XI. Observational Cosmology
11.1. Cosmic distance Ladder

Observations in astronomy
Astronomy consists on collecting and counting photons for different wavelengths, $N(\lambda)$. The number of photons observed depend on the wavelength and the distance to the object.
To infer the distance to an object, we can use standard candles and rulers.

Standard candles and rulers
Cosmology uses standard candles and rulers to eliminate the dependence on the object. If we know the distance to one of the objects and know their sizes (or luminosities) we can infer the distance to the other one.

Standard ruler

Objects might have different luminosities, but the same size.

Standard candle

Objects might have different sizes, but the same luminosity $N_{E_{11}}(\lambda)=N_{E_{12}}(\lambda)$.

Standard candles can be used to eliminate the dependence on the object and to infer the cosmological parameters via NC λ) (since $d=f(R(t))$).
We want equations with a dependence on the scale factor a and the cosmological parameters, but first we need to have a gauge for the relation between photon counts and distance: the distance ladder

The cosmic distance ladder

Radar \longrightarrow Parallax \longrightarrow Main sequence fitting \longrightarrow Cepheids
Globular clusters \longleftarrow Novae \longleftarrow Brightest stars \longleftarrow
$21 \mathrm{~cm} \longrightarrow$ Supernovae

Note
We only observe apparent magnitudes and never absolute magnitudes, which are apparent magnitudes at a fixed distance.

1. If we have a class of stars with identical luminosities, we can determine the distance to one such star locally (e.g. via parallax). We observe the flux F (the luminosity L diluted on a sphere). If we measure d, we can infer L.
2. Observing such star (s) in another type of distant object (globular cluster, galaxy, etc.) we can calculate the distance to that object via $F=4 / 4 \pi d^{2}$: we still observe the flux and know \mathcal{L}, so we can infer d.
3. If that object is "standard" in some sense, it can be used to infer the distance to another object.
Direct parallax ($<1 \mathrm{kpc}$)
This method will only work if we have a zero point to start. One of the few possibilities to directly get the distance without knowing anything about the object is direct parallax.
It consists on measuring the difference on the position of the object when the Earth is at the extrema of its orbit around the Sun:
$\sin p \approx p$ [radians] for small p

$$
\sin p=\frac{R_{e}}{D} \longrightarrow p^{\prime \prime}=\frac{R_{e}}{D} \times \frac{360}{2 \pi} \times \frac{1}{3600}[\operatorname{arcsec}]
$$

We define the parsec as:

$$
D=\frac{1^{\prime \prime}}{P^{n}}[p c] \quad 1_{p c}=3.0857 \times 10^{16} \mathrm{~m}
$$

RR 2 yrae Stars $(<1 M P C)$
Pulsating horizontal branch stars. They have similar (mean) absolute luminosity \rightarrow Standard candles: $\langle L\rangle \approx$ const Unfortunately, they are not very bright, bot there are other objects.
Cepheid stars (220 Mpc)
Also pulsating, but brighter than RR2yrae. There is a relation between pulsation period and absolute luminosity: $\log L \propto \log P$

HI I regions. (<30 mp l)
They are large clouds of hydronized hydrogen surrounding very hot stars ($<30 \mu_{p c}$). Since they are bright and their size is almost constant ($\angle D\rangle \approx$ cont), they can be used as standard rulers.
Planetary Nebula ($<30 \mathrm{Mpc}$)
Reprocessed light from a central star. They can be used as standard candles $\langle 2\rangle \approx$ const Globular clusters ($<50-100 \mathrm{mpc}$)
Clusters of around 10^{5} to 10^{7} stars. They are standard candles. Elliptical galaxies - Faber Jackson relation and fundamental plane (> 100 mpc)

Empirically determined
$L \alpha \sigma_{\text {los }}^{\alpha}$, with $\alpha \approx 3-4$
Deduction:

$$
\begin{aligned}
& T \propto M \operatorname{Tos}^{2} \\
& \text { gl } \angle \text { assuming } M / L=\text { cont } \\
& \Rightarrow \sigma_{e s}{ }^{4} \propto L \\
& \text { eliminate } R \text { in favour } \\
& \text { of } \Sigma \text {, assuming } \Sigma=\text { count } \\
& \Sigma=4 / 4 \pi R^{2}
\end{aligned}
$$

There is also an empirically determined correlation between the size of the galaxy and Jos:
$D_{n} \propto \sigma_{\text {los }}^{\alpha}, \quad \alpha \approx 1.2$
$D_{n} \equiv$ diameter within which the mean surface brightness exceeds some threshold.
Taking into account the surface brightness profile:

$$
\Sigma(R)=\Sigma_{0} e^{-(R / R d)^{4}}
$$

we can represent:

$$
\log _{10} R_{e y}=A \log _{10} \sigma_{\text {eos }}+B \log _{10} \Sigma_{0}+C
$$

Spiral galaxies-Tully - Fisher relation ($>100 \mathrm{Mpc}$)
There is a similar empirically determined relation defined for spiral galluses:
$L_{\alpha} V_{\text {rot }}{ }^{3}$ with $B \approx 4$
(Following the same derivation as for the Faber-Jackson relation)

Supernovae type Ia
Their characteristic light curve is always identical once corrected from redshift.

They are observable out to great distance. The relation between L and F is given by the distance, which is a function of the cosmological parameters. Supernova measurements showed the need of including the 1 term. (Standard candle) Bargonic acoustic oscillations
As it was discussed in previous lectures, they are regular periodic fluctuations in baryonic matter. They originate from acoustic oscillations in pre-recombination plasma, and can only be seen in very large surveys. BAO can be used as a standard ruler for very large scales.

Summary:

11.2. Cosmological distances

Proper / commoving distance
Proper distance
We have a galaxy at comoving coordinate $X E$. At a time t_{E}, the galaxy emits a photon. It
 is important to note that the comoving coordinate is not the distance to that deject: space can be curved.

Space is expanding while the photon travels to the observer. It reaches the observer at $t=$ to (and its wavelength has changed).
We will start calculating the physical distance that separate two events happening at constant cosmic time (which is impossible to measure, as it is defined only at one particular moment in time.
We take $d t=0$ in the FRW metric (constant cosmic time):

$$
d s^{2}=R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}+x^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right]
$$

We are interested in the radial component. Thus, setting $d \theta=0$ and $d \varphi=0$ we obtain the differential distance element at constant cosmic time.

$$
d d_{p}=d s=R(t) \frac{d x}{\sqrt{1-k x^{2}}}
$$

And integrating along the flightpath:

$$
\begin{aligned}
& \text { And integrating along the flightpath: } \\
& d_{p}=R(t) \int_{0}^{x_{E}} \frac{d x}{\sqrt{1-k x^{2}}}=R(t) f\left(x_{E}\right) \text { with } f\left(x_{E}\right)=\left\{\begin{array}{l}
x_{E} \\
\frac{1}{\sqrt{|k|}} \text { arcsin } \\
\frac{1}{\sqrt{|k|}} \text { arcsinh }
\end{array}\right. \\
& \text { Now let us pay attention to the angular component. }
\end{aligned}
$$

If we want to calculate the distance between two objects at the same comoving coordinate, d_{p}^{θ} :

$$
\begin{aligned}
& d x=0, d \varphi=0 \\
& d d_{p}^{\theta}=R(t) x_{E} d \theta \longrightarrow d_{p}^{\theta}=R(t) x_{E} \int_{0}^{\theta E} d \theta
\end{aligned}
$$

Comoving distance
It is the proper distance at some pre-defined reference time (a common practice e's to use today's time as reference.

$$
d_{c}=R\left(t_{0}\right) f\left(x_{E}\right)
$$

if we set $R\left(t_{0}\right)=1$, then $f\left(x_{E}\right)$ is the comoving distance (convention). The relation between proper distance and comoving distance is given by:

$$
\left.\begin{array}{l}
d_{p}=R(t) f\left(x_{E}\right) \\
d=R 0 f\left(x_{E}\right)
\end{array}\right\} \quad f\left(x_{E}\right)=\frac{d_{p}}{R(t)}=\frac{d c}{R_{0}} \quad d_{p}=\frac{R(t)}{R_{0}} d_{c} \quad\left(d_{p}=a d_{c}\right)
$$

Now we have to figure out how to calculate $f\left(x_{E}\right)$ for an object at a given redshift. To obtain this, one needs to assume null geodesics for photons in the FRi metric.

$$
d s^{2}=0=(c d t)^{2}-R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}\right]
$$

And integrating:

$$
\begin{aligned}
f\left(x_{E}\right)=\int_{0}^{x_{E}} \frac{d x}{\sqrt{1-k x^{2}}}=\int_{t E}^{t_{0}} \frac{c d t}{R(t)}=\text { const } & \rightarrow 0=\frac{d f\left(x_{E}\right)}{d t_{E}}=\left.\frac{c d t}{R(t)}\right|_{t E} ^{t_{0}}=\frac{c d t_{0}}{R_{0}}-\frac{c d t_{E}}{R\left(t_{E}\right)} \\
& \Rightarrow \frac{d t_{0}}{R_{0}}=\frac{d t_{E}}{R\left(t_{E}\right)} \rightarrow \text { This will be useful later }
\end{aligned}
$$

Time intervals are changed in proportion to
We can replace $R(t)$ using the Friedman equation: the expansion

$$
\begin{aligned}
f\left(x_{E}\right) & =\int_{t_{E}}^{t_{0}} \frac{c d t}{R(t)}=c \int_{R_{E}}^{R_{0}} \frac{d R}{\dot{R} R}=c \int_{R_{E}}^{R_{0}} \frac{H^{2}=H_{0}^{2} E^{2}(z)}{R^{2} H_{0} E(z)}=\frac{C}{\frac{R}{R_{0}}=\frac{1}{1+z}} \int_{z_{E}}^{0} \frac{(1+z)^{2}}{R_{0} E(z)}\left(-\frac{1}{(1+z)^{2}}\right) d z= \\
& =\frac{c}{H_{0}} \int_{0}^{z_{E}} \frac{R_{0}}{R^{2} E(z)} \frac{R^{2}}{R_{0}^{2}} d z=\frac{c}{H_{0} R_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z \quad E^{2}(z)=\sum_{i} \Omega_{i_{0},}(1+z)^{3\left(1+\omega_{i}\right)} \quad w_{i}\left\{\begin{array}{cc}
0 & \text { dust } \\
1 / 3 \text { radiation } \\
-1 / 3 & \text { curvature } \\
-1 & 1
\end{array}\right.
\end{aligned}
$$

$f\left(x_{E}\right)=\frac{c}{H_{0} R_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z \rightarrow$ We have replaced x_{E} with Z_{E} (which can be measured)
To calculate the comoving distance we need to know the cosmological parameters. Now we need ways to compute distances in terms of standard candles and rulers.

Luminosity distance - observable.
Again, we have a galaxy that emits photons. We want a definition for distance that follows $F_{\text {obs }} \stackrel{!}{=} \frac{L_{E}}{4 \pi L_{L}^{2}}$, since we observe Fobs and can theoretically obtain L_{E}.

1. Photons: we find that the luminosity is changing as a function of redshift as: $L_{0}=\frac{L_{E}}{(1+z)^{2}}$ $(1+z)^{-1}: M M A$

$$
\stackrel{\lambda_{0}}{R_{0}}=\frac{\lambda_{E}}{R_{E}} \bigcap \bigwedge \preceq
$$

2. Geometry: the emited luminosity L_{E} is diminished due to the expansion of the Universe. Also, we are not collecting all photons with our telescope, only a certain fraction is collected:
$L_{o b s}=L_{0} \times f$ with $f=\frac{\pi \varepsilon^{2}}{4 \pi}=\frac{\pi b^{2}}{4 \pi R^{2}\left(t_{0}\right) x_{E}^{2}} \rightarrow$ ratio of solid angles
\rightarrow due to the expansion $\quad\left(b=R\left(t_{0}\right) x_{E} \int_{0}^{\varepsilon} d \theta=R\left(t_{0}\right) x_{E} \varepsilon, R\left(t_{0}\right)\right.$ because of "telescope size today", cf. proper transverse distance to calculate $b \uparrow$
3. Measurement: (energy/time/orea): we observe a flux, not luminosity

$$
F_{\text {obs }}=\frac{L_{\text {obs }}}{\pi b^{2}}=\frac{1}{\pi b^{2}} \frac{L_{E}}{(1+z)^{2}} \frac{\pi b^{2}}{4 \pi R^{2}\left(t_{0}\right) X_{E}^{2}}=\frac{R^{2}\left(t_{E}\right)}{R^{4}\left(t_{0}\right) x_{E}^{2}} \frac{L_{E}}{4 \pi}
$$

We wanted to obtain $F_{o b s} \doteq \frac{L E}{4 \pi d L^{2}}$. Then, we can identify and define the luminosity distance

$$
\xrightarrow{\text { as: }} d_{L}=\sqrt{\frac{L_{E} / 4_{\pi}}{\text { Fobs }}}=\frac{R^{2}\left(t_{0}\right)}{R\left(t_{E}\right)} x_{E}
$$

If we have objects with a known L_{E} (standard candles), we can calculate the luminosity distance and make predictions for cosmology.

Angular diameter distance
The same can be done for the angular diameter.
We want to define the angular diameter distance as:

$$
\theta_{u b s} \stackrel{!}{=} \frac{D}{d A}
$$

Using again the expression for the transverse distance and following the same appoach as before:

$$
\left.\begin{array}{rl}
D= & R\left(t_{E}\right) x_{E} \int_{0}^{\theta_{E}} d \theta=R\left(t_{E}\right) x_{E} \theta_{E} \\
& \text { Standard ruler } \rightarrow \theta_{\text {cbs }} \equiv \theta_{E}
\end{array}\right\} \quad d_{A}=\frac{D}{\theta_{\text {obs }}}=R\left(t_{E}\right) x_{E}
$$

Travel-time distance

$$
d_{T}=\int_{t_{E}}^{t_{0}} c d t=\ldots=\frac{C}{H_{0}} \int_{0}^{2 z}-\frac{1}{(1+z) E(z)} d z \quad \text { (for completeness) }
$$

Summary
Comoving distance: $d c=\frac{c}{H_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z \quad$ Proper distance $\quad d p=\frac{R(t)}{R_{0}} d c$
Luminosity distance $d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{0 b s}}}=\frac{R_{0}}{R(t)} R_{0} x_{E}$ Angular diameter distance $d_{A}=\frac{D}{\theta_{0 b s}}=\frac{R(t)}{R_{0}} R_{0} x_{E}$

Inter relation

$$
d_{A}=\left(\frac{R(t)}{R_{0}}\right)^{2} d_{L}
$$

d_{2} and d_{A} can be measured observationally for standard rulers/ candles. The right hand side of the definition provide the link to "quantify cosmology".
Examples for X_{E}

$$
\begin{aligned}
& \text { - } K=0, \Omega_{r} \ll \Omega_{m}, \Omega_{\Lambda}=1-\Omega_{m} \quad(\Lambda C D M \text { model) } \\
& X_{E}=\frac{c}{H_{0} R_{0}} \int_{0}^{z_{E}} \frac{d z}{\left[\Omega_{m, 0}(1+z)^{3}+\Omega_{n}\right]^{1 / 2}} \\
& \left.d_{\epsilon}(z)=\frac{c}{H_{0}} \int_{0}^{z} \frac{d z^{\prime}}{E\left(z^{\prime}\right)} \rightarrow \begin{array}{l}
d_{L}(z)=d_{c}(1+z) \\
d_{A}(z)=\frac{d c}{(1+z)}
\end{array}\right\} \text { simple relation of } d_{L} \text { and } d_{A} \text { to } d_{c}
\end{aligned}
$$

- $\Omega_{\Lambda}=0, \Omega_{r}=0, \Omega_{m}=2 q_{0}$

$$
X_{E}=\frac{z_{E} q_{0}+\left(q_{0}-1\right)\left(-1+\sqrt{2 q_{0} z_{E}+1}\right.}{H_{0} R_{0} q_{0}^{2}\left(1+z_{E}\right)}
$$

- $\Omega_{\Lambda}=1, \Omega_{m}=0, k=0$

$$
X_{E}=\frac{C Z_{\varepsilon}}{H_{0} R_{0}}
$$

Distance and redshift. Hubble's law-revisited
We can get a simple (approximate) relation between redshift z and distance.

$$
z=\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1
$$

Taylor-expanding z :

$$
\begin{aligned}
z & =\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1=\left(\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1\right)_{0}+\frac{d}{d t E}\left(\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1\right)_{0}\left(t-t_{0}\right)+\ldots \approx-\left(\frac{R\left(t_{0}\right)}{R^{2}\left(t_{E}\right)} \dot{R}\left(t_{E}\right)\right)_{0}\left(t_{E}-t_{0}\right)= \\
& =\frac{\dot{R}\left(t_{0}\right)}{R\left(t_{0}\right)}\left(t_{0}-t_{E}\right)=H_{0}\left(t_{0}-t_{E}\right)
\end{aligned}
$$

Taylor expanding dc: $f\left(x_{E}\right)=\int_{t E}^{t_{0}} \frac{c d t}{R(t)} \approx c \frac{t_{0}-t_{E}}{R\left(t_{0}\right)}$
Proper distance: $d p=R\left(t_{0}\right) \rho(X E) \approx R\left(t_{0}\right) \subset \frac{t_{0}-t_{E}}{R\left(t_{0}\right)}=C\left(t_{0}-t_{E}\right)\left\{\begin{array}{l}C z \approx H_{0} d_{p} \text { Hubble law distance } \\ \text { Only valid for nearby sources }\end{array}\right.$
11.3. Cosmological horizons and volumes

Horizons
Different bounds define different horizons. All are based upon proper distance.
Particle horizon
Max distance that a particle can have travelled since decoupling:

$$
R_{p}(t)=R(t) \int_{t \text { dec }}^{t} \frac{c d t^{\prime}}{R\left(t^{\prime}\right)}
$$

"Particle horizon" (for some textbooks)
Max distance a photon can have travelled since Big Bang (there are events we have not seen yet).

$$
R_{p}(t)=R(t) \int_{0}^{t} \frac{c d t^{\prime}}{R\left(t^{\prime}\right)}
$$

Even horizon
Max distance a particle can travel from now onwards (there are events that we will never see)

$$
\operatorname{Re}(t)=R(t) \int_{t}^{\infty} \frac{c d t^{\prime}}{R\left(t^{\prime}\right)}
$$

Hubble radius
Distance at which recessional velocity equals speed of light

$$
R_{H}=\frac{C}{H} \quad \underset{\substack{\nu \\ \text { comoving }}}{R_{C H}}(t)=\frac{R_{0}}{R} \frac{c}{H}
$$

Volumes
Once we have distances, we can define volumes from them.
Proper volume at to

$$
\left.\begin{array}{l}
d v_{p}\left(t_{0}\right)=\sqrt{\operatorname{det}\left(g_{i j}\right)} d r d \theta d \varphi \leftarrow \text { general equation } \\
t=t_{0} \\
d \Omega=d \theta^{2}+\sin ^{2} \theta d \phi^{2}
\end{array}\right\} d v_{0}=R_{0}^{3} x^{2} \frac{d x}{\sqrt{1-k x^{2}}} d \Omega
$$

We have to relate this to the distances we defined before:

$$
\begin{aligned}
d V_{P}\left(t_{0}\right)= & R_{0}^{3} x^{2} \frac{-c d z}{H_{0} R_{0} E(z)} d \Omega=R_{0}^{2} x^{2} \frac{-c d z}{H_{0} E(z)} d \Omega=R_{0} x^{2} \frac{R_{0}^{2} R_{\epsilon}^{2}}{R_{0} R_{E}^{2}} \frac{-c d z}{H_{0} E(z)} d \Omega=\frac{R_{0}^{4} x^{2}}{R_{E}^{2}} \frac{R_{E}^{2}}{R_{0}^{2}} \frac{-c d z}{H_{0} E(z)} d \Omega=\frac{d_{L}^{2}}{1+z^{2}} \frac{-c d z}{H_{0} E(z)} d \Omega \\
& \uparrow \frac{d x}{\sqrt{1-k x^{2}}}=\frac{c d z}{R(t)}=\frac{d t}{d z} \frac{c d z}{R(t)}, \quad \frac{d t}{d z}=-\frac{R^{2}}{R_{0} \dot{R}}
\end{aligned}
$$

And integrating:

$$
V_{p}\left(t_{0}\right)=\frac{4 \pi}{H_{0}} \int_{0}^{z_{E}} \frac{d_{2}^{2}(z)}{(1+z)^{2} E(z)} d z=4 \pi R_{0}^{3} \int_{0}^{x_{E}} \frac{x^{2}}{\sqrt{1-k x^{2}}} d x
$$

Proper volume at to

$$
V_{p}\left(t_{0}\right)=\left\{\begin{array}{cc}
\frac{4 \pi}{3}\left(\frac{d_{L}}{1+z}\right)^{3} & k=0 \\
\frac{2 \pi}{H_{0}^{3} \Omega_{k, 0}}\left[H_{0} \frac{d_{L}}{1+z} \sqrt{1+\left[\frac{H_{0} d_{L}}{1+z}\right]^{3} \Omega_{k, 0}}-\frac{1}{\sqrt{\left|\Omega_{k, 0}\right|}} \arcsin \left(H_{0} d_{L} \sqrt{\left|\Omega_{k, 0}\right|}\right)\right] & k=1 \\
\frac{2 \pi}{H_{0}^{3} \Omega_{k, 0}}\left[H_{0} \frac{d_{L}}{1+z} \sqrt{1+\left[\frac{H_{0} d_{L}}{1+z}\right]^{3} \Omega_{k, 0}-\frac{1}{\sqrt{\left|\Omega_{k, 0}\right|}} \operatorname{arcsinh}\left(H_{0} d_{L} \sqrt{\left|\Omega_{k, 0}\right|}\right)}\right] & k=-1
\end{array}\right.
$$

Proper volume at $t \neq t_{0}$
Starting again from $d V_{p}(t)=\sqrt{\operatorname{det}\left(g_{i j}\right)} d r d \theta d \varphi$ (change to spherical coordinates), now we have:

$$
\begin{aligned}
d V_{p}(t) & =R^{3}(t) x^{2} \frac{d x}{\sqrt{1-k x^{2}}} d \Omega=\cdots=(1+z)^{3} d V_{p}\left(t_{0}\right) \\
V_{c}(z) & =\frac{V_{p}(z)}{R^{3}(t(z))}
\end{aligned}
$$

11.4. Supernova cosmology

Supernovae and cosmological parameters
In the first lecture we talked about how can we determine $H_{0}, \Omega_{m, 0}$ and $\Omega_{n_{10}}$ (since $\left.1=\Omega_{m, 0}+\Omega_{k, 0}+\Omega_{n, 0}\right)$.

This is done throng the distance-modulys equation:

$$
m-M=25-5 \log \left(H_{0}\right)+5 \log \left(D\left(z, \Omega_{m_{0}}, \Omega_{\Lambda_{0}}\right)\right)
$$

Distance - modulus equation (derivation)
We will start with the luminosity distance.

$$
\begin{aligned}
& d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{0 b s}}=\frac{R_{0}}{R\left(t_{E}\right)} R_{0} X_{E}=\left(1+z_{E}\right) R_{0} X_{E} \longrightarrow x_{E}=\left\{\begin{array}{l}
\frac{c}{R_{0} H_{0}} \frac{1}{\sqrt{1-\Omega_{m, 0}-\Omega_{\Lambda, 0} \mid}} \sin \left(\sqrt{\left|1-\Omega_{m, 0}-\Omega_{\Lambda, 0}\right|} \frac{H_{0}}{c} d_{c}\right)
\end{array} ; k=1\right.} \begin{array}{l}
\frac{c}{R_{0} H_{0}} \frac{1}{\sqrt{\left|1-\Omega_{m, 0}-\Omega_{\Lambda, 0}\right|}} \sinh \left(\sqrt{\left|1-\Omega_{m, 0}-\Omega_{\Lambda, 0}\right|} \frac{H_{0}}{c} d_{c}\right) \quad ; k=-1
\end{array} \\
& \text { We also had an expresion for } d_{c}:
\end{aligned}
$$

$$
d_{c}=\frac{c}{H_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z \quad E(z) \rightarrow \text { choose cosmolog} y
$$

The right hand side is related to cosmology, which is "under control", we need to analyse the left hand side.
L_{E} is known from the theory of supernovae Ia explosion.
Fobs can be obtained using apparent and absolute magnitudes.
Apparent magnitudes are defined as:

$$
m_{1}-m_{2}=-2.5 \log _{10}\left(\frac{F_{1}}{F_{2}}\right) \quad \text { where } F=\frac{L}{4 \pi d^{2}}
$$

And for absolute magnitudes M: \leftarrow placing light source at 10 pc

$$
m-M=-2.5 \log _{10}\left(\frac{L}{4 \pi d^{2}} \frac{4 \pi(10 p c)^{2}}{L}\right)=-2.5 \log _{10}\left(\frac{(10 p c)^{2}}{d^{2}}\right)=-5 \log \left(\frac{10 p c}{d}\right)
$$

And reversing the equation:

$$
d=10^{1+\frac{m-\mu}{5}} p c=10^{-5+\frac{m-\mu}{5}} \mu_{p c} \equiv d_{2} \quad \longrightarrow\left[d_{2}\right]=\mu_{p c} \longrightarrow m-\mu=25+5 \log \left(d_{2}\right)
$$

Adding $5 \log \left(H_{0}\right)$ (because $X \in$ contains H_{u})

$$
\begin{aligned}
& m-M=2 S+5 \log \left(d_{2}\right)-5 \log \left(H_{0}\right)+5 \log \left(H_{0}\right) \\
& m-M=25-\delta \log \left(H_{0}\left[\mathrm{Km}_{\mathrm{m}} / \delta / \mu_{p c}\right]\right)+5 \log \left(H_{0} d_{l}\right)
\end{aligned}
$$

observation, but need to relate $m-M \leftrightarrow F R L \quad \longrightarrow$ cosmology
observation m : Fobs $\left.=10^{-2 \mathrm{~m} / 5} \times 2.52 \times 10^{-5 \mathrm{erg}} \frac{\mathrm{cm}^{2} \mathrm{sec}}{}\right\}$
standard candle $M:$
We end up with:

$$
\begin{aligned}
& m-M=25-5 \log \left(H_{0}\right)+5 \log \left(D\left(z, \Omega_{m, 0}, \Omega_{\Lambda, 0}\right)\right) \\
& D_{\left(z, \Omega_{m, 0}, \Omega_{\Lambda, 0}\right)}=\frac{c(1+z)}{\sqrt{|k|}} \operatorname{sinn}\left(\sqrt{|k|} \int_{0}^{z}\left[\left(1+z^{2}\right)^{2}\left(1+\Omega_{m, 0} z^{\prime}\right)-z^{\prime}\left(2+z^{\prime}\right) \Omega_{\Lambda, 0}\right]^{-1 / 2} d z^{\prime}\right)
\end{aligned}
$$

Where m, z are observables, M is a standard candle and D comes from theory. We can plot $(m-M)$ v. z for our observations. We can also get a theoretical curve and see if it fits the observations for a chosen cosmology.

Measuring H_{0}
The intercept with the y axis gives a value for H_{0}. It is also possible to measure qu.
$q_{0, e}=q_{0}-\frac{1}{H_{0}} \frac{\dot{L}}{L} \quad$ (which can be problematic if standard galaxies are used) ${ }^{0.5}$

SN and the expansion of the Universe
sn Ia are feasible standard candles. They are visible out to $z \approx 1$, there dispersion on the maximum of their lightcurves is small and they light curves are independent of redshift.

- Perlmutter et al. (1997)
$\left.\left.\begin{array}{l}\text { - Garnavich et al. (1997) } \\ \text { - Res, Schmidt et al (1998) }\end{array}\right\} \begin{array}{l}90<0 \\ \Omega_{\Lambda, 0} \neq 0\end{array}\right]$

You need something that contains 1 to explain the observations.
11.5. Surveys in Cosmology

History and motivation
A survey consist on systematic observing and cataloging a set of objects (stars, etc.). The first star catalog in history was made by Hipparchus (190-120BC) in 129 BC . He also:
i) Determined distances and sizes of the Moon and the Sun.
ii) Discovered the precession of equinoxes.
iii) Measured the length of year to $\sim G \mathrm{~min}$

Hipparchus measured the right ascension, declination (equatorial), longitude (ecliptical) to 850 stars. The original catalog was lost, but a Roman copy (150 ac) of a statue showing it survived.
Due to Weber's law we measure magnitudes: all (most) senses are logarithmic.
i) Sight: magnitudes: $m=-2.5 \log _{*}\left(F / F_{0}\right)$
ii) Sound: decibels $(d B): L_{P}=10 \log _{10}\left(P / P_{0}\right) \quad d B$
iii) Taste: Scoville scale (pungency): Sc $\sim \log _{10}$ ($\left(_{\text {capsaicin }}\right.$) (for spicyness)
iv) Sense of weight ($S=$ sense, $I=$ intensity of stimulus):

$$
\begin{aligned}
S & \sim \ln (J)
\end{aligned} \quad \delta \delta \sim \frac{\delta I}{I} \rightarrow I=m g, \delta I \sim \delta m g \rightarrow \delta S \sim \frac{\delta m}{m}
$$

Following this, Hipparchus' catalog was in terms of magnitudes:

- Brightest star was first magnitude $(m=1)$
- Faintest were sixth magnitude $(m=6)$

Definition $\Delta m=5 \rightarrow 100 \mathrm{~s}$ (brightness)
Weber's law: $m=-2.5 \log _{s_{0}}\left(F / F_{0}\right) \longrightarrow$ Match with Hipparchus: $100^{1 / 5} \sim 2.5$ ptolemy (90-186 AC) published his own catalog in Algamest with 1022 stars. It was the golden standard for more than 8 centuries.
Tyco Brahe (1598 AC) ~ 1000 stars in unprecedent precision (few arcmins). He created very accurate instruments (sextant + cuadrant).
Messier published (1774 ac) a list of 110 nebulae and star clusters (e.g. M31: Andromeda galaxy).
Hubble (1922) measured distances to nebulae (e.g. M31) and found that were too distant to belong to the MW. He also found
 that redshift (related to recession v. increases with distance (Hubble's law).
Large scale structure was discovered by Shapley and Zwicky in the 1930's.

Density map for the local neighborhood

The, first redshift surveys were conducted by Vavcoulburs, then CPA and Arecibo.

Measured angles, positions in the sky and redshift $\longrightarrow 3 D$

Requirements and steps

1. Define science goals/objectives:
equation of state, growth of pert.
i) Understanding dark energy \rightarrow measure cosmological parameters ($\omega=-1$?,$\gamma=6 / 11$?)
ii) Testing homogeneity of $28 S \rightarrow$ measure fractal index $D 2(r)$ and correlation function $\rho(r)$ \longrightarrow number of dimensions of the space, D2 (r) sets the homogeneity scale $(\longrightarrow 3)$
iii) Assesing accelerating expansion of the Universe \rightarrow measure Hubble parameter H_{0} and deceleration parameter $q 0$.
iv) Is the Universe flat \rightarrow measure location of $1^{\text {st }}$ peak of CMB.
2. Define survey strategy
i) What kind of objects (galaxies, supernovae, CMB) should we target?
ii) At which redshift should we go? (this affects the instrument design).
iii) Should we survey a wide area at low z or a small area to a greater depth (m) ?
3. Quantify the performance of the survey.

To convince founders about your ability to process the data, it is necessary to quantify the performance of the survay (number of galaxies to get a certain accuracy, etc.). There are two complementary ways todothis. If we have a likelinood that describes two parameters $(\Omega m, \omega)$ one can write it as an expansion around the best fit:

$$
\ln \angle(\theta) \approx \ln L\left(\theta^{\mu L}\right)+\frac{1}{2} \sum_{i j}\left(\theta_{1 j}-\theta_{i}^{\mu L}\right)^{+} H_{i j}\left(\theta_{j}-\theta_{j}\right)^{\mu_{L}}
$$

where $H_{x j}=\left.\frac{\partial L}{\partial \theta_{i}} \frac{\partial \ln L}{\partial \theta_{j}}\right|_{\theta^{n_{2}}}$ (Hessian matrix)
i) Fisher matrix:

Expectation value of $H_{i j} \longrightarrow F_{i j}=\left\langle H_{i j}\right\rangle$
The inverse of the Fisher matrix is related to the errors Errors $\sim\left(F_{x_{j}}\right)^{-1}$
ii) Figure of metric (=1/Area of contour) : The higher, the better. In the figure, the best one is the solid line one (Vs.dashed line). The figure of merit is defined as:

$$
\left.\begin{array}{rl}
\operatorname{Vol}(M) & =\int_{C} d^{M} a_{i} \\
F_{0} M & =\operatorname{Vol}(M)^{-1}
\end{array}\right\} \rightarrow F_{0} M(M)=|F|^{1 / 2} \frac{\Gamma(H / 2+1)}{\Gamma^{M / 2}}\left(\delta x^{2}\right)^{-M / 2}
$$

4. Publish proposal making scientific case
eg. Euclid Definition Study Report. ar Xiv: 1110. 3193
Goals: Map the dark Universe
Euclid Definition study (aka Red Book) contains info on: science objectives and requirements,
payload (instruments), mission design, performance, data handling, management. (More details later).
5. Request for funding: very difficult step, when most proposals fail.
6. Construction phase
7. Data adquisition
i) First light for DES telescope. Serves as a test to make sure everything is working on.
ii) Planck satellite taking full sky map (rotating around his axis and around the Sun).

8. Pipelines and analysis (theory + data) e.g. See Planck website for maps, catalogs,...
i) Store and analyze data
ii) Make likelihood (the χ^{2}) to fit data
iiii) Other data products and codes
9. Publish papers
i) Provide Key results
ii) Communicate science
iii) Credit authors
iv) Scientific Legacy - Discussion about the istruments, constrains, analysis, additional surveys...
v) Data product description

CMB surveys
COBE: Cosmic Background Explorer (1989-1993)
Instruments:
i) Differential microwave radiometer: for differential measurements of the CMB \rightarrow to measure the anisotropies
ii) Far Infra-red absolute spectrophotometer: to measure the CMB spectrum
iii) Diffuse infrared Background Experiment: to measure dust emission in Galaxy

Key findings:
i) Black-body spectrum of the CMB

ii) Infrared background and galactic disc (effect of dust important).
iii) CMB anisotropies (3 channels at $31.5 \mathrm{GHz}, 53 \mathrm{GHz}$ and 90 GHz).
$\rightarrow T=2.7 \mathrm{~K}$ and $\Delta T / T \sim 10^{-5}$
ii)
iii)

WMAP (Wilkinson Microwave Anisotropy Probe (2001-2010)
Instruments/ probe components:
i) Passive coolers ($\sim 90 \mathrm{k}$)
ii) 5 m solar panel array
iii) Differential radiometers
iv) Low noise amplifiers
v) 5 frequency bands ($23,33,41,61,94 \mathrm{GHz}$)
vi) Reaction wheels, gyroscopes

Key findings:
i) Most accurate CMB map up to that point
ii) Foreground spectra and $C M B$ anisotropies \longrightarrow
iii) Constrains on cosmological parameters

 \downarrow

Planck satellite (2009-20.13)
Instruments/probe components $(30-857 \mathrm{GHz})$:
i) Low Frequency instrument (LFI)
ii) High frequency instrument (HFI)
iii) Passive \& active (liquid the) cooling (0.1 k)

Objectives (all castro and cosmos):
i) High resolution $T T, T E$ and $E E$ maps/spectra
ii) Galaxy cluster catalog
iii) Observations of Milky Way emission
iv) Gravitational lensing and ISW effect
v) Stringent constrains on cosmological parameters Key findings:
i) Most accurate CMB up to now
ii) Constrains on cosmological parameters

arXiv:1807.06205, 1807.06209, 1807.06211
iii) Frequency dependence of temperature

| Parameter | | Planck alone |
| :--- | :---: | :---: | Planck + BAO

iv) Lensing power spectrum - how aus photons are lensed by matter structures

Lite Bird (2020's)
Light satellite for the studies of B-mode polarization and Inflation from cosmic background radiation detection.
Instruments) probe components ($40-400 \mathrm{GHE}$):
i) Superconducting polarimeter
ii) Low frequency telescope $(40-235 \mathrm{GHz})$
iii) High frequency telescope $(280-400 \mathrm{GH})$
iv) Passive and active cooling (5k)

Objectives

i) B mode detection
ii) Constrains on primordial GWs and inflation
iii) Determination of scalar to tensor ratio $r=A t / A s$

Bicep/Keck array - CMB experiments in South Pole (2010-now) [Radiotelescopes] Instruments / probe components (various phases):
i) BiCEP 1: 98 sensors ($100-150 \mathrm{GHz}$)
ii) BiCEP 2:512@ 150 GHz
iii) Keck: 5 polarimeters with liquid Helium
iv) BiCEP 3: 2560 sensors at 95 GHz (no weight limit, since it is not a satellite) Objectives:
i) Measurements of polarization
ii) Emphasis on B mode
iii) Stringent constrains on tensor to scalar ratio (r<0.07) Bicep results (until 2015)
i) Maps of E-modes

ii) Constrains on D_{S} and r \qquad

LSS surveys
LSS surveys can be spectroscopic or photometric. Spectroscopic surveys (Boss, Euclid) split light into frequency bands and match absorption/emission lines. This provides more accurate
redshifts, but data are harder to get (need a fiber for every object). Photometric surveys (DES, Eudid, 2SST) use the total light received by the telescope. They are easier and faster to get, but provide a worse redshift determination.
The main probes are:
i) Gravitational lensing
ii) Type Ia supernovae
iii) Galaxy cluster mass function and number counts
iv) Baryon acoustic oscillations
v) Rya quasars
$2 d F$ - Two degree field galaxy redshift survey Instruments and components:
i) 4 m telescope at Anglo-Australian Observatory
ii) 2 degree field of view
iii) 200 fibers

Objectives:
i) Obtain spectra for 245,591 objects
ii) Cover an area of approximately 1500 degrees 2
iii) Determine 255 up to 600 MpC
iv) Determine cosmological parameters and galaxy bias b Survey strategy:
i) Choose targets a priori
ii) Point and shoot at 2 degrees.

Como results:
i) $2 S 5$ up to $600 \mathrm{Mpc} / \mathrm{h}$
ii) $\Omega_{m}=0.3 \pm 0.06$
iii) $\Omega_{b} / \Omega_{m}=0.17 \pm 0.06$ (P118:0.156)
iv) Bias $b=0.96 \pm 0.08$ - baryons following DM wells

6dF: Six degree field Galaxy Redshift survey
Instruments and components:
i) 1.2 m Schmidt telescope at UK
ii) 6 degree field of view
iii) Spectrograph with 150 fibers

Objectives:
i) Obtain spectra for 136,304 objects
ii) Map nearby Universe over half the sky
iii) Detect BAO
iv) Determine peculiar velocity field (8885 gals) Survey strategy:
i) Choose the targets a priori
ii) Point and shoot at 6 degrees

Cosmo results
i) BAO detection (2.4σ) at $105 \mathrm{Mpc} / \mathrm{h}$
ii) $\Omega_{m}=0.296 \pm 0.028$
iii) $H_{0}=67 \pm 3.2 \mathrm{~km} / \mathrm{s} \mathrm{Mpc}$
iv) Peculiar velocities for 8885 galaxies at $z<0.055$ SDSS/BOSS: Sloan Digital Sky Survey

$$
\begin{aligned}
& \text { SOS - I : } 2000-2005 \\
& \text { SDSS - II : } 2008-2008 \\
& \text { SOS - III (BOSS) }: 2008 \cdot 2014 \\
& \text { SOS - IV : } 2014-2020
\end{aligned}
$$

Instruments components:
i) 2.5 m telescope at New Mexico (USA)

$$
D_{V}(z)=\left[(1+z)^{2} D_{A}^{2}(z) \frac{c z}{H_{0} E(z)}\right]^{1 / 3},
$$

Summary of parameter constraints from 6 dFGS		
$\Omega_{m} h^{2}$	$0.138 \pm 0.020(14.5 \%)$	
$D_{V}\left(z_{\text {eff }}\right)$	$456 \pm 27 \mathrm{Mpc}(5.9 \%)$	
$D_{V}\left(z_{\text {eff }}\right)$	$459 \pm 18 \mathrm{Mpc}(3.9 \%)$	$\left[\Omega_{m} h^{2}\right.$ prior $]$
$\mathbf{r}_{\mathbf{s}}\left(\mathbf{z}_{\mathrm{d}}\right) / \mathbf{D}_{\mathrm{V}}\left(\mathbf{z}_{\text {eff }}\right)$	$\mathbf{0 . 3 3 6} \pm \mathbf{0 . 0 1 5}(\mathbf{4 . 5 \%})$	
$R\left(z_{\text {eff }}\right)$	$0.0324 \pm 0.0015(4.6 \%)$	
$A\left(z_{\text {eff }}\right)$	$0.526 \pm 0.028(5.3 \%)$	
Ω_{m}	$0.296 \pm 0.028(9.5 \%)$	$\left[\Omega_{m} h^{2}\right.$ prior $]$
\mathbf{H}_{0}	$\mathbf{6 7} \pm \mathbf{3 . 2 (4 . 8 \%)}$	$\left[\Omega_{\mathbf{m}} \mathbf{h}^{2}\right.$ prior $]$

ii) 120 Mpixel camera

iii) Spectrograph with 1000 fibers
iv) Liquid nitrogen cooling to reduce noise (190 k) Objectives:
i) Obtain spectra for 4355200 objects
ii) Both photometry and spectroscopy
iii) High significance detection of BAO
iv) Determine peculiar velocity field (8885 gal)

Observations/results:
i) Distribution of local galaxies
ii) Millions of objects and spectra
iii) Frequent data releases Cosmos results:

i) BAO detection (4.5σ) at $\sim 105 \mathrm{Mpc} / \mathrm{h}$
ii) $\Omega_{m}=0.310 \pm 0.06$
iii) $H_{0}=67.6 \pm 0.5 \mathrm{~km} / \mathrm{s} / \mathrm{mpc}$

iv) Detection of most distant quasars (160000 objects at $2.2<z<3$)

Wiggle Dark energy survey (2006-2011)
Instruments and components:
i) 4 m telescope at Anglo-Australian Observatory
iii) 2 degree field of view
iii) Spectrograph with 150 fibers

Objectives

i) Improve understanding of $D \mu$
ii) Measure the BAO (hence the wiggle)
iii) Attempt to determine $z 1 / 4 \times 10^{16}$ galaxies

ArXiv: 1210.2130
http://wigglez.swin.edu.au/site/
ii) Cover 1000 square degrees
v) Synergy with n-body sims (Giggle)

Results:

i) Stringent constrains on 1 ADM
ii) Redshift of 240000 galaxies
iii) Constraints on $\xi(r)$ and $P(k)$
iv) Constraints on $r=A_{t} / A_{s}$
v) Systematic test of $\Lambda C D M$ extensions

Model	Parameter	CMB + Wiggle	$+H_{0}$	$+\mathrm{SN}-\mathrm{Ia}$	+BAO	$+H_{0}+\mathrm{BAO}$
Flat $\Lambda \mathrm{CDM}$	$100 \Omega_{\mathrm{b}} h^{2}$	2.238 ± 0.052	2.255 ± 0.050	2.240 ± 0.053	2.239 ± 0.050	2.253 ± 0.050
	$\Omega_{\mathrm{CDM}} h^{2}$	0.1153 ± 0.0027	0.1145 ± 0.0026	0.1150 ± 0.0028	0.1152 ± 0.0024	0.1146 ± 0.0024
	100θ	1.039 ± 0.002	1.040 ± 0.002	1.039 ± 0.003	1.039 ± 0.002	1.039 ± 0.002
	τ	0.083 ± 0.014	0.084 ± 0.014	0.083 ± 0.014	0.083 ± 0.014	0.084 ± 0.014
	n_{s}	0.964 ± 0.012	0.968 ± 0.012	0.965 ± 0.013	0.964 ± 0.012	0.968 ± 0.011
	$\log \left(10^{10} A_{s}\right)$	3.084 ± 0.029	3.086 ± 0.029	3.085 ± 0.030	3.083 ± 0.029	3.086 ± 0.029
	Ω_{m}	0.290 ± 0.016	0.283 ± 0.014	0.288 ± 0.017	0.289 ± 0.013	0.284 ± 0.012
	$H_{0}\left[\mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}\right]$	68.9 ± 1.4	69.6 ± 1.3	69.1 ± 1.6	69.0 ± 1.2	69.5 ± 1.2
	σ_{8}	0.825 ± 0.017				

Como results in detail:
i) Measurement of growth at $z=(0.22,0.41,0.60,0.78)$
ii) $\Omega_{m}=0.280 \pm 0.016$
iii) $\sigma_{8}=0.825 \pm 0.017$
iv) $\sum m_{v}=0.58 \mathrm{ev}$
v) $r<0,18$

DES - Dark energy survey (2012 - ?)
Instruments and components:
i) Visible and infrared 4 in telescope at Cero Tololo in Chile
ii) 2.2 degree field of view
iii) 5 photometric bands (g, r, i, z, Y) Objectives:
i) Obtain spectra $\operatorname{Sn} I a \quad(\sim 10000)$
ii) Find galaxy clusters
iii) Sample 300×10^{6} galaxies for BAO
iv) Weak lensing constrains
v) Find deviations from GR

Four Probes of Dark Energy

- Galaxy Clusters
- $\sim 100,000$ clusters to $\mathrm{z}>1$
- Synergy with SPT, VHS
- Sensitive to growth of structure and geometry
- Weak Lensing
- Shape measurements of 200 million galaxies
- Sensitive to growth of structure and geometry
- Baryon Acoustic Oscillations
- 300 million galaxies to $z=1$ and beyond

Factor 3-5 improvement over Stage II DETF Figure of Merit

- Supernovae

- 30 sq deg time-domain survey
- ~ 4000 well-sampled SNe Ia to $\mathrm{z} \sim 1$
- Sensitive to geometry

DES resalued tensions between low -z pro bes and Planck.

1. Planck Vs. Local Hubble measurements
2. Planck V_{5}. Local constraints on σ_{8} (important parameter for LSS)
DES results lie in the middle

And obtained improved constraints on MCDM and neutrinos.

Joint DES-Planck results are astounding.
DES gave constraints on WCDM as well.
Euclid survey by ESA (2020?)
Characteristics:
i) Satellite at 22 sun-Earth positron
ii) 1.2 m telescope by Airbus
iii) Wide survey: 15000 sq degrees
iv) Deep survey: 40 sq degrees
v) Wavelengths: 550-2000 nm
vi) Shapes of 1.5×10^{9} galaxies
viii) Redshifts of 5×10^{7} galaxies
viii) cost: 1.25 billion ϵ

Objectives:
i) Weak lensing
ii) Determining the BAO
iii) Galaxy clustering
iv) Goal: constrain deviations of $G R$ LSST: The large Synoptic Telescope (2020??) Now the Vera Rubin observatory
Instruments and components:
i) Telescope at Cerro Pachon (Chile)
ii) 9.6 sq degrees field of view

Because of the amount of data
(ii) 3.2 Gigapixels

Objectives:

i) Supernovae, GRBs
iii) Asteroids, Comets and motion of stars
iii) Mapping the Milky Way (tidal strips and Galactic structure)
iv) DE and DM: lensing, DE properties (ω, γ), etc. Photometric bands v) Overall, ~ 37 billion objects

