XII. Gravitational waves

12.1. What are gravitational waves

Generalities

GW can provide us information about General Relativity in the high energy regime (high masses, strong gravitational forces,...).
Gravitational waves are ripples in space-time caused
by accelerating masses. They can be sourced by:

1. Bynary systems ($B H-B H, N S-N S, \ldots$)
2. Tensor perturbations (seeded by inflation, which affect the $C M B$)

NOTE:

Newton and Einstein had different conceptions about spacetime.

- Newton's - Einstein's flexible fixed space spacetime

3. Supernovae (core collapse)

A massive star ($\sim 10-30 \mu_{\theta}$) developes an iron core, which collapses in $T \sim 100 \mathrm{~ms}$. After the collapse there is a bounce (given by the equations of state), and in the end a neutron star is formed. This bounce produce GW (∞ outside our detectors).
From now o

History

In 1915-16 Einstein formulated General Relativity: $R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+1 g_{\mu \nu}=\frac{8 \pi G}{C^{4}} T_{\mu \nu}$ Soon after, he conjectured the existence of wave solutions, but was uncertained due to gave artifacts. He wrote a letter to Schwarzschild in 1916:
"Since then [November 14] I have handled Newton's case differently, of course, according to the final theory [the theory of General Relativity]. Thus there are no gravitational waves analogous to light waves. This probably is also related to the one-sidedness of the sign of the scalar T, incidentally [this implies the nonexistence of a "gravitational dipole"] [6].
Later Einstein found three types of waves, but Eddington showed two of them were spurius due to a choice of frame (not physical)
In 1936 he tried to publish a paper in Physical Review that GW do not exist, and the referee (Robertson) rejected it. So, Einstein sent an angry letter to the editor: July 27, 1936

Dear Sir

"We (Mr. Rosen and I) had sent you our manuscript for publication and had not authorized you to show it to specialists before it is printed. I see no reason to address the -in any case erroneous-comments of your anonymous expert. On the basis of this incident I prefer to publish the paper elsewhere."

Respectfully
Einstein
P.S. Mr. Rosen, who has left for the Soviet Union, has authorized me to represent him in this matter.

Later Einstein changed his mind again and now believed in GWS after realizing the error in his calculations. He then changed the title and published the paper as "On gravitationd waves".
"Note-The second part of this article was considerably altered by me after the departure to Russia of Mr. Rosen as we had misinterpreted the results of our formula. I want to thank my colleague Professor Robertson for their friendly help in clarifying the original error. I also thank Mr. Hoffmann your kind assistance in translation."

The argument was settled forever in 1957 by Fegnmann:

In a letter to Victor Weisskopf, Feynman recalls the 1957 conference in Chapel Hill and says, "I was surprised to find that a whole day of the conference was spent on this issue and that 'experts' were confused. That's what happens when one is considering energy conservation tensors, etc. instead of questioning, can waves do work?" [19].
Direct detection
Feynman's argumented that if GUs are neat: They displace the beads (rings around a cilinder) thus producing heat (due to friction).
If we defect the heat, they are real.
The first detector was built on 1960 by Joseph Weber. it would record small changes in current produced if a GW deformed the cilinder.

Indirect detection
A pulsar is a highly magnetized rotating neutron star that emits beans of EM radiation out of its magnetic poles.
They are very precise clocks. Eg. J0437-4715 has a period of 0.005757451936712637 secs with error of 1.7×10^{-17} secs. Having a pair of pulsars orbiting around each other, one can measure the properties of the system (seminajor axis, eccentricity,
 period,...).
In 1974, Huss and Taylor found that a pair of binary pulsars was inspiralling in perfect agreement with $G R$: pulsars are radiating energy, coming closer and closer to each other.
The better way to detect GDs is with interferometry. In 2002, 2iGO started operating until 2010. Adv $2 i 00$ started in 2015.

Differences between WIs and EM waves

- EM waves travel through space, Gus are ripples in spacetime itself.
- EM waves can be absorbed, Gus cannot.
- GWS are weakly interacting, EM waves strongly interact with charges (ISH)

- GWS are produced (at minimum) by quadrupole, EM by dipole
- GWs are travelling, time - dependent tidal forces
- GW allow for a measurement of the luminosity distance $d(z)$, but not the redshift (without a model)

- With EM counterpart, we can reconstruct $d_{L}(z)$ as for supernovae (GW + Gamma ray burst $[G R B]) \rightarrow$ GRB allows to measure z, Gi gives $d_{L}(z)$. Taking first order expansion, one can measure the hubble constant.
12.2. Formalism in $G R$

Linearization
Gravity is weak and GWs interact weakly, so we need to linearize $G R$ (perturbation theory).

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

We also know that $G R$ is diffeomorphiom invariant:
$x^{\mu} \longrightarrow x^{\prime \mu}(x) \longrightarrow g_{\mu \nu}(x) \longrightarrow g_{\mu \nu}^{\prime}\left(x^{\prime}\right)=\frac{\partial x^{\rho}}{\partial x^{\mu \mu}} \frac{\partial x^{\sigma}}{\partial x^{\prime \mu}} g_{e \sigma}(x) \quad$ (metric tensor transforms Small perturbations around empty space can be written as: as a tensor)

$$
\left.\begin{array}{r}
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \\
\left|h_{\mu \nu}\right|_{\ll 1} \\
x^{\mu} \rightarrow x^{\prime \mu}=x^{\mu}+\xi_{\mu}^{\mu}(x)
\end{array}\right\} \begin{array}{r}
h_{\mu \nu}(x) \longrightarrow h_{\mu \nu}^{\prime}\left(x^{\prime}\right)=h_{\mu \nu}(x)-\left(\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}\right) \\
\imath_{\text {introducing }} x^{\prime \mu} \text { in the metric transformation rule }
\end{array}
$$

where $\eta_{\mu \nu}$ is the Minkowski background and $h_{\mu \nu}$ is a small perturbation and ξ^{μ} tells how have we set up our coordinate system.
We can also ploy in the perturbation in the Riemann tensor and linearize it:

$$
R_{\mu \nu e \sigma}=\frac{1}{2}\left(2 \partial_{\rho} h_{\mu \sigma}+\partial_{\mu} \partial_{\sigma} h_{\nu \rho}-\partial_{\mu} \partial_{\rho} h_{\nu \sigma}-\partial_{\nu} \partial_{\sigma} h_{\mu \rho}\right)
$$

We can also introduce "bared" h :

$$
\left.\begin{array}{l}
h=q^{\mu \nu} h_{\mu \nu} \\
\bar{h}=h_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} h \\
L^{2}
\end{array}\right\} \begin{aligned}
& \bar{h} \equiv \eta^{\omega \omega} \bar{h}_{\mu \nu}=h-2 h=-h \\
& h_{\mu \nu}=h_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} \bar{h}
\end{aligned}
$$

Combining everything for Einstein's equation:

$$
\square \bar{h}_{\mu \nu}+\eta_{\mu \nu} \partial^{e} \partial^{\sigma} \bar{h}_{e^{\sigma}}-\partial^{e} \partial_{\nu} \bar{h}_{\mu e}-\partial^{e} \partial_{\mu} \bar{h}_{\nu e}=-\frac{16 \pi \sigma}{c^{4}} T_{\mu \nu}
$$

GR has some residual freedom, so we can choose a gauge (usually, the Lorentz gauge). This makes the $G R$ equations decouple.
Lorentz gauge: $\partial^{\mu} \bar{h}_{\mu \nu}=0$
This is possible because

$$
\begin{array}{cc}
\bar{h}_{\mu \nu} \rightarrow \bar{h}_{\mu \nu}^{\prime}=\bar{h}_{\mu \nu}-\left(\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}-\eta_{\mu \nu} \partial_{\rho} \xi^{\rho}\right) & \square=\eta_{\mu \nu} \partial^{\mu} \partial^{\nu} \\
\partial^{\nu} \bar{h}_{\mu \nu}=f_{\mu}(x) & \square \partial_{\mu} \partial^{\mu} \\
\partial^{\nu} \bar{h}_{\mu \nu} \rightarrow\left(\partial^{\nu} \bar{h}_{\mu \nu}\right)^{\prime}=\partial^{\nu} \bar{h}_{\mu \nu}-\square \xi_{\mu} \\
\square \xi_{\mu}=f_{\mu}(x)
\end{array}
$$

The final equations are:

$$
\begin{array}{ll}
\square \bar{h}_{\mu \nu}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu} & \text { (with sources) } \\
\square h_{\mu \nu}=0 & \text { (in vacuum) }
\end{array}
$$

We can use the gauge to remove spurious degrees of freedom (dog).
Let us find the number of degrees of freedom of $G R$. During the lecture on gauge inv. perturbations that the metric has 16 d.o.f. However, since it is simetric, only 10 or them are independent. 4 dog can be removed by choosing a coordinate system, and another 4 choosing the gauge. This leaves us with only 2 physical propagating degrees of freedom. If we go back to how the perturbations on the metric transforms (and knowing that we can choose ξ as we want):

$$
\square \xi_{\mu}=0 \quad h_{\mu \nu}(x) \longrightarrow h_{\mu \nu}^{\prime}\left(x^{\prime}\right)=h_{\mu \nu}(x)-\left(\partial_{\mu} \xi_{\nu}+\partial_{\omega} \xi_{\mu}\right)
$$

We decide that:
$\left.\begin{array}{l}\xi^{0} \longrightarrow \bar{h}=0 \quad(\text { trace }=0) \\ \xi^{i}(x) \rightarrow h^{0 i}(x)=0 \quad \text { (spatial part) }\end{array}\right\}$ transverse traceless gauge (TT)
Assuming that we are in vacuum, we can eliminate some of the $h_{i j}$:
$\partial^{\nu} \bar{h}_{\mu \nu}=0 \longrightarrow \partial^{\circ} h_{00}+\partial^{i} h_{0 i}=0 \longrightarrow \partial^{\circ} h_{\infty 0}=0$
Finally, the $T T$ gauge: $h^{\Delta \mu}=0 \quad h_{i}^{i}=0 \quad \partial^{j h_{i j}}=0$
Solutions in vacuum are plane waves

$$
\square \bar{h}_{\mu \nu}=0 \longrightarrow h_{i j}^{\top T}(x)=e_{i j}(\vec{k}) e^{i k x} \quad k^{\mu}=\left(\frac{\omega}{c}, \vec{k}\right) \quad \text { and } \quad \omega / c=|\vec{k}|
$$

The polarizations:
$\left.\begin{array}{l}\hat{n}=\vec{k} /|\vec{k}| \\ \partial^{j} h_{i j}=0\end{array}\right\} \begin{gathered}n^{i} h_{i j}=0 \quad \text { (using TT gauge we find a condition on the polarization) } \\ \downarrow\end{gathered}$

$$
h_{i j}^{\pi}=\left(\begin{array}{ccc}
h_{+} & h_{x} & 0 \\
h_{x} & -h_{+} & 0 \\
0 & 0 & 0
\end{array}\right)_{i j} \cos [\omega(t-z / c)]
$$

oscillatory part + phase
Once we have this, we can write the structure of spacetime:

$$
d s^{2}=-c^{2} d t^{2}+d z^{2}+\left(1+h_{+} \cos [\omega(t-z / c)]\right) d x^{2}+(1-h+\cos [\omega(t-z / c)]) d y^{2}+2 h x \cos [\omega(t-z / c)] d x d y
$$

Taking the expansion in Fourier space:

$$
h_{a b}(t, \mathbf{x})=\sum_{A=+, x} \int_{-\infty}^{\infty} d f \int d^{2} \hat{\mathbf{n}} \tilde{h}_{A}(f, \hat{\mathbf{n}}) e_{a b}^{A}(\hat{\mathbf{n}}) e^{-2 \pi i f(t-\hat{\mathbf{n}} \cdot \mathbf{x} / c)} \quad e_{a b}^{+}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)_{a b} \quad e_{a b}^{X}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)_{a b}
$$

Effect on the masses
To get a first approach to the effect on masses, we study of geodesic deviation for two geodesics:

$$
\left.\begin{array}{r}
x^{\mu}(\tau) \\
x^{\mu}(\tau)+\xi^{\mu}(\tau)
\end{array}\right\} \quad \frac{D^{2} \xi^{\mu}}{D \tau^{2}}=-R_{\nu \rho^{\mu}}^{\mu} \xi^{\rho} \frac{d x^{\omega}}{d \tau} \frac{d x^{\sigma}}{d z} \quad \longrightarrow \quad \ddot{\xi}^{i}=\frac{1}{2} \ddot{h}_{\langle i}^{T T} \xi^{j}
$$

\longrightarrow geodesics \longrightarrow geodesic deviation equation
Taking each polarization separatelly:
The + polarization:

$$
h_{a b}^{T T}=h_{+} \sin \omega t\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad(z=0)
$$

And substituting in the geodesic deviation equation:

$$
\left.\begin{array}{l}
\delta \ddot{x}=-\frac{h_{+}}{2}\left(x_{0}+\delta x\right) \omega^{2} \sin (\omega t) \\
\delta \ddot{y}=+\frac{h_{+}}{2}\left(y_{0}+\delta y\right) \omega^{2} \sin (\omega t)
\end{array}\right\} \rightarrow\left\{\begin{array}{l}
\delta x(t)=+\frac{h_{+}}{2} x_{0} \sin (\omega t) \\
\delta y(t)=-\frac{h_{+}}{2} y_{0} \sin (\omega t)
\end{array}\right.
$$

The x polarization
Following the same procedure gives:

ωt	$h+$	
π	0	0

$$
\left.\begin{array}{l}
\delta x(t)=\frac{h_{x}}{2} y_{0} \sin (\omega t) \\
\delta y(t)=\frac{h_{x}}{2} x_{0} \sin (\omega t)
\end{array}\right\}
$$

Cw energy
Feynman showed that GUs do work and carry energy. Energy of a wave is $E \sim h^{2}$, so we
need to expand to second order:

$$
R_{\mu \nu}=\widetilde{R}_{\mu \nu}+R_{\mu \nu}^{(1)}+R_{\mu \nu}^{(2)}+\ldots
$$

Rewritting the Einstein eqs and averaging over a wavelength:

$$
R_{\mu \nu}=\frac{8 \pi G}{c^{4}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right) \longrightarrow \tilde{R}_{\mu \nu}=-\left\langle R_{\mu \nu}^{(2)}\right\rangle+\frac{8 \pi G}{c^{4}}\left\langle T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right\rangle
$$

Averaging over a wavelength, the background part will remain and the first order term will go to O (closed cycles). We can take it to the right hand side and define an effective energy-momentum tensor for the gravitational waves.

$$
t_{\mu \nu}=-\frac{c^{4}}{8 \pi G}\left\langle R_{\mu \nu}^{(2)}-\frac{1}{2} \bar{g}_{\mu \nu} R^{(2)}\right\rangle \xrightarrow{E . \text { eq. }} \tilde{R}_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{R}=\frac{8 \pi G}{C^{4}}\left(\bar{T}_{\mu \nu}+t_{\mu \nu}\right)
$$

Do the expansion:

$$
\begin{aligned}
R_{\mu \nu}^{(2)}=\frac{1}{2}[& 1 \partial_{\mu} h_{\alpha \beta} \partial_{\nu} h^{\alpha \beta}+h^{\alpha \beta} \partial_{\mu} \partial_{\nu} h_{\alpha \beta}-h^{\alpha \beta} \partial_{\nu} \partial_{\beta} h_{\alpha \mu}-h^{\alpha \beta} \partial_{\mu} \partial_{\beta} h_{\alpha \nu}+h^{\alpha \beta} \partial_{\alpha} \partial_{\beta} h_{\mu \nu}+\partial^{\beta} h_{\nu}^{\alpha} \partial_{\beta} h_{\alpha \mu}-\partial^{\beta} h_{\nu}^{\alpha} \partial_{\alpha} h_{\beta \mu}-\partial_{\beta} h^{\alpha \beta} \partial_{\nu} h_{\alpha \mu} \\
& \left.+\partial_{\beta} h^{\alpha \beta} \partial_{\alpha} h_{\mu \nu}-\partial_{\beta} h^{\alpha \beta} \partial_{\mu} h_{\alpha \nu}-\frac{1}{2} \partial^{\alpha} h \partial_{\alpha} h_{\mu \nu}+\frac{1}{2} \partial^{\alpha} h \partial_{\nu} h_{\alpha \mu}+\frac{1}{2} \partial^{\alpha} h \partial_{\mu} h_{\alpha \nu}\right]
\end{aligned}
$$

The GW energy momentum tensor is: energy density of the system

$$
t_{\mu \nu}=\frac{c^{4}}{32 \pi G}\left\langle\partial_{\mu} h_{\alpha \beta} \partial_{\mu} h^{\alpha \beta}\right\rangle \longrightarrow t^{00}=\frac{c^{2}}{16 \pi \sigma}\left\langle\dot{h}_{+}^{2}+\dot{h}_{x}{ }^{2}\right\rangle
$$

The energy flux and momentum by the waves are (integrating over a volume/surface)

$$
E_{V}=\int_{V} d^{3} \times t^{00} \xrightarrow{\partial \mu t^{\mu \nu}=0} \begin{array}{ll}
\frac{d E}{d t}=\frac{c^{3} r^{2}}{32 \pi G} \int d \Omega\left\langle\dot{h}_{i j}^{\mathrm{TT}} \dot{h}_{i j}^{\mathrm{TT}}\right\rangle & \begin{array}{c}
\frac{d P^{k}}{d t}=-\frac{c^{3}}{32 \pi G} r^{2} \int d \Omega\left\langle\dot{h}_{i j}^{\mathrm{TT}} \partial^{k} h_{i j}^{\mathrm{TT}}\right\rangle \\
\frac{d E}{d A}=\frac{c^{3}}{16 \pi G} \int_{-\infty}^{\infty} d t\left(\dot{h}_{+}^{2}+\dot{h}_{x}^{2}\right)
\end{array} \\
\begin{array}{c}
J^{i}
\end{array}=\frac{c^{2}}{32 \pi G} \int d^{3} x\left[-\epsilon^{i k k} h_{a b}^{\mathrm{TT}} x^{k} \partial^{l} h_{a b}^{\mathrm{TT}}+2 \epsilon^{i k k} h_{a k}^{\mathrm{TT}} h_{a l}^{\mathrm{TT}}\right]
\end{array}
$$

Gravitational waves carry energy, momentum and angular momentum
Solutions with sources can be obtained using retarded Green functions:

$$
\left.\begin{array}{r}
\square h_{\mu \nu}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu} \\
\square_{x} G\left(x-x^{\prime}\right)=\delta^{4}\left(x-x^{\prime}\right)
\end{array}\right\} \quad \begin{aligned}
& \bar{h}_{\mu \nu}(x)=-\frac{16 \pi G}{c^{4}} \int d^{4} x^{\prime} G\left(x-x^{\prime}\right) T_{\mu \nu}\left(x^{\prime}\right) \\
& G\left(x-x^{\prime}\right)=-\frac{1}{4 \pi\left|\bar{x}-\bar{x}^{\prime}\right|} \delta\left(x_{\mu \text { et }}^{0}-x^{\prime 0}\right)
\end{aligned} \quad t_{\text {ret }}=t-\frac{\left|\bar{x}-\bar{x}^{\prime}\right|}{c}
$$

The solution can be written:

$$
F_{\mu \nu}(t, \bar{x})=\frac{46}{c^{4}} \int d^{3} x^{\prime} \frac{1}{\left|\vec{x}-\bar{x}^{\prime}\right|} T_{\mu \nu}\left(t-\frac{\left|\vec{x}-\bar{x}^{\prime}\right|}{c}, \vec{x}^{\prime}\right)
$$

Low velocity expansion

$$
\left|\vec{x}-\vec{x}^{\prime}\right|=r-\vec{x}^{\prime} \cdot \hat{n}+\theta\left(\frac{d^{2}}{r}\right) \longrightarrow T_{k l}\left(t-\frac{r}{c}+\frac{x^{\prime} \cdot \hat{n}}{c}, x^{\prime}\right) \simeq T_{k l}\left(t-\frac{r}{c}, x^{\prime}\right)+\frac{x^{\prime \prime} n^{i}}{c} \partial_{0} T_{k l}+\frac{1}{2 c^{c^{2}}} x^{i} x^{i} n^{i} n^{j} \partial_{0}^{2} T_{k l}+\ldots
$$

GW radiated power
Quadrupole
One can define the moments of the 00 part of the energy-momentum tensor as:

$$
\begin{aligned}
M & =\frac{1}{c^{2}} \int d^{3} x T^{00}(t, \mathbf{x}), \text { total mass/energy - conserved } \\
M^{i} & =\frac{1}{c^{2}} \int d^{3} x T^{00}(t, \mathbf{x}) x^{i}, \text { dipole (centre of mass) - removable } \\
M^{i j} & =\frac{1}{c^{2}} \int d^{3} x T^{00}(t, \mathbf{x}) x^{i} x^{j}, \text { quadrupole } \longrightarrow\left[h_{i}^{T T}(t, \vec{x})\right]_{\text {quad }}=\frac{1}{r} \frac{26}{c^{4}} \Lambda_{i j, k l}(\hat{u}) \ddot{M} k e(t-r / c) \\
M^{i j k} & =\frac{1}{c^{2}} \int d^{3} x T^{00}(t, \mathbf{x}) x^{i} x^{j} x^{k}, \text { octuple }
\end{aligned}
$$

Thus we can introduce the quadrupole tensor as:

$$
\left.\begin{array}{rl}
M^{k l} & =\left(M^{k l}-\frac{1}{3} \delta^{k l} M_{i i}\right)+\frac{1}{3} \delta^{k l} M_{i i} \\
Q^{-i j} \equiv M^{i j}-\frac{1}{8} \delta^{i j} M_{k k} & =\int d^{3} x \rho(t, \vec{x})\left(x^{i} x^{j}-\frac{1}{3} r^{2} \delta^{i j}\right)
\end{array}\right\}
$$

$$
\left[h_{i j}^{T T}(t, \vec{x})\right]_{\text {quad }}=\frac{1}{r} \frac{2 G}{c^{4}} \ddot{Q}_{i j}^{T T}\left(t-\frac{r}{c}\right)
$$

Amplitude in terms of the quadrupole tensor

If we have a distribution of matter (eg. orbits of BH) one just needs to calculate the cuadrupale tensor and derivate to obtain the amplitude, from the which one can calculate the power, energy, momentum, angular momentum,...
Radiated power and angular momentum:

$$
\begin{array}{ll}
\left(\frac{d P}{d \Omega}\right)_{\text {quad }}=\frac{r^{2} c^{3}}{32 \pi G}\left\langle\dot{h}_{i j}^{T T} h_{i j}^{T T}\right\rangle \\
J^{i}=\frac{c^{2}}{32 \pi G} \int d^{3} \times\left[-\varepsilon^{i j k} \dot{h}_{a b}^{T T} x^{k} \partial^{l} h_{a b}^{T T}+2 \varepsilon^{i k e} h_{a k}^{T T} \dot{h}_{a l}^{T T}\right]
\end{array} \quad \longrightarrow \quad \begin{aligned}
& P_{q u a d}=\frac{G}{5 c^{5}}\left(\ddot{Q}_{i j} \ddot{Q}_{i j}\right) \\
& \left.\left(\frac{d J^{i}}{d t}\right)_{\text {quad }}=\frac{2 G}{S c^{5}} \varepsilon^{i k \ell} \ddot{Q}_{k a} \dddot{Q}_{l a}\right\rangle
\end{aligned}
$$

In order to get GW, it is not only necessary to have a time-varying distribution of mass, but also to have a non-zero third derivative in order to radiate power.
Radiation from Octupole:

Note:
The power of the octupole is suppressed with respect to the octupole by a factor of $1 / \mathrm{c}^{2} \longrightarrow$ can get a good prediction without considering it

$$
\begin{aligned}
& O^{k e m}=\mu^{k e m}-\frac{1}{5}\left(\delta^{k e} \mu^{k k^{\prime} m}+\delta^{k m} \mu^{k^{\prime} k k^{\prime}}+\delta^{\text {lem }} \mu^{k x^{\prime} k^{\prime}}\right) \\
& \left.M^{\text {ilk }}(t)=\mu x_{0}^{i}(t) x_{0}^{j}(t) x_{0}^{k}(t)\right\} \\
& \left.\left(h_{\omega_{j}}^{T T}\right)_{\text {oct }}=\frac{1}{r} \frac{2 G}{3 c^{5}} \Lambda_{i j, k e}(\hat{n}) n_{m} \dddot{O}^{\mathrm{Klm}}\right\} \\
& P=\frac{G}{c^{5}}\left[\frac{1}{5}\left\langle\dddot{Q}_{i j} \dddot{Q}_{i j}\right\rangle+\frac{1}{c^{2}} \frac{1}{189}\left\langle\frac{d^{4} \mathcal{O}_{i j k}}{d t^{4}} \frac{d^{4} \mathcal{O}_{i j k}}{d t^{4}}\right\rangle+O\left(\frac{v^{4}}{c^{4}}\right)\right]
\end{aligned}
$$

Particular cases
Inspiral binaries in circular orbits.
viewing angle
$\omega_{s}{ }^{2}=\frac{G m}{R^{3}} \rightarrow$ Frequency of the orbit

$$
\left\{\begin{array}{l}
x_{0}(t)=R \cos \left(\omega_{s} t+\frac{\pi}{2}\right) \\
y_{0}(t)=R \sin \left(\omega_{8} t+\frac{\pi}{2}\right) \\
z_{0}(t)=0
\end{array}\right.
$$

$$
\xrightarrow[\text { reduced mass }]{\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}}
$$

$$
h_{+}(t ; \theta, \phi)=\frac{1}{r} \frac{4 G \mu \omega_{s}^{2} R^{2}}{c^{4}}\left(\frac{1+\cos ^{2} \theta}{2}\right) \cos \left(2 \omega_{s} t_{\mathrm{ret}}+2 \phi\right)
$$

$$
\left.h_{\times}(t ; \theta, \phi)\right)=\frac{1}{r} \frac{4 G \mu \omega_{s}^{2} R^{2}}{c^{4}} \cos \theta \sin \left(2 \omega_{s} t_{\mathrm{ret}}+2 \phi\right)
$$

Power:

$$
\left(\frac{d P}{d \Omega}\right)_{q \operatorname{lod}}=\frac{r^{2} c^{3}}{16 \pi G}\left\langle\dot{h}_{+}^{2}+\dot{h}_{x}^{2}\right\rangle \longrightarrow\left(\frac{d P}{d \Omega}\right)_{q u a d}=\frac{2 G \mu^{2} R^{4} u_{0}^{6}}{\pi c^{5}} g(\theta) \quad g(\theta)=\left(\frac{1+\cos ^{2} \theta}{2}\right)^{2}+\cos ^{2} \theta
$$

$P_{\text {quad }}=\frac{82}{5} \frac{G \mu^{2}}{C^{5}} R^{4} \omega_{s}^{6}=\frac{1}{10} \frac{G \mu^{2}}{C^{5}} R^{4} \omega^{6} \quad \omega=2 \omega_{s} \leftarrow \omega$ Frequency of the $G \omega_{s}$
Introduce the chirp mass (to simply the expressions for the polarizations)

$$
\begin{aligned}
& \omega_{S}^{2}=\frac{G_{m}}{R^{3}} \\
& M_{C}=\mu^{3 / 5} m^{2 / s}=\frac{\left(m_{1} m_{2}\right)^{3 / 5}}{\left(m_{1}+m_{2}\right)^{1 / 5}} \quad \begin{array}{l}
\longrightarrow(t)=\frac{4}{r}\left(\frac{G M_{c}}{c^{2}}\right)^{5 / 3}\left(\frac{\pi f_{\mathrm{gw}}}{c}\right)^{2 / 3} \frac{1+\cos ^{2} \theta}{2} \cos \left(2 \pi f_{\mathrm{gw}} t_{\mathrm{ret}}+2 \phi\right) \\
h_{\times}(t)=\frac{4}{r}\left(\frac{G M_{c}}{c^{2}}\right)^{5 / 3}\left(\frac{\pi f_{\mathrm{gw}}}{c}\right)^{2 / 3} \cos \theta \sin \left(2 \pi f_{\mathrm{gw}} t_{\mathrm{ret}}+2 \phi\right) \\
P=\frac{32}{5} \frac{c^{5}}{G}\left(\frac{G M_{\mathrm{c}} \omega_{\mathrm{gw}}}{2 c^{3}}\right)^{10 / 3}
\end{array} .
\end{aligned}
$$

The system is losing energy, thus the frecuency charges: they get closer

$$
\left.\begin{array}{c}
\omega_{s}^{2}=\frac{G_{m}}{R^{3}} \\
E_{\text {orbit }}=E_{k \text { in }}+E_{p o t}=-\frac{G m_{1} m_{2}}{2 R}
\end{array} \longrightarrow \quad \begin{array}{r}
\dot{R}=-\frac{2}{3} R \frac{\dot{\omega}_{s}}{\omega_{s}}=-\frac{2}{3} R \frac{\dot{\omega}_{s}}{\omega_{s}} \\
E_{\text {orbit }}=-\left(\frac{G^{2} \mu_{c}^{5} \omega_{g \omega}^{2}}{32}\right)^{1 / 3}
\end{array}\right\} \quad \dot{\omega}_{g w}=\frac{12}{5} 2^{1 / 3}\left(\frac{G M_{c}}{c^{3}}\right)^{5 / 3} \omega_{g w^{1 / 3}}
$$

One can solve the differential equation to get the time to coalescence (when they merge):

$$
\begin{aligned}
& \dot{\rho}_{g \omega}=\frac{96}{5} \pi^{8 / 3}\left(\frac{G M_{c}}{c^{3}}\right)^{5 / 3} \delta_{g w}^{11 / 3} \longrightarrow \rho_{g \omega}(\tau)=\frac{1}{\pi}\left(\frac{5}{256} \frac{1}{z}\right)^{3 / 8}\left(\frac{G M_{c}}{c^{8}}\right)^{-5 / 8} \simeq 134 \mathrm{~Hz}\left(\frac{1.21 \mu_{0}}{\mu_{c}}\right)^{5 / 8}\left(\frac{15}{z}\right)^{3 / 8} \\
& \tau \equiv t_{\text {coal }}-t
\end{aligned}
$$

Charge of amplitude with time: (solving numerically and substituting).
h
After the merger $h \rightarrow 0$

Eliptical orbits
Taking again a semi Keplerian/rewtonian approximation: One can calculate the second moment, obtaining:

$$
M_{a b}=\mu r^{2}\left(\begin{array}{ll}
\cos ^{2} \psi & \sin \psi \cos \psi \\
\sin \psi \cos \psi & \sin ^{2} \psi
\end{array}\right)_{a b}
$$

Radiated power:

$$
\begin{aligned}
& e^{2}=1+\frac{2 E L^{2}}{G^{2} m^{2} \mu^{3}} \\
& \dot{\psi}=\frac{(G m R)^{1 / 2}}{r^{2}} \\
& r=\frac{a\left(1-e^{2}\right)}{1+e \cos \psi}
\end{aligned}
$$

$$
\begin{aligned}
P(\psi) & =\frac{G}{5 c^{5}}\left[\dddot{M}_{11}^{2}+\dddot{M}_{22}^{2}+2 \dddot{M}_{12}^{2}-\frac{1}{3}\left(\dddot{M}_{11}+\dddot{M}_{22}\right)^{2}\right]=\frac{2 G}{15 c^{5}}\left[\dddot{M}_{11}^{2}+\dddot{M}_{22}^{2}+3 \dddot{M}_{12}^{2}-\dddot{M}_{11} \dddot{M}_{22}\right] \\
& =\frac{8 G^{4}}{15 c^{5}} \frac{\mu^{2} m^{3}}{a^{5}\left(1-e^{2}\right)^{5}}(1+e \cos \psi)^{4}\left[12(1+e \cos \psi)^{2}+e^{2} \sin ^{2} \psi\right]
\end{aligned}
$$

Average over orbit ($T \equiv$ period)

$$
\begin{aligned}
P \equiv & \equiv \frac{1}{T} \int_{0}^{T} d t P(\psi)=\frac{\omega_{0}}{2 \pi} \int_{0}^{2 \pi} \frac{d \psi}{\dot{\psi}} P(\psi)=\left(1-e^{2}\right)^{3 / 2} \int_{0}^{2 \pi} \frac{d \psi}{2 \pi}(1+e \cos \psi)^{-2} P(\psi) \\
& =\frac{8 G^{4} \mu^{2} m^{3}}{15 c^{5} a^{5}}\left(1-e^{2}\right)^{-7 / 2} \\
P & =\frac{32 G^{4} \mu^{2} m^{3}}{5 c^{5} a^{5}} f(e) \quad f(e)=\frac{1}{\left(1-e^{2}\right)^{7 / 2}}\left(1+\frac{73}{24} e^{2}+\frac{37}{96} e^{4}\right)
\end{aligned}
$$

One can find the change in period:

$$
\left.\begin{array}{l}
a=\frac{G m \mu}{2|E|} \\
\omega_{0}^{2}=\frac{G m}{a^{3}} \\
T=\text { const } x(-E)^{-3 / 2}
\end{array}\right\} \begin{aligned}
& \frac{\dot{T}}{T}=-\frac{96}{5} \frac{G^{5 / 3} \mu m^{2 / 3}}{c^{5}}\left(\frac{T}{2 \pi}\right)^{-8 / 3} f(e) \\
& \frac{\text { Measwed }}{\text { for pulsar }}
\end{aligned}
$$

Change in orbital elements: the system is radiating energy and angular momentum. ($E \rightarrow$ related to semimajor axis. $J \rightarrow$ related to the eccentricity)

$$
\begin{array}{lll}
\frac{d E}{d t}=-\frac{32}{5} \frac{G^{4} \mu^{2} m^{3}}{c^{5} a^{5}} \frac{1}{\left(1-e^{2}\right)^{7 / 2}}\left(1+\frac{73}{24} e^{2}+\frac{37}{96} e^{4}\right) & \text { translate to } & \frac{d a}{d t}=-\frac{64}{5} \frac{G^{3} \mu m^{2}}{c^{5} a^{3}} \frac{1}{\left(1-e^{2}\right)^{7 / 2}}\left(1+\frac{73}{24} e^{2}+\frac{37}{96} e^{4}\right) \\
\frac{d L}{d t}=-\frac{32}{5} \frac{G^{7 / 2} \mu^{2} m^{5 / 2}}{c^{5} a^{7 / 2}} \frac{1}{\left(1-e^{2}\right)^{2}}\left(1+\frac{7}{8} e^{2}\right) & \text { dippequatioe } & \frac{d e}{d t}=-\frac{304}{15} \frac{G^{3} \mu m^{2}}{c^{5} a^{4}} \frac{e}{\left(1-e^{2}\right)^{5 / 2}}\left(1+\frac{121}{304} e^{2}\right)
\end{array}
$$

Orbit circularization (dividing both equations):

$$
\frac{d a}{d e}=\frac{12}{19} a \frac{1+(73 / 24) e^{2}+(37 / 96) e^{4}}{e\left(1-e^{2}\right)\left[1+(121 / 304) e^{2}\right]} \longrightarrow a(e)=C_{0} \frac{e^{12 / 4 a}}{1-e^{2}}\left(1+\frac{121}{30^{4}} e^{2}\right)^{870 / 2299}
$$

The orbits tend to $e=1$: they circularize

Time to coalescence (egg. Hulse-Taylor pulsar)

$$
\begin{aligned}
\tau\left(a_{0}, e_{0}\right) & =\frac{15}{304} \frac{c^{5}}{G^{3} m^{2} \mu} \int_{0}^{e_{0}} d e \frac{a^{4}(e)\left(1-e^{2}\right)^{5 / 2}}{e\left(1+\frac{121}{304} e^{2}\right)} \\
& \simeq 9.829 \mathrm{Myr}\left(\frac{T_{0}}{1 \mathrm{hr}}\right)^{8 / 3}\left(\frac{M_{\odot}}{m}\right)^{2 / 3}\left(\frac{M_{\odot}}{\mu}\right) F\left(e_{0}\right)
\end{aligned}
$$

Rotating spherically symetric objects

A spherically symmetric rotating matter distribution does NOT emit ow. Let us see why. (spoiler: It has to do with the third derivative of the quadrupole moment.
The moment of inertia tensor is given by:

$$
\left.\begin{array}{l}
I_{i j}=\int_{V} \rho\left(r^{2} \delta_{i j}-x_{i} x_{j}\right) d x^{3} \\
)^{2}+\left(\frac{x^{2}}{b}\right)^{2}+\left(\frac{x^{3}}{c}\right)^{2}=1
\end{array}\right\} I_{I_{i j}}=\frac{M}{5}\left(\begin{array}{ccc}
b^{2}+c^{2} & 0 & 0 \\
0 & c^{2}+a^{2} & 0 \\
0 & 0 & a^{2}+b^{2}
\end{array}\right)=\left(\begin{array}{ccc}
I_{1} & 0 & 0 \\
0 & I_{2} & 0 \\
0 & 0 & I_{3}
\end{array}\right)
$$

Going to a rotating frame:

$$
\begin{array}{lll}
x_{i}=R_{i j} x_{j}^{\prime}, & I_{i j} & =R_{i k} R_{j l} I_{k l}^{\prime}=\left(R I^{\prime} R^{T}\right)_{i j} \\
R_{i j}=\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right), \varphi=\Omega t \longrightarrow & =\left(\begin{array}{cccc}
I_{1} \cos ^{2} \varphi+I_{2} \sin ^{2} \varphi & -\sin \varphi \cos \varphi\left(I_{2}-I_{1}\right) & 0 \\
-\sin \varphi \cos \varphi\left(I_{2}-I_{1}\right) & I_{1} \sin ^{2} \varphi+I_{2} \cos ^{2} \varphi & 0 \\
0 & 0 & I_{3}
\end{array}\right)
\end{array}
$$

The quadrupole tensor is given by:

$$
\left.\begin{array}{rl}
Q_{i j}= & -\left(I_{i j}-\frac{1}{3} \delta_{i j} T_{r} I\right)=-I_{i j}+\text { constant } \\
& \operatorname{Tr} I=I_{1}+I_{2}+I_{3}=\text { constant }
\end{array}\right\} \rightarrow Q_{i j}=\frac{I_{2}-I_{1}}{2}\left(\begin{array}{ccc}
\cos 2 \varphi & \sin 2 \varphi & 0 \\
\sin 2 \varphi & -\cos 2 \varphi & 0 \\
0 & 0 & 0
\end{array}\right)+\text { constant }
$$

For spherically symmetric objects, $a=b=c$:

$$
\left.\begin{array}{l}
I_{1}=\frac{M}{5}\left(b^{2}+c^{2}\right) \\
I_{2}=\frac{M}{5}\left(c^{2}+a^{2}\right)
\end{array}\right\} Q_{i j}=0
$$

In general (if we have a small deviation):
$\epsilon \equiv \frac{a-b}{(a+b) / 2} \longrightarrow \frac{I_{2}-I_{4}}{I_{3}}=\frac{1}{2} \epsilon \frac{a^{2}+b^{2}+2 a b}{a^{2}+b^{2}}=\epsilon+\theta\left(\epsilon^{3}\right)$
$Q_{i j}=\frac{\epsilon I_{3}}{2}\left(\begin{array}{ccc}\cos 2 \varphi & \sin 2 \varphi & 0 \\ \sin 2 \varphi-\cos 2 \varphi & 0 \\ 0 & 0 & 0\end{array}\right)+$ constant $\rightarrow \begin{aligned} & \text { Radiated } \\ & \text { power }\end{aligned} \quad L_{6 \omega}=\frac{326}{5 c^{2}} \Omega^{6} \epsilon^{2} I^{2}$
\longrightarrow small, but existent

The Post-Newtonian expansion (PN)

Decomposing the metric and $T_{\mu \nu}$ in terms of V / C :
$g_{00}=-1+{ }^{(2)} g_{00}+$
${ }^{(4)} g_{00}+$
${ }^{(6)} g_{00}+\ldots$,
$T^{00}={ }^{(0)} T^{00}+{ }^{(2)} T^{00}+\ldots$,
$g_{0 i}=$
${ }^{(3)} g_{0 i}+$
${ }^{(5)} g_{0 i}+\ldots$,
$T^{0 i}={ }^{(1)} T^{0 i}+{ }^{(3)} T^{0 i}+\ldots$,
$g_{i j}=\quad \delta_{i j}+{ }^{(2)} g_{i j}+$
${ }^{(4)} g_{i j}+\ldots$,
$T^{i j}={ }^{(2)} T^{i j}+{ }^{(4)} T^{i j}+\ldots$.

And expanding the geodesic equation:

$$
\frac{d^{2} x^{i}}{d \tau^{2}}=-\Gamma_{\mu \nu}^{i} \frac{d x^{\mu}}{d \tau} \frac{d x_{0}}{d \tau} \longrightarrow \frac{d^{2} x^{i}}{d t^{2}} \simeq-c^{2} \Gamma_{00}^{i}=c^{2}\left(\frac{1}{2} \partial^{i} h_{\infty}-\partial_{0} h_{0}^{i}\right)=\frac{c^{2}}{2} \partial^{i} h_{\infty}
$$

The expansion becomes:

$$
\frac{d y_{1}^{i}}{d t}=v_{1}^{i} \quad \frac{d v_{1}^{i}}{d t}=A_{1}^{i}+\frac{1}{c^{2}} B_{1}^{i}+\frac{1}{C^{4}} C_{1}^{i}+\frac{1}{C^{8}} D_{1}^{i}+\theta(6)
$$

where:

$$
C_{1}^{i}=\frac{G m_{2}}{r^{2}}\left\{n ^ { i } \left[-2 v_{2}^{4}+4 v_{2}^{2}\left(v_{1} v_{2}\right)-2\left(v_{1} v_{2}\right)^{2}+\frac{3}{2} v_{1}^{2}\left(n v_{2}\right)^{2}\right.\right.
$$

Not conservative!!!

$$
\begin{aligned}
& A_{1}^{i}=-\frac{G m_{2}}{r^{2}} n^{i}, \quad 0 \mathrm{PN}(\text { Newton's term }) \\
& B_{1}^{i}=\frac{G m_{2}}{r^{2}}\left\{n^{i}\right. {\left[-v_{1}^{2}-2 v_{2}^{2}+4\left(v_{1} v_{2}\right)+\frac{3}{2}\left(n v_{2}\right)^{2}+5 \frac{G m_{1}}{r}+4 \frac{G m_{2}}{r}\right] } \\
&\left.+\left(v_{1}^{i}-v_{2}^{i}\right)\left[4\left(n v_{1}\right)-3\left(n v_{2}\right)\right]\right\},
\end{aligned}
$$

$$
+\frac{9}{2} v_{2}^{2}\left(n v_{2}\right)^{2}-6\left(v_{1} v_{2}\right)\left(n v_{2}\right)^{2}-\frac{15}{8}\left(n v_{2}\right)^{4}
$$

$$
+\frac{G m_{1}}{r}\left(-\frac{15}{4} v_{1}^{2}+\frac{5}{4} v_{2}^{2}-\frac{5}{2}\left(v_{1} v_{2}\right)+\frac{39}{2}\left(n v_{1}\right)^{2}-39\left(n v_{1}\right)\left(n v_{2}\right)+\frac{17}{2}\left(n v_{2}\right)^{2}\right)
$$

$$
\left.+\frac{G m_{2}}{r}\left(4 v_{2}^{2}-8\left(v_{1} v_{2}\right)+2\left(n v_{1}\right)^{2}-4\left(n v_{1}\right)\left(n v_{2}\right)-6\left(n v_{2}\right)^{2}\right)\right]
$$

$$
+\left(v_{1}^{i}-v_{2}^{i}\right)\left[v_{1}^{2}\left(n v_{2}\right)+4 v_{2}^{2}\left(n v_{1}\right)-5 v_{2}^{2}\left(n v_{2}\right)-4\left(v_{1} v_{2}\right)\left(n v_{1}\right)\right.
$$

$$
+4\left(v_{1} v_{2}\right)\left(n v_{2}\right)-6\left(n v_{1}\right)\left(n v_{2}\right)^{2}+\frac{9}{2}\left(n v_{2}\right)^{3}
$$

Reason for GWs
(Breaks time revisal) $+\frac{G^{3} m_{2}}{r^{4}} n^{i}\left\{-\frac{57}{4} m_{1}^{2}-9 m_{2}^{2}-\frac{69}{2} m_{1} m_{2}\right\}$,

$$
D_{1}^{i}=\frac{4}{5} \frac{G^{2} \pi r_{r}\left[m_{2}\right.}{r^{3}}\left\{v^{i}\left[-v^{2}+2 \frac{G m_{1}}{r}-8 \frac{G m_{2}}{r}\right]+n^{i}(n v)\left[3 v^{2}-6 \frac{G m_{1}}{r}+\frac{52}{3} \frac{G m_{2}}{r}\right]\right\}
$$

$$
\left.\left.+\frac{G m_{1}}{r}\left(-\frac{63}{4}\left(n v_{1}\right)+\frac{55}{4}\left(n v_{2}\right)\right)+\frac{G m_{2}}{r}\left(-2\left(n v_{1}\right)-2\left(n v_{2}\right)\right)\right]\right\}
$$

12.3. Detection techniques

Interferometry

The expected amplitude of gravitational waves is small, so we need a technique to measure very small displacements. One well developed technique to do so is interferometry. GW require photon-based distance measurements to be detected. We need something that travels
with the speed of light (which is constant). Hence:

LIGO - A GIGANTIC INTERFEROMETER

Laser interferometry, Michelson (1887)

Some of the photons go through the mirror, others are reflected.
Differences in flight distance (e.g .due to gravitational waves) creates different interference patterns.

Electric field measured:

Connection with GW (effect on distances):
We have seen that GW have an effect on the distance. Since photons move along null geodesics, we can calculate this:

$$
\begin{array}{ll}
\left.\begin{array}{l}
h_{+}(t)=h_{0} \cos \omega_{g \omega} t \\
d s^{2}=-c^{2} d t^{2}+\left[1+h_{+}(t)\right] d x^{2}+\left[1-h_{+}(t)\right] d y^{2}+d z^{2}
\end{array}\right\} d s^{2}=0 \rightarrow d x= \pm c d t\left[1-\frac{1}{2} h_{+}(t)\right] \\
\text { Similarly (on the way back): } & L_{x}=c\left(t_{1}-t_{0}\right)-\frac{c}{2} \int_{t_{0}}^{t_{1}} d t^{\prime} h_{+}\left(t^{\prime}\right)
\end{array}
$$

$$
L_{x}=c\left(t_{2}-t_{1}\right)-\frac{c}{2} \int_{t_{1}}^{t_{2}} d t^{\prime} h_{1}\left(t^{\prime}\right)
$$

Total time and difference in phase:

$$
\begin{aligned}
& t_{2}-t_{0}=\frac{2 L_{x}}{c}+\frac{1}{2} \int_{t_{0}}^{t_{2}} d t^{\prime} h_{+}\left(t^{\prime}\right)=\frac{2 L_{x}}{c}+\frac{L_{x}}{c} h\left(t_{0}+L_{x} / c\right) \frac{\sin \left(\omega_{\mathrm{gw}} L_{x} / c\right)}{\left(\omega_{\mathrm{gw}} L_{x} / c\right)} \\
& \Delta \phi_{x}(t)=h_{0} \frac{\omega_{\mathrm{L}} L_{x}}{c} \operatorname{sinc}\left(\omega_{\mathrm{gw}} L_{x} / c\right) \cos \left[\omega_{\mathrm{gw}}\left(t-L_{x} / c\right)\right]
\end{aligned}
$$

We can also calculate the power detected:

$$
\begin{gathered}
P=P_{0} \sin ^{2}\left[\phi_{0}+\Delta \phi_{x}(t)\right]=\frac{P_{0}}{2}\left\{1-\cos \left[2 \phi_{0}+2 \Delta \phi_{x}(t)\right]\right\} \\
\Delta \phi_{\text {Mich }} \equiv \Delta \phi_{x}-\Delta \phi_{y}=2 \Delta \phi_{x} \\
(\Delta P)_{\mathrm{GW}}=\frac{P_{0}}{2}\left|\sin 2 \phi_{0}\right|(\Delta \phi)_{\text {Mich }}
\end{gathered}
$$

Noise and sensitivity.
The detector measures the total strain but measurements given in terms of signal to noise

$$
h(t)=D^{i j} h_{i j}(t)
$$

\longrightarrow Depends on detector geometry
Final measurement depends on the transfer function $T(8)<$ sensitivity in terms of the frequency $\tilde{h}_{\text {out }}(f)=T(f) \tilde{h}(f)$
The output also includes the noise (more later):

$$
\left.\left.\begin{array}{rl}
S_{\text {out }}(t) & =h_{\text {at it }}(t)+n_{\text {out }}(t) \\
\left.*(f) \tilde{n}\left(f^{\prime}\right)\right\rangle & =\delta\left(f-f^{\prime}\right) \frac{1}{2} S_{n}(\rho) \\
\downarrow & \text { and }\langle n(t)\rangle=0
\end{array}\right\}\left.\xrightarrow{\left.\delta(f=0) \rightarrow\left[\int_{-T / 2}^{T / 2} d t e^{i \pi \pi \rho f}\right]\right|_{f=0}=T} \longrightarrow\langle | \hat{n}(\rho)\right|^{2}\right\rangle=\frac{1}{2} S_{n}(\rho) T
$$

noise profile in terms of the frequency
Spectral noise density $S_{n}(P)$ is variance of the noise
$\Delta f=1 / T$
$\left.\frac{1}{2} S_{n}(f)=\left\langle\mid \tilde{n}(f)^{2}\right\rangle \Delta f\right\}\left\langle n^{2}(t)\right\rangle=\left\langle n^{2}(t=0)\right\rangle=\int_{-\infty}^{+\infty} d \rho d g^{\prime}\left\langle n^{*}(f) n\left(f^{\prime}\right\rangle\right\rangle=\frac{1}{2} \int_{-\infty}^{+\infty} d y \operatorname{Sn}(f)=\int_{0}^{\infty} d g S_{n}(f)$
Signal to noise ratio
We can calculate the signal using the filter function k, which provides the sensitivity for each frequency:

$$
\begin{gathered}
S=\int_{-\infty}^{\infty} d t\langle s(t)\rangle K(t)=\int_{-\infty}^{\infty} d t h(t) K(t)=\int_{-\infty}^{\infty} d f \tilde{h}(f) \tilde{K}^{*}(f) \\
\langle n(t)\rangle=0
\end{gathered}
$$

Noise:

$$
\begin{aligned}
& \left.\left.N^{2}=\left[\left\langle\hat{s}^{2}(t)\right\rangle\right\rangle-\langle\hat{s}(t))^{2}\right]_{h-0}=\left\langle\hat{s}^{2}(t)\right\rangle\right\rangle_{h=0}=\int_{-\infty}^{\infty} d t d t^{\prime} K(t) K\left(t^{\prime}\right)\left\langle n(t) n\left(t^{\prime}\right)\right\rangle \\
& =\int_{-\infty}^{\infty} d t d t^{\prime} K(t) K\left(t^{\prime}\right) \int_{-\infty}^{\infty} d f d f^{\prime} e^{2 \pi f t-2 \pi i f^{\prime} t^{\prime}}\left\langle\tilde{n}^{*}(f) \tilde{n}\left(f^{\prime}\right)\right\rangle=\left.\int_{-\infty}^{\infty} d f \frac{1}{2} S_{n}(f) \tilde{\tilde{K}}(f)\right|^{2}
\end{aligned}
$$

Final expression for the signal to noise

$$
\frac{S}{N}=\frac{\int_{-\infty}^{\infty} d f \tilde{h}(f) \tilde{K} \cdot(f)}{\left[\int_{-\infty}^{\infty} d f(1 / 2) S_{n}(f)|\tilde{K}(f)|\right]^{1 / 2}} \quad \quad \tilde{K}(f)=\text { cost. } \frac{\tilde{h}(f)}{S_{n}(f)}
$$

Then:

$$
\left(\frac{S}{N}\right)^{2}=4 \int_{0}^{\infty} d f \frac{|\bar{h}(f)|^{2}}{S_{n}(f)}
$$

Example 1: stochastic backgrounds (white noise background of unresolved sources)

$$
\begin{aligned}
& \left\langle h_{i j}(t) h^{i j}(t)\right\rangle=4 \int_{0}^{\infty} d f S_{h}(f) \\
& \rho_{\mathrm{gw}}=\frac{c^{2}}{32 \pi G}\left\langle h_{i j} h^{i j}\right\rangle
\end{aligned}
$$

Example 2: Distance to coalescing binaries

$$
\begin{aligned}
& \tilde{h}(f)=\left(\frac{5}{6}\right)^{1 / 2} \frac{1}{2 \pi^{2 / 3}} \frac{c}{r}\left(\frac{G M_{c}}{c^{3}}\right)^{5 / 6} f^{-7 / 6} e^{i \varphi} Q(\theta, \phi ; \ell) \text { Function that depends on geometry of } \\
& \text { the system, inclination, etc. } \\
& \left.\left.\left(\frac{S}{N}\right)^{2}=\frac{5}{6} \frac{1}{\pi^{4 / 3}} \frac{c^{2}}{r^{2}}\left(\frac{G M_{c}}{c^{3}}\right)^{5 / 3} \right\rvert\, Q(\theta, \phi ;\rangle\right)\left.\right|^{2} \int_{0}^{f_{\text {max }}} \frac{f f}{d-7 / 3} \frac{S_{n}(f)}{}
\end{aligned}
$$

Averaging over indination (etc) we can solve for the distance:

$$
d_{\text {sight }}=\frac{2}{5}\left(\frac{5}{6}\right)^{1 / 2} \frac{c}{\pi^{2 / 3}}\left(\frac{G M_{\mathrm{c}}}{c^{3}}\right)^{5 / 6}\left[\int_{0}^{f_{\max }} \frac{f^{-7 / 3}}{S_{n}(f)}\right]^{1 / 2}(S / N)^{-1}
$$

Average amplitude on Earth and length of detector:

$$
\Delta L=\frac{1}{2} h_{0} L \xrightarrow{h_{0} 110^{-21}} \Delta L \sim 2 \times 10^{-18} \mathrm{~m}
$$

Sources of noise

- Shot noise: photons are discrete, they follow poisson distribution

$$
\begin{aligned}
& P=\frac{1}{T} N_{\gamma} \hbar \omega_{\mathrm{L}} \\
& p(N ; \bar{N})=\frac{1}{N!} \bar{N}^{N} e^{-\bar{N} /}
\end{aligned} \begin{aligned}
& \Delta N_{\gamma}=\sqrt{N_{\gamma}}, ~
\end{aligned}
$$

Total signal to noise:

$$
\begin{array}{rlrl}
\frac{S}{N} & =\frac{(\Delta P)_{\mathrm{GW}}}{(\Delta P)_{\text {shot }}} \frac{P}{}=P_{0} \sin ^{2}\left[\phi_{0}+\Delta \phi_{x}(t)\right] \\
& =\frac{P_{0}}{2}\left\{1-\cos \left[2 \phi_{0}+2 \Delta \phi_{x}(t)\right]\right\} \\
& =\left(\frac{P_{0} T}{\hbar \omega_{\mathrm{L}}}\right)^{1 / 2} \frac{4 \pi L}{\lambda_{\mathrm{L}}} h_{0}\left|\cos \phi_{0}\right| & \Delta P)_{\mathrm{GW}}=\frac{P_{0}}{2}\left|\sin 2 \phi_{0}\right| \frac{4 \pi L}{\lambda_{\mathrm{L}}} h_{0} & \Delta \phi_{\text {Mich }} \equiv \Delta \phi_{x}-\Delta \phi_{y}=2 \Delta \phi_{x} \\
(\Delta P)_{\mathrm{GW}}=\frac{P_{0}}{2}\left|\sin 2 \phi_{0}\right|(\Delta \phi)_{\text {Mich }}
\end{array}
$$

- Radiation pressure

$$
\Delta F=2 \Delta P / c=2 \sqrt{\frac{\hbar \omega_{\mathrm{L}} P}{c^{2} T}} \Longrightarrow_{\left\langle A^{2}(t)\right\rangle=\frac{1}{2 T} S_{A}} S_{F}^{1 / 2}=2 \sqrt{\frac{2 \hbar \omega_{\mathrm{L}} P}{c^{2}}}
$$

-The quantum limit
(shot noise + radiation pressure)
$\left.S_{n}(\rho)\right|_{\text {oft }}=\left.S_{n}(\rho)\right|_{\text {shot }}+\left.S_{n}(\rho)\right|_{\text {nod }}$

- Seismic noise

$$
x(\rho) \simeq A\left(\frac{1 H_{z}}{\rho_{\omega}}\right) m H_{z}^{-1 / 2}
$$

Quantum noise domains for larger freq. Low frequencies are quenched by seismic noise.

12.4. Recent observations $(B H-B H, N S-N S)$

BH-BH
Frost detected by $2 i 60$ in 2015

The signal (strain) from both Ligo detectors (S/N ~24) $\longrightarrow A$ true signal must be detected by both detectors with a 10 ms delay (given by the distance between detectors.
The signal in time- - frequency and strain- - frequency domain:
(FFT to the signal)

Fit to the data (determination of the chicp mass):

$$
d_{L} \sim 45 G_{p c}\left(\frac{H_{z}}{f_{\text {oww }} / \max }\right)\left(\frac{10^{-21}}{h I_{\text {max }}}\right)
$$

$$
\begin{aligned}
& \mu=\frac{c^{3}}{G}\left(\left(\frac{5}{96}\right)^{3} \pi^{-8}\left(f_{\sigma \omega}\right)^{-11}\left(\delta_{\sigma \omega}\right)^{3}\right)^{1 / 4} \\
& f_{\sigma \omega}^{-8 / 3}(t)=\frac{(8 \pi)^{8 / 3}}{5}\left(\frac{G \mu}{c^{3}}\right)^{5 / 3}\left(t c c^{-t}\right) \\
& \text { (time of coa } \\
& \mu=\frac{\left(m_{1} m_{2}\right)^{3 / 5}}{\left(m_{1}+m_{2}\right)^{1 / 5}} \rightarrow \mu=30 M_{0}
\end{aligned}
$$

Primary black hole mass
Secondary black hole mass
Final black hole mass
Final black hole spin
Luminosity distance
Source redshift z (+cosmological model)

$$
36_{-4}^{+5} M_{\odot}
$$

$$
29_{-4}^{+4} M_{\odot}
$$

$$
62_{-4}^{+4} M_{\odot}
$$

$$
0.67_{-0.07}^{+0.05}
$$

$$
410_{-180}^{+160} \mathrm{Mpc}
$$

$$
0.09_{-0.04}^{+0.03}
$$

Overview and comparison of all GW obsorvations

Masses in the Stellar Graveyard

 HGO N(O)NIRTI:

cwiso924	Ow151012	OW151226	6w170104	6w170608
	닌		mimimime	
φ	-	*	-	-
	-	-	*	-
$\text { owizo } 29$	amiroses	6W170814	6W170818	6W170823
mammon	numminm	wnumumew		

Spin ~ 0 : diprimordial $B H$?
ArXiv: 1811.12907

Event	$m_{1} / \mathrm{M}_{\odot}$	$m_{2} / \mathrm{M}_{\odot}$	$\mathcal{M} / \mathrm{M}_{\odot}$	Хeff	$M_{\mathrm{f}} / \mathrm{M}_{\odot}$	$a_{\text {f }}$	$E_{\text {rad }} /\left(\mathrm{M}_{\odot} c^{2}\right)$	$\ell_{\text {peak }} /\left(\right.$ erg s $\left.^{-1}\right)$	d_{L} / Mpc	z	$\Delta \Omega / \mathrm{deg}^{2}$
GW150914	$35.6_{-3.0}^{+48}$	$30.6_{-4.4}^{+3.0}$	$28.6_{-1.5}^{+1.6}$	$-0.01_{-0.13}^{+0.12}$	63.1-3.0	$0.69{ }_{-0.04}^{+0.05}$	$3.1{ }_{-0.4}^{+0.4}$	$3.66_{-0.4}^{+0.4} \times 10^{56}$	$430{ }_{-170}^{+150}$	$0.09_{-0.03}^{+0.03}$	179
GW151012	$23.33_{-5.5}^{+14.0}$	$13.6{ }_{-4.8}^{+4.1}$	$15.2_{-1.1}^{+2.0}$	$0.04{ }_{-0.19}^{+028}$	$35.7_{-3.8}^{+9.9}$	$0.67{ }_{-0.11}^{+0.13}$	$1.55_{-0.5}^{+0.5}$	$3.22_{-1.7}^{+0.8} \times 10^{56}$	10600_{-480}^{540}	$0.21{ }_{-0.09}^{+0.09}$	1555
GW151226	$13.7{ }_{-3.28}^{+88}$	$7.7{ }_{-2,22}$	$8.9 .{ }_{-03}^{+03}$	$0.18{ }_{-0.12}^{+020}$	$20.5-1.5$	$0.74_{-0.05}^{+0.07}$	1. $0_{-0.2}^{+0.1}$	$3.44_{-1.7}^{+0.7} \times 10^{56}$	$440{ }_{-180}^{+180}$	$0.09_{-0.04}^{+0.04}$	1033
GW170104	31.0-5.6	20.14-45	$21.5{ }_{-1.7}^{+2.1}$	$-0.04_{-0.20}^{+0.17}$	49.1-3.92	$0.66_{-0.10}^{+0.08}$	$2.22_{-0.5}^{+0.5}$	$3.33_{-0.9}^{+0.6} \times 10^{56}$	$960{ }_{-410}^{430}$	$0.19_{-0.08}^{+0.07}$	924
GW170608	$10.9{ }_{-1.7}^{+53}$	7.6.1.3.1	$7.9{ }_{-0.2}^{+0.2}$	$0.03_{-0.07}^{+0.19}$	$17.8_{-0.7}^{+3.2}$	$0.69{ }_{-0.04}^{+0.04}$	$0.9 .{ }_{-0.1}^{+0.0}$	$3.55_{-1.3}^{+0.4} \times 10^{56}$	320_{-110}^{+120}	$0.07_{-0.02}^{+0.02}$	396
GW170729	$50.6{ }_{-10.2}^{+16.6}$	$34.33_{-10.1}^{+9.1}$	$35.7{ }_{-4.7}^{+65}$	$0.36_{-0.25}^{+021}$	80.3_{-102}^{+146}	$0.811_{-0.13}^{+0.07}$	4.8 .1 .7	$4.22_{-1.5}^{+0.9} \times 10^{56}$	2750_{-1320}^{+1350}	$0.48_{-0.20}^{+0.19}$	1033
GW170809	$35.2+8.80$	$23.8+5.5$	$25.0{ }_{-1.6}^{+2.1}$	$0.07+0.16$	$56.4{ }_{-3.7}^{+5}$	$0.70_{-0.09}^{+0.08}$	$2.7{ }_{-0.6}^{+0.6}$	$3.5{ }_{-0.9}^{+0.6} \times 10^{56}$	9900_{-380}^{+320}	$0.20{ }_{-0.05}^{+0.05}$	340
GW170814	30.7-5.7.0	$25.3{ }_{-4.1}^{+29}$	$24.2{ }_{-1.1}^{+1.4}$	$0.07{ }_{-0.11}^{+0.12}$	$53.4-2.4$	$0.72_{-0.05}^{+0.07}$	$2.7{ }_{-0.4}$	$3.7{ }_{-0.5}^{+0.5} \times 10^{56}$	580_{-210}^{+160}	$0.12_{-0.04}^{+0.03}$	87
GW170817	$1.466_{-0.10}^{+0.12}$	$1.27{ }_{-0.09}^{+0.09}$	$1.186_{-0.001}^{+0.01}$	$0.00{ }_{-0.01}^{+0.02}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1 \times 10^{56}$	40_{-10}^{+10}	$0.01_{-0.00}^{+0.00}$	16
GW170818	$35.5{ }_{-47}^{+75}$	$26.8{ }_{-5.2}^{+43}$	$26.7_{-1.7}^{+2.1}$	$-0.09_{-0.21}^{+0.18}$	59.8 .8 .4 .8	$0.67{ }_{-0.08}^{+0.07}$	$2.7{ }_{-0.5}^{+0.5}$	$3.44_{-0.7}^{+0.7} \times 10^{56}$	1020_{-360}^{+430}	$0.200_{-0.07}^{+0.07}$	39
GW170823	$39.6{ }_{-6.6}^{+10.0}$	29.4-6.1.	$29.3{ }_{-3.2}^{+42}$	$0.08{ }_{-0.22}^{+020}$	$65.6{ }_{-6.6}^{+9.4}$	$0.71{ }_{-0.10}^{+0.08}$	$3.33_{-0.8}^{+0.9}$	$3.6{ }_{-0.9}^{+0.6} \times 10^{56}$	1850_{-840}^{+880}	$0.34_{-0.14}^{+0.13}$	1651

TABLE III. Selected source parameters of the eleven confident detections. We report median values with 90% credible intervals that include statistical errors, and systematic errors from averaging the results of two waveform models for BBHs. For GW 170817 credible intervals and statistical errors are shown for IMRPhenomPv2NRT with low spin prior, while the sky area was computed from TaylorF2 samples. The redshift for NGC 4993 from [87] and its associated uncertainties were used to calculate source frame masses for GW170817. For BBH events the redshift was calculated from the luminosity distance and assumed cosmology as discussed in Appendix B. The columns show source frame component masses m_{i} and chirp mass \mathcal{M}, dimensionless effective aligned spin χ eff, final source frame mass M_{f}, final spin a_{f}, radiated energy $E_{\text {rad }}$, peak luminosity $l_{\text {peak }}$, luminosity distance d_{L}, redshift z and sky localization $\Delta \Omega$. The sky localization is the area of the 90% credible region. For GW170817 we give conservative bounds on parameters of the final remnant discussed in Sec. VE.

Merger rate of events (up to Dec 2018) as a function of redshift and mass.

NS - NS binary

(there is an optical counterpart)
Neutron stars are collapsed stars, supported
by neutron degeneracy pressure. $M<1.4 \mu_{0}$ Usually emit radiation in pulses (pulsars)
LiGO saw event 6w170817 linked to GRB170817A, detected by Fermi.

Detected by two $\angle \mathrm{iGO}$ s and virgo \rightarrow triangulation

Spin of objects is important in this case

	Low-spin priors $(\|\chi\| \leq 0.05)$	High-spin priors $(\|\chi\| \leq 0.89)$
Primary mass m_{1}	$1.36-1.60 M_{\odot}$	$1.36-2.26 M_{\odot}$
Secondary mass m_{2}	$1.17-1.36 M_{\odot}$	$0.86-1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188_{-0.002}^{+0.004} M_{\odot}$	$1.188_{-0.002}^{+0.004} M_{\odot}$
Mass ratio m_{2} / m_{1}	$0.7-1.0$	$0.4-1.0$
Total mass $m_{\text {tot }}$	$2.74_{-0.01}^{+0.04} M_{\odot}$	$2.82_{-0.09}^{+0.47} M_{\odot}$
Radiated energy $E_{\text {rad }}$	$>0.025 M_{\odot} c^{2}$	$>0.025 M_{\odot} c^{2}$
Luminosity distance D_{L}	$40_{-14}^{+8} M_{p c}$	$40_{-14}^{+8} M^{\circ}$
Viewing angle Θ	$\leq 55^{\circ}$	$\leq 56^{\circ}$
Using NGC 4993 location	$\leq 28^{\circ}$	$\leq 28^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800	≤ 700
Dimensionless tidal deformability $\Lambda\left(1.4 M_{\odot}\right)$	≤ 800	≤ 1400

Other GW experimets/detectors

The spectrum of gravitational wave astronomy

12.5. Other issues

Speed of GW

GRE 170817 A was observed ~ 1.78 after GW170817, which provides constraints on the speed of $G W$ and modifications of gravity:

$$
\left.\begin{array}{r}
-3 \times 10^{-15} \leq C g / c-1 \leq 7 \times 10^{-16} \\
C_{g}^{2}=1+\alpha_{T}
\end{array}\right\} \ddot{h}_{i j}+\left(3+\alpha_{\mu}\right) H \dot{h}_{i j}+\left(1+\not \alpha_{T}\right) k^{2} h_{i j}=0
$$

Optical counterpart \rightarrow redshift \rightarrow cosmological constraints

$$
H_{0}=70_{-8}^{+12} \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}
$$

Possible constraints on the equation of state of neutron stars

Hyperbolic encounters

Primordial black holes may scatter in clusters (a.k. a. hyperbolic encounters)

$$
\begin{aligned}
& r(\varphi)= \frac{b \sin \varphi_{0}}{\cos \left(\varphi-\varphi_{0}\right)-\cos \varphi_{0}}=\frac{a\left(e^{2}-1\right)}{1+e \cos \left(\varphi-\varphi_{0}\right)} \\
& \varphi_{0}=\arccos \left(-\frac{1}{e}\right) \\
& r_{\min }=a(e-1)=b \sqrt{\frac{e-1}{e+1}}>R_{s} \equiv \frac{2 G M}{c^{2}}
\end{aligned}
$$

The amplitude and the power emited are given by:

$$
Q_{i j}=\mu r^{2}(\varphi)\left(\begin{array}{ccc}
3 \cos ^{2} \varphi-1 & 3 \cos \varphi \sin \varphi & 0 \\
3 \cos \varphi \sin \varphi & 3 \sin ^{2} \varphi-1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

$$
\begin{aligned}
& P=\frac{d E}{d t}=-\frac{G}{45 c^{5}}\left\langle\dddot{Q}_{i j} \dddot{Q}^{i j}\right\rangle=\frac{32 G \mu^{2} v_{0}^{6}}{45 c^{5} b^{2}} f(\varphi, e) \\
& f(\varphi, e)=\frac{3\left(1+e \cos \left(\varphi-\varphi_{0}\right)\right)^{4}}{8\left(e^{2}-1\right)^{4}}\left[24+13 e^{2}+48 e \cos \left(\varphi-\varphi_{0}\right)+11 e^{2} \cos 2\left(\varphi-\varphi_{0}\right)\right] \\
& h_{c}=\frac{2 G}{R c^{4}}\left\langle\ddot{Q}_{i j} \ddot{Q}^{i j}\right\rangle_{i, j=1,2}^{1 / 2}=\frac{2 G \mu v_{0}^{2}}{R c^{4}} g(\varphi, e)
\end{aligned}
$$

$$
g(\varphi, e)=\frac{\sqrt{2}}{e^{2}-1}\left[36+59 e^{2}+10 e^{4}+\left(108+47 e^{2}\right) e \cos \left(\varphi-\varphi_{0}\right)+59 e^{2} \cos 2\left(\varphi-\varphi_{0}\right)+9 e^{3} \cos 3\left(\varphi-\varphi_{0}\right)\right]^{1 / 2}
$$

Frecuency domain and power spectrum:

$$
P(\omega)=\frac{G}{45 c^{5}} \sum_{i j}\left|\widehat{Q}_{i j}\right|^{2}=\frac{6}{45 c^{5}} \omega^{6} \sum_{i, j}\left|\widehat{Q_{i j}}\right|^{2}
$$

The quadrupole tensor is given by
$Q_{i j}=\frac{1}{2} a^{2} \mu\left(\begin{array}{ccc}\left(3-e^{2}\right) \cosh 2 \xi-8 e \cosh \xi & 3 \sqrt{e^{2}-1}(2 e \sinh \xi-\sinh 2 \xi) & 0 \\ 3 \sqrt{e^{2}-1}(2 e \sinh \xi-\sinh 2 \xi) & \left(2 e^{2}-3\right) \cosh 2 \xi+4 e \cosh \xi & 0 \\ 0 & 0 & 4 e \cosh \xi-e^{2} \cosh 2 \xi\end{array}\right) \quad \begin{gathered}r(\xi)=a(e \cosh \xi-1) . \\ \\ 0\end{gathered}$

The power spectrum

$$
\begin{aligned}
P(\omega) & =\frac{G^{3} \mu^{2} M^{2}}{a^{2} c^{5}}\left(\frac{\pi^{2}}{180} \nu^{4} \sum_{i, j}\left|\widehat{C_{i j}}\right|^{2}\right) \\
& =\frac{G^{3} \mu^{2} M^{2}}{a^{2} c^{5}} \frac{16 \pi^{2}}{180} \nu^{4} F_{e}(\nu),
\end{aligned}
$$

Total power and peak frequency

$$
\begin{aligned}
\Delta E & =\int_{-\infty}^{+\infty} P(t) d t=\int_{0}^{+\infty} \frac{P(\omega)}{\pi} d \omega \\
& =\left(\frac{G^{7 / 2} \mu^{2} M^{5 / 2}}{c^{5} a^{7 / 2}}\right) \frac{16 \pi}{180} \int_{0}^{+\infty} \nu^{4} F_{e}(\nu) d \nu
\end{aligned}
$$

$$
\begin{aligned}
& F_{e}(\nu)=\left|\frac{3\left(e^{2}-1\right)}{e} H_{i \nu}^{(1) \prime}(i \nu e)+\frac{e^{2}-3}{e^{2}} \frac{i}{\nu} H_{i \nu}^{(1)}(i \nu e)\right|^{2} \\
&+\left|\frac{3\left(e^{2}-1\right)}{e} H_{i \nu}^{(1) \prime}(i \nu e)+\frac{2 e^{2}-3}{e^{2}} \frac{i}{\nu} H_{i \nu}^{(1)}(i \nu e)\right|^{2} \\
&+\left|\frac{i}{\nu} H_{i \nu}^{(1)}(i \nu e)\right|^{2}+\frac{18\left(e^{2}-1\right)}{e^{2}} \times \\
& \times\left|\frac{\left(e^{2}-1\right)}{e} i H_{i \nu}^{(1)}(i \nu e)+\frac{1}{\nu} H_{i \nu}^{(1) \prime}(i \nu e)\right|^{2} \\
& \text { Hankel function }
\end{aligned}
$$

$$
\nu_{\max }(e)=\sqrt{\frac{e+1}{(e-1)^{3}}}, \quad \omega_{\max }(e)=\frac{v_{0}}{b}\left(\frac{e+1}{e-1}\right)
$$

The peak frequency is important, since it is detectable by vigo

GW memory effect: After scattering $(\omega \rightarrow 0)$ spacetime remembers event

$$
P(\omega=0)=\frac{6^{3} \mu^{2} \mu^{2}}{a^{2} c^{5}} \frac{32\left(e^{2}-1\right)}{5 e^{4}}
$$

Possibility of detection by LiSA-2iGO
LISA and LiGo are sensitive in specific frequenies - stains
These are known as sensitivity curves.

PBH by hyperbolic encounters gives unique predictions for strain + frequency. There is also a unique stain for detector.
The scattering will be seen as a unique event (not periodic even, like in the binaries), aka a glitch.

