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Introduction

One of the goals of cosmology is explaining how the structures that we observe were formed .
We already know about the origin of matter perturbations and that dark matter was

forming structures before matter decoupling , but we need to understand how this matter

perturbations grew and why did they formed inhomogeneous structures . (Note: that when
we talk about the homogeneity of the Universe

,
we refer to a certain scale .

Below that

scale
, we have other structures) . Throughout the whole lecture we only consider matter

perturbations well inside the Hubble radius ( i. e. , the horizon )
.

9. 1
. Governing equations .

Basic newtonian equations
we start with a non -cosmological setting , taking a newtonian approach to find how matter

evolves with time
.

• Poisson 's equation :

but = 4ITG (e t 3¥) → self gravity
• Continuity equation :

Ift t a( (etE)T) = O → mass conservation

• Conservation of momentum :

(et E) ( 3¥ thoDT) = - (e +E) out - op
• Equation of state

P =p (e , S)
- covers D.M

.
and baryonic matter

cosmological setting
we can change this equations considering a non relativistic fluid in an expanding Universe

characterized by small perturbations about a homogeneous and isotropic background .
Non relativistic fluids
For non - relativistic fluids , we have pace .

Thus
, D can be discarded when it is compared

to the energy density .

However
, we cannot discard TP because it can be large . Baryonic

matter fulfills pace too .

We further assume adiabatic perturbations , whose equation
of state will be given by : Tp = Cs

'

TP



We obtain :

• Poisson 's equation :

but = 4ITG (e t 3¥) > but = 4ITG e

• Continuity equation :

ft t a( (etE)T) = o s ft t a Cer) = O
• Conservation of momentum :

(et E) ( 3¥ + Croom) = - (e +E) out - op → (II t Crow) = -out - E
• Equation of state

P =p (e , s) > Tp = Cs
' Te

Expanding Universe
we can change to comoving coordinates to consider the expansion of the Universe

.

Transforming the velocity : REMINDER

F = at
J = IF = I t ta F , with it = a I = comoving coordinate

peculiar velocity field
Dem :

E- IF = ¥ tax) = at tax = at ta (Ia)
• The peculiar velocity UT is associated to the motion of matter within an expanding universe
• EF is the Hubble drag term, related to the expansion . We can handle this expansion

with the Friedmann equations .

The peculiar potential I can be defined as :

I = Io - tzaaoxz

As it will be seen later, § is sourced by matter perturbations . The second term of the

potential is related to the expansion .

It is also necessary to change the operators .

We find that :

J = at Tx
"

proof
"

:

Er → IE.
It is harder to change the time derivative .

The expression for the convective time derivative
is given by :

Fa p
= IT
,

- a÷ (5. ox )



Proof : calculating the total derivatives of dy and dg :

} "" ""t have % = dad

Once we have these ingredients, we can rewrite the equations using the cornering
coordinates

.

• Poisson 's equation :

y
Associated to perturbations , not background expansion

but = 4ITG e > Dx § = 4 itGaz (e-Ems background density

Proof : ↳
e ⇐ate ,

will be written as a density
contrast

NOTE

- Friedmann equations are for the
"

background
" E

- The comoving potential & is responsible for the growth of perturbations
- There is no solution for Poisson's equation in infinite space unless the source function
averages to Zero

- The inclusion of a A- term will not change the result ( it would be compensated

by the appearance in the
2nd Friedmann equation

• Gomoving] continuity equation

Ift t a Cer) = o > Ife t 1a Tx o (Cli) t 3 Cade -0
NOTE :

- It contains an additional drag term due to the cosmic expansion .



Proof :

• Comoving conservation of momentum

(II t Cr .DT) = -TE - E s II t ta Cui . a.) lit IT = - 1a AE - I 0¥

Proof : NOTE

- It also contains a drag
term due to the cosmic

expansion : Ia ut

wrapping all the equations together :

• Poisson 's equation : Dx § = 4 itGaz (e-E)
• Komoring] continuity equation : Ift t 1a Tx o (Cli) t 3 da e -- O
• Canoeing conservation of momentum : IFI t 1a Cui . a.) lit IT = - 1a Tx E - ta YI
• Equation of state : Jp = G20e

NOTE :

It is possible to define a set of coordinates known as
"

super Conaing coordinates
"

that leave invariant the newtonian fluid equations .

Thus
,
it is possible to use non-

cosmological hydrodynamical codes and
" translate " the result

.



Small perturbations
We want to solve these equations for small perturbations about a homogeneous and isotropic

background .

These perturbations are the source of the potential . We can rewrite all the

equations in terms of the density contrast :

8 = CEE → e -- e-CITY

• Poisson 's equation :

Dx § - 4 itGaz (e-E)
e-E - Ed

> A, I = 4 IT Gaz e-8

• Continuity equation

Ift t ta Tx o Goi) t 3aIe=o s II t at 7. fatd) I] = 0

NOTATION

From now on :

Fx → T

• Conservation of momentum

II t ta Cui . a.) lit Iii = - I a. E - IFI s 3¥ tha ( ii.Diet Eau = - I 7$ - II 7¥

Then :

• Poisson 's equation : A, I = 4 IT Gaz e-8

• Continuity equation : 0¥ t at 7. [Cstd) I] = O

• Conservation of momentum : 3¥ tha ( ii.Diet da u = - I 78 - fed7¥
• Adiabatic perturbations Tp =Cs2yp



Linear perturbation theory
Since we are considering small perturbations , we can take : 841

.
We can also

consider CELI <a H -- Ea : the velocity of the perturbations is much smaller than the

expansion of the Universe
. We can discard some of the terms of the previous equations :

Poisson 's aquatic : A, I = 4 IT Gaz e-8

f:::::::::":::÷ : :÷÷::::i::÷⇒÷÷.
Adiabatic perturbations Tp =Cs2yp

We are left with :

Poisson 's equation : Dx & = 4 IT Gaz e-8

f::::::::*::÷:÷÷÷:⇒. .÷ .
Adiabatic perturbations Tp =Cs2yp

NOTE

C- is the background density , and so depends on all the components of the Universe :

Ed = e'tot ( j¥8 t EET Sx + t.IT oh, t . . .) source term

The rest of the equations remain for the decoupled component of interest, the

only quantity common to all possible components is the gravitational potencial .

We can combine some of the previous equations to eliminate u
, Jp and § . Taking

the continuity equation and the momentum equation :

08
at
t at

B=z¥ + aoaiti.zoo.IE! ) o -- Fa - tears

proof :



We obtain the equation that governs the evolution of the density constrast 8G.t)

3¥ t 2 da ITI - 41TGet- S8 = 0

This equation is linear, and can be decomposed in different sine functions .

It is valid for arbitrary cosmologies , as well as for collision less (Cs -- o) and
collisional matter (coupled to itself , Cs ¥0) .

Cosmological expansion acts as a damping term .

Remember that we are describing matter perturbations well inside the Hubble radius .

If there are additional ( grau . interacting ) components, they only enter into the
41TG - term (for example, radiation coupled gravitationally ) .

9.2
. Growth of matter perturbations

Jeans limit

To study the evolution of the density contrast we need to solve :

3¥ t 2 da ITI - 41TGet- S8 = 0

We take a decomposition in plane waves as an ansate for the solution :

8 (I, t ) = I felt) e
i I

← Fourier space

Doing this, we are separating space and time .

Each wave is characterized by its

wave number K .

Taking Sd = - K28, we can rewrite the evolution equation as :

Fff: t 2 Ia off t ( K2 - HITGE) da = O

where da is the amplitude in K - space . This is the equation of a damped harmonic oscillator :

m d2ff# t c df tkxct) = 0
It is necessary to solve the evolution equation for every wave (as characterized by its
K ) individually .

The term ( K2 - HITGE) reflects the balance between pressure support and gravity (note
that we have allowed for baryonic/pressure gradients) . We can cast this into a condition

for the wavenumber k in terms of the background density .



• KAI < 4%5 ⇒ ( j e o → gravitational collapse

• KAI > 4tg{E ⇒ ( ) so → oscillations (with decreasing amplitude due to damping term)

We define the Jeans limit as :

REMINDER

do = Cs see Maw = 4 (E)
3

Ew
k= Life

where do is the Jeans length and Mg is the Jeans mass
.

Jeans length depends on all gravitating components, while Jeans mass is defined for a

certain component w . If the mass of the perturbation es larger than Mg , it collapses .

Evolution of the density contrast 8(t) for dark matter
The dominant non - relativistic component is dark matter (with g -- o) .

Its evolution eqn .

is
given by : /

no oscillations
NOTE

028
It t

2 3¥ - 4 AGE8=0 We are working with 8k

Matter - dominated Universe

We need to calculate how does the perturbation grows ( in an expanding Universe) as a function

of time. The most interesting period is matter domination
,
since baryonic matter decoupled

from the CMB in this epoch . During matter domination :

• aya = 21st
• 41TGE = Zzz, } Am =L Solution for aft)
→
228

at t ¥37 - E. 8=0

Ansate : the solution is a power law :

8 = Ctn

8
= nctn- i

8 = n (n - L ) Ctn-2

Solving the differential equation :

I = Ce t2b t Cz t
- t

(growing mode + decaying mode)

we only consider the growing mode, since it is the one that produces structures .



For a Dm =L universe we had a ~ t213 , thus : 8ha

In the (early ) era of matter domination, dark matter perturbations grow proportional
to the scale factor .

Generalization for arbitrary cosmologies
we have to integrate the evolution equation , but considering :

4 'TGE = 4 ITGrm earit = 4 IT G Dm {I = Zz Dm H2

→ 3¥ t 2h 2¥ - Z em H2O = 0

Changing variables t = t ca) :

a
' Ifad, t (2 - g) 3daL - Zz Dm 8=0 g. = - a°÷
It is possible to look for a exact solution solving :

8cal = Erm.otto f.
a

÷,s da
Or an approximate solution :

Sca) a saz dm (a)frm">Ca) - ra la) t ( stanza) ) (It daff)]
'

For a flat Universe consisting of a 2- componentfluid ( dark matter t something with

W = const
, w

= - t → ( t - Rm.
o) a o = Dm, o

or w = - lb ⇒ ( t -Sm , o) a-2 =D% a
-2) :

H2Ca) = Ho 2Erm , o a-3 t ( t -lmao) a'
"th) p = wee , w -- const

d (a) = Az Fa [7¥ , Igtw i t - ET , I-Ami 'Ca)) (Bueno Belloso et al . 2011)

→ Dm =L , 82 a

All solutions converge to this at

early times
.

→ There are various ways to quantify
the growth :

• Growth factor : g = %

(compare to linear growth)
• Logarithmic growth rate :

f = den dena



Perturbation evolution through time
we are interested on studying the evolution of matter perturbations during the following
epochs :

i Radiation domination
'

i
.

Matter domination ! A domination
i i i

' l t Zeq = e÷° = 24000hm, o h2 ! !
i i

,
I = Lame = L:÷ ( it Zap, i

r

i i
.

. Zeq I 3500 i i

⇒ ytz = ( 1-jm.no )
""
→ -220.3

DM perturbations already grew during radiation domination because they were not coupled
to the thermal bath

. Baryonic perturbations could only grow when they decoupled

from the photons . Until then , they were oscillating without collapsing (as it was
discussed before .

Evolution of dark matter perturbations

we have already discussed that, during matter domination : dm Ca) da

To study the growth of 8 during radiation domination we consider again
the

eqn .

of structure formation : 8 → Potential perturbations are sourced by all

- components

Effy +2 off - Hito e- (EI dm tech) -- 0
It is necessary to consider Cr since it is the dominant term .

In the equation, it appears
with the radiation perturbation dr . But we have that In so (they oscillate) .
This can be proved using GR

.

NOTE :

We can write the previous equation as : we don't have Br = Iz dm (as for
02dm

¥
t 2 ¥ - 41T Gem dm = O baryons) because they do not

since HITGym K 41TGer =-3
2

, the
interact via Thomson scattering .

potential term can be ignored . The eqn .
becomes :

7f÷+¥3¥eo
Dem : Radiation - dominated Universe : alt) at

213
,
a. x Z t

-"3
, ad = I = 25¥

Solution
,
Try

using Tt
t ft Y = O y = Off

dm (a) a lnct) radiation domination



Dark matter perturbations are "not really growing
" during radiation domination

.

This is

true for perturbations inside the horizon
.
Perturbations outside the horizon are

growing
like 8cal xa2 (relativistic treatment) .

This is called the Meszaros effect :
- 8M outside the horizon grows like a

2

- dm inside the horizon grows like en@

When a perturbation enters the horizon (because

it has grown faster) it
"

freezes in
"

up to the point
when matter starts to dominate .

> horizon

perturbation
This effect allows to predict the shape of the Power spectrum of primordial matter perturbations .

During A domination :

III t 2£ off - 4TGem dm = 0
As before, da x O , 41TGET 224 ITGen = Z(Ia )

"

↳ as far as we know

Taking into account that 227¥ +2Ho III = O
Sol : 2¥ t 2Hoy = o y = off

Sm (a) a a-
2

In A domination the perturbations decay away .

There will not be structure formation from
perturbations entering the horizon .

Evolution of baryonic perturbations

Baryons are not able to grow their perturbations until decoupling (before that, we have
the baryonic acoustic oscillations . Afther decoupling , they will catch up with dark
matter perturbations, and grow as Sb Ca) da :
• Before decoupling . After decoupling

8b a Fdr Sb Ca) I dm(s - az)
↳ re - scaling



These are detailed numerical integrations of :

Iff t 2¥ III t (÷ K2 - 41T GE) ok = O

for cold dark matter, photons and baryons and

two wave numbers (K = 0.01 Mpc
- 1 and K -- toMpc

-

Y .

The upper panel shows a large scale perturbations.

Baryons are barely coupled to photons , compared
to the lower panel (small scale perturbation),
where they are strongly coupled . After decoupling,
baryons follow DM

, forming the same structures

in the end
.

9.3
.
Statistics of perturbations

Perturbations in K- space

We can decompose perturbations into waves :

228

It
t 2 3¥ - 41TGET = o

> ICE, t ) = da (t) e
ie- *

Since the evolution equation is linear, each

of
.
It grow indepently

Sum

>

We can take
"

moments
"

of the density contrast :

• First moment :

{8 (I, t) > = 0

Because the average of Left> is automatically 0
.
This means that

,
in Fourier

space : Ldn Ct)> = 0
,

das ( t) = d-Elt)

• We can take higher order moments :

% = 48Gt . t) 8h52 , TD > two- point correlation function
Ez = LOCI. . td 8(Iz, t) 8h53 it))

By = - - r



And, since we are working with an homogeneous and isotropic Universe : E = 52 (IIe -54)
(we can only work with differences , not positions) .

Two - point correlation function and power spectrum

The two - point correlation function is commonly used to quantify the strength of perturbations .
This second moment quantifies the likelihood of finding another

point at a certain distance to agiven point ( = same density) . This

is compared to a random mass distribution
.

qz egg =

npair (* + d'T)
- I (difficult to calculate)

nrandom (Itd5)

This correlation function has an analogous in Fourier space called the Power Spectrum .

Ez Ce) = ÷p f pCk) e
- i

desk = Jpck,sina.by#kzdkPCk3=L18El27k-i=k
← power spectrum

knowing the Fourier amplitudes, it is easy to obtain the power Spectrum, and so Ez
.

Taking models from different cosmologies, they all
have the same shape . This is related to the

Meszaros effect . (t inflation)

From Inflation, we know that the initial spectrum of matter perturbations is Pick) 2K .

Then
, DCK ) evolves as a function of time going through radiation domination and entering

matter domination
.
Since PCK) = LIE > , and we know how 8k evolves

,
then

:

I
.

We have k coming out of inflation .

We also need to add the size of the horizon

KH = It
rn



ln (pck))
Radiation

,
size of the horizon at

domination matter - radiation equality
^ outside of inside the 2

.

We know that the horizon isgrowing,
the horizon ③ •

horizon

•
② ② K which means that KH is moving

ar f
• a ena

to smaller K
. If a perturbation- y

shape of
the

a
' f

power
is outside of the horizon

,

it is

spectrum
growing like a? If it is inside, it^

AZ
will not grow (Lena in rad .

dom) .

②
3
.
The same will happen for sequent

③ ← ⑥
I >

KH kitleaterl kn Enck ,
time steps .

This will happen until matter domination .

As soon as we enter matter domination
,
modes

inside the horizon (B) will start to grow again as 8 x a
.
The peak in the

power spectrum is the size of the horizon right at matter - radiation equality .
Evolution of the Power spectrum during matter domination

As we have mentioned before, the Power spectrum is the square of the amplitudes of the Fourier

modes 8k
,
which were defined as :

DEFINITION t REMINDER

8 (I. a) = ¥ of:(a)eik
' 8 a, = DCI

Dead
Chi Cao)

This modes evolve
,
with respect to the linear growth factor : Taking aces → Dca-- D= s

O = t 2 Ia ¥7 - 41TGED ← matter domination
° For Dm =L

, a dt2's
,

must have

Dca) da, i. e. for small perturbations ,
overdensities grow as the scale

Thus
, recalling the definition of the power spectrum : factor everywhere.

PCK) = 218k 12>hi , er.
• For Rm Lt

. Dca) da at early
times

, at late times ( when curvature
We can find its dependence with time as : or A term dominates expansion rate)

Dca) increases more slowly →
P(K) = (Dg÷ )

'

pock) structure growth is slower .
See : Evolution of 8 for arbitrary

Baryonic oscillations in Pfk) and Eck ) cosmologies (spae. )

Oscillations leave distinct features in the power spectrum and the two- point correlation function :
I
.
Power spectrum 2. Two

-point C
- f .

>



9.4
.
Non Linear structure formation

Analytical extrapolations of linear theory
Until now, we were considering perturbations with 8Gt, t) L I , but the structures that we

observe have (obviously ) PCI, t) → I . This is the territory of computational cosmology .
However

, extrapolating linear theory results when 8 >> I provides an useful insight on
structure growth .

Some existent analytical (quasi - linear) approaches are the 2-d '

dovich

approximation , the Spherical Top - Hat collapse model and the Press - Schechter halo mass

function .

Zed ' dovich approximation REMINDER

The Zd '
dorich approximation is applying first order

perturbation theory , but using a Lagrangian viewpoint

(until now, we were taking an Eulerian viewpoint) .

Let us consider an over dense region that is collapsing . The position changes as a (linear

function of time :

I ft) = ft Dlt) ICE)
> temporal and spatial evolution

> initial (unperturbed) position , background
> updated position

• Displacement field 5cg) • Temporal evolution :

To obtain the displacement field, we take 8Gt, t) = DAT dCIO) , Pato) initial perturbation

the first derivative of the Z
.
A : O = 3¥ t 2 3¥ - HitGED

I = DICE)
And using the definition of the peculiar velocity field :

I = 1a T
we can combine them to obtain an equation for the evolution of ci :

I = ①a Scot)

II = a. D8 + aijgyqy } HadDota 5cg, = -go

"
conservation of momentum, Eulerian perturbation theory 2¥ taau = -f-af

We have the equations :

O = ④ t 2 Ea D - HitGED
+

S§=4 ITGAZES (Poisson equation){(2acid taD) STE) = -oof 8=4 'TGAZEI (Definition of peculiar potential )



And from them we can obtain :

5-Cgi) = -JI
"

force " coming from the peculiar potential

SH = SCIO) I sourced by initial perturbations

since we know the solution for Blaj :
I

D. (a) = Ez Rm .o
H foa da

(Imo a-3 t (I -Dm,o
-In,o ) a-2 trn, o

we can study the evolution if we know 8Ceo) . This can be obtained from the power

spectrum, so we need some analytical calculations for PCK) (e.g . from a Boltzmann solved.

8^0 (K) = Do (K) Ras e " hi

Once we have obtained do
,
we can evolve it using the equations above .

This approach can be compared to the result of N -

body simulations :

Reproduces structure , do not resolves 2nd order Lagrangian perturbation theory
properties of clusters (n lo

? hours) Ica) = of - Dca) TI t D SIN

(Need parallel computing) Resolves structure (n to ° hours)

Spherical Top- Hat collapse
We want to predict the density contrast of a collapsing object . It is only possible to form
structures if the overdensity decouples from the expanding background .

The density
contrast needs to be enough to expand with the Universe and then collapse due to

its self - gravity , forming a virialised object .

Spherical top - hat overdensity :

RTH =
RTH ( t)

MTH = Const

> no spilling of mass outside RTH



Let us treat the perturbation as a "closed Universe
" with K -- I (curvature) ii. e. a Universe that

collapses .

We can analyse its evolution using the Friedmann equations :
not constant

R -in - dependeight / ,
constant

Diii
,
= 8M£ fit, RI" - Ka = 8¥ zMr"'* , Raf - ke ' = 28,7T" - ka

21 PETH - GMRII
,

'
= - I KI CZ L O (K =L for TH overdensity → closed Universe)

The solution to this equation was given on the FRW Lecture :

{ RITA =L ( I
- cos 2) Rta =

"

II" ly Aee is characterized by MTH , the mass enclosed in RTH .

¥ = FT (z - sing) tta =
IT Rta

ta 2C

Z E [0, 2it ]

We are not interested in the absolute value of the overdensity , we want to compare

it to the background density .
Thus
,
we calculate the density contrast :

8TH =Ci fit, → Mass divided by volume e-→ flat model with Dm = I

e-

ETH = 3afI÷p = - - - = ¥741. ( I - cosh -3 *

e- = Hot =
- - - = IIe, ca - s.

.

..,
.. } ' '' d' " = = - - - =If7:I÷

* Proof :

e = .EE#atEtaciE:::y;=tnt:.39fzi:::i:Y:=t:*: 'Em. Yi. =

= # 3%:" 'Ii :::%=%..
'

E:" 9::::3. -- Itis:::3.
We want to calculate the density contrast at the beginning ( turnaround) and the

end of collapse (formation of the final object) . Thus
,
we need to determine Eta

and Muir .

Plotting (r, Rat, CHR ta ) and (z , tax) , it is possible to find 2 ta = IT and zur = It.

(tuir = Itta) .

At turnaround : Once the collapse has finished :

It 8TH ( tta ) = 9T÷ a 5.5 It 8TH (trio) = → Singularity
However

, singular collapse is not a particularly useful model ( it is unrealistic to assume

purely radial motions) .

We can assume that the overdense region forms a virialred
halo at collapse time .



The energy of the halo will be given by :

Eta = Uta Uta = -¥
GMTHZ

Rta

Evie = Tur t Uuir Uri, = - age
Gunz

t Virial theorem : 0=2Tur t Un,

Rvir

At turnaround
,
Tvir a 0

,
so the total energy will be Eir= Uta

Bo

Cor) 0=2Tur t Unr ⇒ 2Eur = 2Tur t Voir t Our = 2Uta
-

Then
,
Rvir = Rta

⇒ Their

2

Thus
,
we will have for virial ized overdensity :

3MTH
CTH (tvir) = ¥?

= 8ETH Ata)

And for the background density :

their = Titta
e- = gig,

s f- (tri) = tz e- Itta)

And so, for the density contrast :
Density contrast of a virial.Zed obtect

It 8TH ( tar ) = Sf#taffy = 32 ( Itdltta)) = 329¥ = 18172 I 178 > It 8TH (tar ) = 1811-2=178

Another possible approach is taking the linear theory solution for the density contrast .
Taylor - expanding cosy and sin n gives :

←

true

solution

RTHCH = Ruta (III )
"

[ I - Io (Efta )
"
t
. . .] ⇒ day =zof6t÷)

"

plisnoeeaitioth
8 (tu-r -- 2 tta) I Zo (121T) "s a 1.686 ⇒ dein (tar ) a 1686 = do

Linearized density contrast of collapsed object

Press - Schechter halo mass function
Once we have estimations of the threshold for structure formation, we want to calculate
the number of objects that will form for a given mass

, NCM) .

At some point, this regions A halo has formed when its linear

f
will become objects
Goal : find their masses density contrast 8(x, a) has reached

M ? I
m?
I do = l

. 69

NOTE

Time dependence isgiven by PG.tkDla)



To find the mass of each object ( i.e. inside each peak) , one can filter the density
constrast . This is done convolving it with a filter that peaks out a particular mass .

This

is done with several filters , counting the peaks above the threshold for each filter .
We consider perturbations on a certain scale R*, which can be related to halo

mass via M = Dm Grit 4 123

-8,2(I, a) = force ; a) Wr (E- I') d3x '

1st filter 2nd filter

I

g
Im n! me

Ms

It is important to bear in mind that some of the peaks are being counted twice, so
the will need to be abstracted (whenever the filter mass is smaller that its mass) .
The next assumption is that the density contrast In Lx) is a Gaussian field with
variance or :

th
e

- INE )
-

p Cdr ) =
1- Or' = ¥ JobPCK) W'4kR) K2 dk

where Pch) is the power spectrum of the density fluctuation (all waves inside R - window

affect TR ) . →
initial power spectrum of density perturbations at decoupling

Pfk) = ( )
"

pock ,
can be scaled using the growth factor

por ) is the probability of finding a peak with that particular value of Pr . Thus,
the probability of finding a peak above or will begiven by :

Fsa (R) =L?pC8r)ddr

An the number of peaks in rande [R , RtdRJ is given by :

dN x F
>a CR)

- F
>dc (Rt DR)

This can be related to the mass M as :

M = Dm for it R3

Following this steps, one arrives to the press - Schechter formula :

Indu = ¥ E ET geeing up ( Ign: ) E
Press - Schechter function



where do is the threshold density contrast of collapsed structures according to linear

perturbation theory , e- is the background (mean) density of the Universe and on

is the variance of the mass on scale corresponding to M = .(413) Rm Grit 123

Jr' = ¥ Jot PCK) W' 2(KR) K2 dk
It is common to use a spherical top hat filter ( VTZCKR) is its Fourier transform) :

VT (x) = Zz (sin (x) - xcoscx))

This can be taken to -2=0 evolving PCK)
with Dca) . Solid lines represent the

press- Schechter function at Z-- o .

Other lines are coming out of cosmological
simulations starting at decoupling
(Zet 'dorich t hydrodinamical equations) .
Ft are observational data .

The agreement between themodel and simulations
was improvable, but new models and calculations

had not introduced new physics , just introduced

new parameters .

IF die = fCon )NI denom - i
dm

dm

f Con ) = A [⇐)' ts ] eepc-Konz)
The mass function for a scale -free power spectrum

PCKK kn
is given by :

92=004451 ) m
-
n'S
= (if )

-¥

IT dm = nI¥Eq do ( tf) exp Etz de (¥.)n¥) dm
where M* is the typical mass of an object at a given redshift.



Computational cosmology
Numerical simulations are necessary to obtain information about the internal properties or the

spatial distribution of objects . It is possible to try different models (for example,

for dark matter) . Comparing this models to observations , they are validated or

rejected (structures formed , power spectrum , etc . )

HDM power spectrum is suppressed

for small wavelengths .

Thus
, tiny

objects and structures are not formed
from overdensities

.

This difference gives
rise to two formation scenarios in terms
of the

" nature " of dark matter :
bottom-up ( cold dark matter) and

top - down (hot dark matter) structure

formation .

Simulations Vs. observations

Galaxy redshift surveys cover Gpa volumes
.

Simulations cannot follow full set of

physics in such large volumes .

However, there are multiple approaches :

(Biased) galaxy formation models require :

• SAM - semi - analytical galaxy formation modeling
• HOD - Halo occupation distribution

• CLF : Conditional luminosity function
• (8)HAM : (subhalo) Halo abundance Matching
° Biasing model : Pga (K) = b'(K) Rom ( K)
+ other assumptions


