < ξ( )

c 2ξ
with

€ 

M < ξ( ) = πΣξ 2

• lens with critical surface mass density → perfectly focusing lens

α =
Σ
Σcrit

θ

sample lenses
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every light ray experiences the same deflection!
(independent of sphere size!)
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formally speaking there is a third solution qE=0
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§ lensing by extended masses: singular isothermal sphere
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≙ projected surface mass densityΣ 𝜃 = &𝜌 𝜃, 𝑧 𝑑𝑧



The Basics of Gravitational Lensing summary
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β2
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θ1€ 
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§ the distortion matrix
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γ 2 = ∂12ϕ = ∂21ϕ
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