IX. Large Scale Structure formation

Introduction
One of the goals of Cosmology is explaining how the structures that we observe were formed. We already know about the origin of matter perturbations and that dark matter was forming structures before matter decoupling, but we need to understand how this matter perturbations grew and why did they formed inhomogeneous structures. (Note: that when we talk about the homogeneity of the Universe, we refer to a certain scale. Below that scale, we have other structures). Throughout the whole lecture we only consider matter perturbations well inside the Hubble radius (i.e., the horizon).
9.1. Governing equations.

Basic newtonian equations
We start with a non-cosmological setting, taking a newtonian approach to find now matter evolves with time.

- Poisson's equation:

$$
\Delta \Psi=4 \pi G\left(e+\frac{3 p}{c^{2}}\right) \quad \rightarrow \text { self gravity }
$$

- Continuity equation:

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot\left(\left(e+\frac{p}{c^{2}}\right) \vec{v}\right)=0 \quad \rightarrow \text { mass conservation }
$$

- Conservation of momentum:

$$
\left(e+\frac{p}{c^{2}}\right)\left(\frac{\partial \vec{v}}{\partial t}+(\vec{v} \cdot \nabla) \vec{v}\right)=-\left(e+\frac{p}{c^{2}}\right) \nabla \psi-\nabla p
$$

- Equation of state
$P=P(e, \delta) \rightarrow$ covers D.M. and bargonic matter

Cosmological setting
We can change this equations considering a non relativistic fluid in an expanding Universe characterized by small perturbations about a homogeneous and isotropic background.
Non relativistic fluids
For non-relativistic fluids, we have $P \ll \rho c^{2}$. Thus, P can be discarded when it is compared to the energy density. However, we cannot discard VP because it can be large. Baryonic matter fulfills $p \ll \rho c^{2}$ too. We further assume adiabatic perturbations, whose equation of state will be given by: $\nabla P=C_{s}^{2} \nabla p$

We obtain:

- Poisson's equation:

$$
\Delta \Psi=4 \pi G\left(e+\frac{3 p}{c^{2}}\right) \longrightarrow \Delta \Psi=4 \pi G e
$$

- Continuity equation:

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot\left(\left(e+\frac{p}{c^{2}}\right) \vec{v}\right)=0 \longrightarrow \frac{\partial \rho}{\partial t}+\nabla \cdot(e \vec{v})=0
$$

- Conservation of momentum:

$$
\left(\rho+\frac{p}{c^{2}}\right)\left(\frac{\partial \vec{v}}{\partial t}+(\vec{v} \cdot \nabla) \vec{v}\right)=-\left(\rho+\frac{p}{c^{2}}\right) \nabla \psi-\nabla P \rightarrow\left(\frac{\partial \vec{v}}{\partial t}+(\vec{v} \cdot \nabla) \vec{v}\right)=-\nabla \Psi-\frac{\nabla p}{\rho}
$$

- Equation of state

$$
P=P(e, s) \longrightarrow \nabla p=c_{s}^{2} \nabla e
$$

Expanding Universe
We can change to comoving coordinates to consider the expansion of the Universe.

Transforming the velocity:

$$
\vec{V}=\frac{d \vec{r}}{d t}=\vec{u}+\frac{\dot{a}}{a} \vec{r}, \text { with } \vec{u}=a \dot{\vec{x}}
$$

Peculiar velocity field

Reminder
$\vec{r}=a \vec{x}$
$\vec{x} \equiv$ comoving coordinate

Dem:

$$
\vec{v}=\frac{d \vec{r}}{d t}=\frac{d}{d t}(a \vec{x})=a \dot{\vec{x}}+\dot{a} \vec{x}=a \vec{x}+\dot{a}\left(\frac{\vec{r}}{a}\right)
$$

- The peculiar velocity \vec{u} is associated to the motion of matter within an expanding universe
- $\frac{\dot{a}}{a} \vec{r}$ is the Hubble drag term, related to the expansion. We can handle this expansion with the Friedmann equations.
The peculiar potential Φ can be defined as:

$$
\Psi=\Phi-\frac{1}{2} a \ddot{a} x^{2}
$$

As it will be seen later, Φ is sourced by matter perturbations. The second term of the potential is related to the expansion.
It is also necessary to change the operators. We find that:

$$
\nabla=\frac{1}{a} \nabla_{x}
$$

"Proof".

$$
\frac{\partial}{\partial r} \longrightarrow \frac{1}{a} \frac{\partial}{\partial x}
$$

It is harder to change the time derivative. The expression for the convective time derivative is given by:

$$
\left.\frac{\partial}{\partial t}\right|_{\vec{r}}=\left.\frac{\partial}{\partial t}\right|_{\vec{x}}-\frac{\dot{a}}{a}\left(\vec{x} \cdot \nabla_{x}\right)
$$

Proof: calculating the total derivatives of $d f$ and $d g$:

1. $d f=\left.\frac{\partial f(\vec{r}, t)}{\partial \vec{r}}\right|_{t} \cdot \overrightarrow{d r}+\left.\frac{\partial f(\vec{r}, t)}{\partial t}\right|_{\vec{r}} d t$

$d a=\dot{a} d t \quad{ }_{=}=[a \nabla f(\vec{r}, t)] \cdot \overrightarrow{d x}+\left[\dot{a} \vec{x} \cdot(\nabla f(\vec{r}, t))+\left.\frac{\partial f(\vec{r}, t)}{\partial t}\right|_{r}\right] d t$
2. $\quad d g=\left.\frac{\partial g(\vec{x}, t)}{\partial \vec{x}}\right|_{t} \cdot \overrightarrow{d x}+\left.\frac{\partial g(\vec{x}, t)}{\partial t}\right|_{\vec{x}} d t$

$$
=\nabla_{x} g(\vec{x}, t) \cdot \overrightarrow{d x}+\left.\frac{\partial g(\vec{x}, t)}{\partial t}\right|_{\vec{x}} d t
$$

We must have $d f=d g$
3. $d f=d g$
$\underline{[a \nabla f(\vec{r}, t)]} \cdot \overrightarrow{d x}+\left[\dot{a} \vec{x} \cdot(\nabla f(\vec{r}, t))+\left.\frac{\partial f(\vec{r}, t)}{\partial t}\right|_{\vec{r}}\right] d t=\underline{\nabla_{x} g(\vec{x}, t)} \cdot \overrightarrow{d x}+\left.\frac{\partial g(\vec{x}, t)}{\partial t}\right|_{\vec{x}} d t$

Once we have these ingredients, we can rewrite the equations using the comoving coordinates.

- Poisson's equation: \longrightarrow Associated to perturbations, not background expansion
$\Delta \Psi=4 \pi G e \longrightarrow \Delta_{x} \Phi=4 \pi G a^{2}(\rho-\overparen{e}) \longrightarrow$ background density
Proof:
efcte, will be written as a density

$$
\begin{aligned}
\Psi=\Phi-\frac{1}{2} a a \ddot{x^{2}} \quad \begin{aligned}
\Delta_{x} \Phi & =\Delta_{x}\left(\Psi+\frac{1}{2} a \vec{a}|\vec{x}|^{2}\right) \\
& =\Delta_{x} \Psi+\frac{1}{2} a \ddot{a} \Delta_{x}|\vec{x}|^{2} \\
\left.\Delta=\frac{1}{a^{2} \Delta_{x}} \quad \Delta_{x} \right\rvert\, \vec{x} P=6 \quad & =a^{2} 4 \pi G \rho+\frac{1}{2} a \ddot{a} 6
\end{aligned}
\end{aligned}
$$

$2^{\text {nd }}$ Friedmann equation: $\ddot{a}=-\frac{4 \pi G}{3} \bar{\rho} a \overparen{=}=4 \pi G a^{2} \rho+3 a\left(-\frac{4 \pi G}{3} \bar{\rho} a\right)$

$$
=4 \pi G a^{2}(\rho-\bar{\rho})_{q . e . d .}
$$

Note

- Friedmann equations are for the "background" \bar{p}
- The comoving potential Φ is responsible for the growth of perturbations
- There is no solution for Poisson's equation in infinite space unless the source function averages to zero
- The inclusion of a 1 -term will not change the result (it would be compensated by the appearance in the $2^{\text {nd }}$ Friedmann equation
- [Comoving] continuity equation

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{v})=0 \longrightarrow \frac{\partial \rho}{\partial t}+\frac{1}{a} \nabla_{x} \cdot(\rho \vec{u})+3 \frac{\dot{a}}{a} \rho=0
$$

NOTE:

- It contains an additional drag term due to the cosmic expansion.

Proof:

- Comoving conservation of momentum

$$
\left(\frac{\partial \vec{v}}{\partial t}+(\vec{v} \cdot \nabla) \vec{v}\right)=-\nabla \Psi-\frac{\nabla P}{\rho} \longrightarrow \frac{\partial \vec{u}}{\partial t}+\frac{1}{a}\left(\vec{u} \cdot \nabla_{x}\right) \vec{u}+\frac{\dot{a}}{a} \vec{u}=-\frac{1}{a} \nabla_{x} \Phi-\frac{1}{a} \frac{\nabla_{x} P}{\rho}
$$

Proof: $\underbrace{\frac{\partial \vec{v}}{\partial t}}_{\mathrm{A}}+\underbrace{(\vec{v} \cdot \nabla) \vec{v}}_{\mathrm{B}}=-\underbrace{\nabla \Psi}_{\mathrm{C}}-\underbrace{\frac{\nabla p}{\rho}}_{\mathrm{D}}$

$$
\begin{aligned}
& \mathrm{B} \\
& (\vec{v} \cdot \nabla) \vec{v}=\left[\left(\frac{a}{a} \stackrel{\rightharpoonup}{a}+\vec{u}\right) \cdot \nabla\right]\left(\frac{\dot{a}}{a} \cdot \vec{a}+\vec{u}\right)
\end{aligned}
$$

$$
=\left(\frac{\dot{a}}{a} \vec{r} \cdot \nabla+\vec{u} \cdot \nabla\right)\left(\frac{\dot{a}}{a}-\vec{r}+\vec{u}\right)
$$

NOTE

- It also contains a drag term due to the cosmic expansion: $\frac{\dot{a}}{a} \vec{u}$

Wrapping all the equations together:

- Poisson's equation: $\Delta_{x} \Phi=4 \pi G a^{2}(e-\hat{e})$
- [Comoving] continuity equation: $\frac{\partial \rho}{\partial t}+\frac{1}{a} \nabla_{x} \cdot(\rho \vec{u})+3 \frac{\dot{a}}{a} \rho=0$
- Comoving conservation of momentum: $\frac{\partial \vec{u}}{\partial t}+\frac{1}{a}\left(\vec{u} \cdot \nabla_{x}\right) \vec{u}+\frac{\dot{a}}{a} \vec{u}=-\frac{1}{a} \nabla_{x} \Phi-\frac{1}{a} \frac{\nabla_{x} p}{\rho}$
- Equation of state: $\nabla p=C_{s}^{2} \nabla e$

NOTE:
It is possible to define a set of coordinates known as "super comoving coordinates" that leave invariant the newtonian fluid equations. Thus, it is possible to use noncosmological hydrodynamical codes and "translate" the result.

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{A} \\
\left.\frac{\partial \vec{v}}{\partial t}=\frac{a}{a} r-\frac{a^{2}}{a} \frac{a^{2}}{a^{2}}+\left.\frac{\partial \vec{u}}{\partial t}\right|_{:}-\frac{a}{a} \vec{x} \cdot \vec{x} \cdot \overrightarrow{v_{x}}\right) \vec{u}
\end{array} \\
& \left.=\vec{a} \vec{x}-\frac{\dot{a}^{2}}{a} \vec{x}+\left.\frac{\partial \vec{u} u}{\partial t}\right|_{x}-\frac{\dot{a}}{a} \vec{a} \cdot \vec{x} \cdot \nabla_{x}\right) \vec{u} \\
& { }^{C}{ }^{\mathrm{V}}=\frac{1}{a} \nabla_{x}\left(\Phi-\frac{1}{2} a \vec{a} \vec{x}^{2}\right) \\
& =\frac{1}{a} \nabla_{ \pm} \Phi-\frac{1}{2} \vec{a} \nabla_{x} \vec{x}^{2} \\
& =\frac{1}{a} \nabla_{t} \Phi-\vec{a} \vec{x} \quad \mathrm{D}^{\mathrm{D} p=\frac{1}{a} \nabla_{t} p}
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{\frac{\partial \rho}{\partial t}}_{\mathbf{A}}+\underbrace{\nabla \cdot(\rho \vec{v})}_{\mathrm{B}}=0 \quad \mathrm{~A} \\
& \left.\frac{\partial \rho(\vec{r}, t)}{\partial t}\right|_{;}=\left.\frac{\partial \rho(\vec{x}, t)}{\partial t}\right|_{i}-\frac{\dot{a}}{a} \vec{x} \cdot\left[\nabla_{x} \rho(\vec{x}, t)\right] \\
& \text { B } \\
& \nabla \cdot(\rho \vec{v})=\rho[\nabla \cdot \vec{v}]+\vec{v}[\nabla \rho] \\
& \vec{v}=\vec{u}+\frac{\dot{a}}{a} \vec{r} \text { with } \vec{u}=a \overrightarrow{\dot{x}} \quad=\rho\left[\nabla \cdot\left(\frac{\stackrel{a}{a}}{a}+\vec{u}\right)\right]+\left(\frac{\dot{a}}{a} \vec{r}+\vec{u}\right) \cdot[\nabla \rho] \\
& =\rho\left[\frac{\dot{a}}{a} 3+\nabla \cdot \vec{u}\right]+\frac{\dot{a}}{a} \vec{r} \cdot \nabla \rho+\vec{u} \cdot \nabla \rho \\
& \frac{\partial \rho}{\partial t}+\frac{1}{a} \nabla_{x} \cdot(\rho \vec{u})+3 \frac{\dot{a}}{a} \rho=0{ }_{\text {q.e.d. }} \\
& \left.\begin{array}{l}
=\frac{\dot{a}}{a} 3 \rho+\frac{1}{a} \rho \nabla_{x} \cdot \vec{u}+\frac{\dot{a}}{a} \vec{x} \nabla_{x} \rho+\frac{1}{a} \vec{u} \cdot \nabla_{x} \rho \\
=\frac{\dot{a}}{a}\left(3 \rho+\vec{x} \cdot \nabla_{x} \rho\right)+\frac{1}{a} \nabla_{x} \cdot(\rho \vec{u})
\end{array}\right)
\end{aligned}
$$

Small perturbations
We want to solve these equations for small perturbations about a homogeneous and isotropic background. These perturbations are the source of the potential. We can rewrite all the equations in terms of the density contrast:

$$
\delta=\frac{\rho-\bar{e}}{\bar{\rho}} \rightarrow \rho=\bar{e}(1+\delta)
$$

- Poisson's equation:

$$
\Delta_{x} \Phi-4 \pi G a^{2}(e-\bar{e}) \xrightarrow{e-\bar{e}=\bar{e}^{\delta}} \Delta_{x} \Phi=4 \pi G a^{2} e^{\delta} \delta
$$

- Continuity equation

$$
\frac{\partial \rho}{\partial t}+\frac{1}{a} \nabla_{x} \cdot(\rho \vec{u})+3 \frac{\dot{a}}{a} \rho=0 \longrightarrow \frac{\partial \delta}{\partial t}+\frac{1}{a} \nabla \cdot[(1+\delta) \vec{u}]=0
$$

$$
\underbrace{\frac{\partial \rho}{\partial t}}_{A}+\underbrace{\frac{1}{a} \nabla_{x} \cdot(\vec{p})}_{B}+\underbrace{+\frac{\dot{a}}{a} \rho=0}_{C}
$$

$$
\frac{A}{\frac{\partial D}{\partial t}=\frac{\partial(\bar{\rho}(1+\delta))}{\partial t}}
$$

$$
\begin{aligned}
& \mathrm{B} \\
& \frac{1}{a} \cdot(\rho \bar{u})=\frac{1}{a} \bar{p} \cdot[(1+\delta) \bar{u}]
\end{aligned}
$$

$$
\mathrm{c}_{3 \frac{\dot{a}}{a} \rho=3 \frac{\dot{a}}{\bar{a}}(1+8)}
$$

NOTATION

from now on:
$\nabla_{x} \rightarrow V$

- Conservation of momentum

$$
\frac{\partial \vec{u}}{\partial t}+\frac{1}{a}\left(\vec{u} \cdot \nabla_{x}\right) \vec{u}+\frac{\dot{a}}{a} \vec{u}=-\frac{1}{a} \nabla_{x} \Phi-\frac{1}{a} \frac{\nabla_{x} p}{\rho} \longrightarrow \frac{\partial \vec{u}}{\partial t}+\frac{1}{a}(\vec{u} \cdot \nabla) \vec{u}+\frac{\dot{a}}{a} u=-\frac{1}{a} \nabla \Phi-\frac{c_{\delta}^{2}}{a} \frac{\nabla \delta}{1+\delta}
$$

$$
\frac{\partial \vec{u}}{\partial t}+\frac{1}{a} \overline{\left.\vec{u} \cdot \nabla_{y}\right) \vec{u}+\frac{a_{\bar{u}}^{a}}{a}=-\frac{1}{a} \nabla_{\Phi} \Phi-\underbrace{\frac{1 \nabla, p}{a}}_{A}}
$$

Then:

- Poisson's equation: $A_{x} \Phi=4 \pi G a^{2} e^{\delta}$
- Continuity equation: $\frac{\partial \delta}{\partial t}+\frac{1}{a} J \cdot[(1+\delta) \vec{u}]=0$
- Conservation of momentum: $\frac{\partial \vec{u}}{\partial t}+\frac{1}{a}(\vec{u} \cdot \nabla) \vec{u}+\frac{\dot{a}}{a} u=-\frac{1}{a} \nabla \Phi-\frac{c_{\delta}{ }^{2}}{a} \frac{\nabla \delta}{1+\delta}$
- Adiabatic perturbations $\nabla P=c_{S^{2}} \nabla P$

Linear perturbation theory
Since we are considering small perturbations, we can take: $\delta \ll 1$. We can also consider $\frac{(\vec{u} \cdot \overrightarrow{)})}{a} \ll H=\frac{\dot{\alpha}}{a}$: the velocity of the perturbations is much smaller than the expansion of the Universe. We can discard some of the terms of the previous equation:
(Poisson's equatio: $\Delta_{x} \Phi=4 \pi G a^{2} e^{\delta}$
continuity equation: $\frac{\partial \delta}{\partial t}+\frac{1}{a} \nabla \cdot[(1+\delta) \vec{u}]=0$
Conservation of momentum: $\frac{\partial \vec{u}}{\partial t}+\frac{1}{a}(\vec{u} \cdot \nabla) \vec{u}+\frac{\dot{a}}{a} u=-\frac{1}{a} \nabla \Phi-\frac{c_{\delta}{ }^{2}}{a} \frac{\nabla \delta}{1+\delta}$
Adiabatic perturbations $\nabla P=C_{s}{ }^{2} \nabla P$
We are left with:
(Poisson's equation: $\Delta_{x} \Phi=4 \pi G a^{2} e^{\delta}$
$\left\{\begin{array}{l}\text { - Continuity equation: } \frac{\partial \delta}{\partial t}+\frac{1}{a} \nabla \cdot \vec{u}=0 \\ \text { Conservation of momentum: } \frac{\partial \vec{u}}{\partial t}+\frac{\dot{i}}{a} u=-\frac{1}{a} \nabla \Phi-\frac{c_{\delta}{ }^{2}}{a} \nabla \delta\end{array}\right.$
Adiabatic perturbations $\nabla P=C_{S}{ }^{2} \nabla P$
NOTE
$\bar{\rho}$ is the background density, and so depends on all the components of the universe:

$$
\bar{e} \delta=\bar{e}_{\text {tot }}\left(\frac{\bar{e}}{\bar{e}_{\text {tot }}} \delta+\frac{\bar{e}_{x}}{\bar{e}_{\text {rot }}} \delta_{x}+\frac{\bar{e}_{y}}{\bar{e}_{\text {tot }}} \delta_{y}+\ldots\right) \quad \text { Source term }
$$

The rest of the equations remain for the decoupled component of interest, the only quantity common to all possible components is the gravitational potencial.

We can combine some of the previous equations to eliminate $u, \nabla p$ and Φ. Taking the continuity equation and the momentum equation:

$$
\left.\begin{array}{rl}
A & =\frac{\partial \delta}{\partial t}+\frac{1}{a} \nabla \cdot \vec{u}=0 \\
B=\frac{\partial \vec{u}}{\partial t}+\frac{\dot{a}}{a} u & =-\frac{1}{a} \nabla \Phi-\frac{c_{\delta}^{2}}{a} \nabla \delta
\end{array}\right\} \quad O=\frac{\partial A}{\partial t}-\frac{1}{a} \nabla \cdot B
$$

Proof:

$$
\begin{aligned}
& \frac{\partial A}{\partial t}=\frac{\partial}{\partial t}\left(\frac{\partial \delta}{\partial t}+\frac{1}{a} \nabla \cdot \vec{u}\right) \\
& \frac{1}{a} \nabla \cdot B=\frac{1}{a} \nabla \cdot\left(\frac{\partial \vec{u}}{\partial t}+\frac{\dot{a}}{a} \vec{u}+\frac{1}{a} \nabla \Phi+\frac{c_{s}^{2}}{a} \nabla \delta\right)
\end{aligned}
$$

We obtain the equation that governs the evolution of the density constrast $\delta(x, t)$

$$
\frac{\partial^{2} \delta}{\partial t^{2}}+2 \frac{\dot{a}}{a} \frac{\partial \delta}{\partial t}-4 \pi G e^{-\delta}-\frac{c_{0}^{2}}{a^{2}} \Delta \delta=0
$$

This equation is linear, and can be decomposed in different sine functions.
It is valid for arbitrany cosmologies, as well as for collisionless ($c_{s}=0$) and collisional matter (coupled to itself, $c_{s} \neq 0$).
Cosmological expansion acts as a damping term.
Remember that we are describing matter perturbations well inside the Hubble radius. If there are additional (grave. interacting) components, they only enter into the $4 \pi G$ - term (for example, radiation coupled gravitationally).
9.2. Growth of matier perturbations

Jeans limit
To study the evolution of the density contrast we need to salve:

$$
\frac{\partial^{2} \delta}{\partial t^{2}}+2 \frac{\dot{a}}{a} \frac{\partial \delta}{\partial t}-4 \pi G \rho^{-\delta}-\frac{c_{0}^{2}}{a^{2}} \Delta \delta=0
$$

We take a decomposition in plane waves as an ansate for the solution:

$$
\delta(\vec{x}, t)=\sum_{k} \delta_{k}(t) e^{i \vec{k} \cdot \vec{x}} \leftarrow \text { Fourier space }
$$

Doing this, we are separating space and time. Each wave is characterized by its wave number K.
Taking $\Delta \delta=-k^{2} \delta$, we can rewrite the evolution equation as:

$$
\frac{\partial^{2} \delta_{k}}{\partial t^{2}}+2 \frac{\dot{a}}{a} \frac{\partial \delta_{k}}{\partial t}+\left(\frac{\delta_{\delta^{2}}}{a^{2}} k^{2}-4 \pi G \bar{e}\right) \delta_{k}=0
$$

where δ_{k} is the amplitude in k-space. This is the equation of a damped harmonic oscillator:

$$
m \frac{d^{2} x(t)}{d t^{2}}+c \frac{d x(t)}{d t}+k x(t)=0
$$

It is necessary to solve the evolution equation for every wave (as characterized by its k) individually.

The term $\left(\frac{c_{\delta^{2}}}{a^{2}} k^{2}-4 \pi G \bar{e}\right)$ reflects the balance between pressure support and gravity (note that we have allowed for baryunic/pressure gradients). We can cast this into a condition for the wavenumber k in terms of the background density.

- $\frac{K^{2}}{a^{2}}<\frac{4 \pi G \bar{\rho}}{c_{s^{2}}} \Rightarrow()<0 \rightarrow$ gravitational collapse
- $\frac{K^{2}}{a^{2}}>\frac{4 \pi G \bar{p}}{C_{5}^{2}} \Longrightarrow()>0 \rightarrow$ oscillations (with decreasing amplitude due to damping term)

We define the jeans limit as:

$$
d_{J}=c_{S} \sqrt{\frac{\pi}{G \bar{\rho}}} \quad M_{J, w}=\frac{4 \pi}{3}\left(\frac{\lambda_{J}}{2}\right)^{3} \bar{\rho}_{w}
$$

Reminder

$$
k=\frac{2 \pi a}{\lambda}
$$

where d_{J} is the Jeans length and μ_{J} is the Jeans mass.
Jeans length depends on all gravitating components, while Jeans mass is defined for a certain component ω. If the mass of the perturbation es larger than μ_{j}, it collapses.

Evolution of the density contrast $\delta(t)$ for dark matter The dominant non-relativistic component is dark matter (with $c_{\delta}=0$). Its evolution equ. is given by:

$$
\frac{\partial^{2} \delta}{\partial t^{2}}+2 \frac{\dot{a}}{a} \frac{\partial \delta}{\partial t}-4 \pi G e^{-\delta}=0
$$

NOTE
We are working with δ_{k}
Matter-dominated Universe
We need to calculate how does the perturbation grows (in an expanding Universe) as a function of time. The most interesting period is matter domination, since baryonic matter decoupled from the CMB in this epoch. During matter domination:

$$
\left.\begin{array}{l}
\text { - } \dot{a} / a=2 / 3 t \\
\text { - } 4 \pi G \bar{p}=2 / 3 t^{2}
\end{array}\right\} \Omega_{m}=1 \text { solution for } a(t)
$$

Ansatz: the solution is a power law:

$$
\begin{aligned}
& \delta=C t^{n} \\
& \dot{\delta}=n c t^{n-1} \\
& \ddot{\delta}=n(n-1) C t^{n-2}
\end{aligned}
$$

Solving the differential equation:

$$
\left.\delta=C_{1} t^{2 / 3}+C_{2} t^{-1} \quad \text { (growing mode }+ \text { decaying mode }\right)
$$

We only consider the growing mode, since it is the one that produces structures.

For $a \Omega_{m}=1$ universe we had $a \sim t^{2 / 3}$, thus: $\delta \alpha a$
In the (early) era of matter domination, dark matter perturbations grow proportional to the scale factor.
Generalization for arbitrany cosmologies
We have to integrate the evolution equation, but considering:

$$
\begin{aligned}
& 4 \pi G \bar{e}=4 \pi G \Omega_{m} \text { crit }=4 \pi G \Omega_{m} \frac{3 H^{2}}{8 \pi G}=\frac{3}{2} \Omega_{m} H^{2} \\
& \rightarrow \frac{\partial \delta}{\partial t^{2}}+2 H \frac{\partial \delta}{\partial t}-\frac{3}{2} \Omega_{m} H^{2} \delta=0
\end{aligned}
$$

Changing variables $t=t(a)$:

$$
a^{2} \frac{\partial^{2} \delta}{\partial a^{2}}+(2-q) \frac{\partial \delta}{\partial a}-\frac{3}{2} \Omega_{m} \delta=0 \quad q=-\frac{\ddot{a} a}{\dot{a}^{2}}
$$

It is possible to look, for a exact solution solving:

$$
\delta(a)=\frac{5}{2} \Omega_{m, 0} \frac{H}{H_{0}} \int_{0}^{a} \frac{1}{(a H)^{8}} d a
$$

Or an approximate solution:

$$
\delta(a) \approx \frac{5 a}{2} \Omega_{m}(a)\left[\Omega_{m}^{4 / 7}(a)-\Omega_{\Lambda}(a)+\left(1+\frac{\Omega_{m}(a)}{2}\right)\left(1+\frac{\Omega_{n}(a)}{70}\right)\right]^{-1}
$$

For a flat Universe consisting of a 2 -component fluid (dark matter + something with $\omega=$ const,$\omega=-1 \rightarrow\left(1-\Omega_{m, 0}\right) a^{0} \equiv \Omega_{m, 0}$ or $\left.\omega=-1 / 3 \Rightarrow\left(1-\Omega_{m, 0}\right) a^{-2} \equiv \Omega_{k, 0} a^{-2}\right)$:

$$
H^{2}(a)=H_{0}^{2}\left[\Omega_{m, 0} a^{-3}+\left(1-\Omega_{m, 0}\right) a^{-3(1+\omega)}\right] \quad P=\omega e c^{2}, \quad \omega=\text { const }
$$

$$
\delta(a)=a_{2} F_{1}\left[\frac{\omega-1}{2 \omega}, \frac{-1}{3 \omega}, 1-\frac{5}{6 \omega}, 1-\Omega_{m}^{-1}(a)\right]
$$

(Bueno Belloso et al. 2011)

$\Omega_{m}=1, \quad \delta \propto a$
All solutions converge to this at early times.
\rightarrow There are various ways to quantify the growth:

- Growth factor: $g=\delta / a$ (compare to linear growth)
- Logarithmic growth rate:

$$
\rho=d \ln \delta / d \ln a
$$

Perturbation evolution through time
We are interested on studying the evolution of matter perturbations during the following
epochs:

DM perturbations already grew during radiation domination because they were not coupled to the thermal bath. Bargonic perturbations could only grow when they decoupled from the photons. Until then, they were oscillating without collapsing (as it was discussed before.
Evolution of dark matter perturbations
We have already discussed that, during matter domination: $\delta_{m}(a) \propto a$
To study the growth of δ during radiation domination we consider again the eqn.
of structure formation: $\quad \delta \rightarrow$ Potential perturbations are sourced by all components

$$
\frac{\partial^{2} \delta_{m}}{\partial t^{2}}+2 \frac{\dot{a}}{a} \frac{\partial \delta_{m}}{\partial t}-4 \pi G \bar{e}\left(\frac{\bar{e}_{m}}{\bar{e}} \delta_{m}+\frac{\bar{e}_{r}}{\bar{\rho}} \delta_{r}\right)=0
$$

It is necessary to consider Cr_{r} since it is the dominant term. In the equation, it appears with the radiation perturbation δ_{r}. But we have that $\delta_{n} \approx 0$ (they oscillate).
This can be proved using GR.
We can write the previous equation as:

$$
\frac{\partial^{2} \delta_{m}}{\partial t^{2}}+2 \frac{\dot{a}}{a} \frac{\partial \delta_{m}}{\partial t}-4 \pi G \bar{e}_{m} \delta_{m}=0
$$

Since $4 \pi G \bar{\rho}_{m} \ll 4 \pi G e_{r}=\frac{3}{2}\left(\frac{\dot{a}}{a}\right)^{2}$, the potential term can be ignored. The eqn. becomes:

$$
\frac{\partial^{2} \delta_{m}}{\partial t^{2}}+\frac{1}{t} \frac{\partial \delta_{m}}{\partial t} \approx 0
$$

Dem: Radiation-dominated Universe: $a(t) \propto t^{2 / 3}, \dot{a} \propto \frac{2}{3} t^{-1 / 3}, \quad \frac{\dot{a}}{a}=\frac{2}{3} \frac{t^{-1 / 3}}{t^{2 / 3}}=\frac{2}{3} \frac{1}{t}$
$\begin{aligned} & \text { Solution: } \\ & \text { using }\end{aligned}: \frac{\partial y}{\partial t}+\frac{1}{t} y=0 \quad y=\frac{\partial \delta_{m}}{\partial t}$
$\delta_{m}($ a $) \alpha \ln (t)$-radiation domination

Dark matter perturbations are "not really growing" during radiation domination. This is true for perturbations inside the horizon. Perturbations outside the horizon are growing like $\delta(a) \propto a^{2}$ (relativistic treatment).
This is called the Meszaros effect:

- δ_{m} outside the horizon grows like a^{2}
- δ_{m} inside the horizon grows like $\ln (a)$ When a perturbation enters the horizon (because it has grown faster) it "freezes in" up to the point when matter starts to dominate.

This effect allows to predict the shape of the Power spectrum of primordial matter perturbations. During 1 domination:

$$
\frac{\partial^{2} \delta_{m}}{\partial t^{2}}+2 \frac{\dot{a}}{a} \frac{\partial \delta_{m}}{\partial t}-4 \pi \sigma_{\bar{p}} \delta_{m}=0
$$

As before, $\frac{\delta_{1} \approx 0,4 \pi G e_{m} \ll 4 \pi G \bar{e}_{M}=\frac{3}{2}\left(\frac{a}{a}\right)^{2}+2,}{}$
\rightarrow as far as we know
Taking into account that $\frac{\partial^{2} \delta_{m}}{\partial t^{2}}+2 H_{0} \frac{\partial \delta_{m}}{\partial t} \approx 0$
Sol: $\frac{\partial y}{\partial t}+2 H_{0} y=0 \quad y=\frac{\partial S_{m}}{\partial t}$

$$
\delta_{m}(a) \propto a^{-2}
$$

In 1 domination the perturbations decay away. There will not be structure formation from perturbations entering the horizon.

Evolution of baryonic perturbations
Baryons are not able to grow their perturbations until decoupling (before that, we have the baryonic acoustic oscillations. Afther decoupling, they will catch up with dark matter perturbations, and grow as $\delta_{b}(a) \alpha a$:

- Before decoupling

$$
\delta_{b} \approx \frac{3}{4} \delta_{r}
$$

- After decoupling

$$
\delta_{b}(a) \approx \delta_{m}\left(1-\frac{a_{d a c}}{a}\right)
$$

These are detailed numerical integrations of:

$$
\frac{\partial^{2} \delta_{k}}{\partial t^{2}}+2 \frac{\dot{\alpha}}{a} \frac{\partial \delta_{k}}{\partial t}+\left(\frac{c^{2}}{a^{2}} k^{2}-4 \pi G \bar{e}\right) \delta_{k}=0
$$ for cold dark matter, photons and baryons and two wave numbers $\left(k=0.01 \mathrm{mpc}^{-1}\right.$ and $\left.k=1.0 \mathrm{mpc} \mathrm{c}^{-1}\right)$. The upper panel shows a large scale perturbations. Baryons are barely coupled to photons, compared to the lower panel (small scale perturbation), where they are strongly coupled. After decoupling, baryons follow DM, forming the same structures in the end.

9.3. Statistics of perturbations

Perturbations in k-space
We can decompose perturbations into waves:

$$
\begin{aligned}
& \frac{\partial^{2} \delta}{\partial t^{2}}+2 \frac{\dot{a}}{a} \frac{\partial \delta}{\partial t}-4 \pi G e^{-\delta}=0 \\
& \longrightarrow \delta(\vec{x}, t)=\delta_{k}(t) e^{i \vec{k} \cdot \vec{x}}
\end{aligned}
$$

Since the evolution equation is linear, each $\delta_{k}(t)$ grow indepently

short wavelength, large amplitude

short wavelength, small amplitude

We can take "moments" of the density contrast:

- First moment:

$$
\langle\delta(\stackrel{\rightharpoonup}{x}, t)\rangle=0
$$

Because the average of $\left\langle\frac{e-\bar{p}}{\bar{e}}\right\rangle$ is automatically 0 . This means that, in Fourier space: $\left\langle\delta_{k}(t)\right\rangle=0, \quad \delta_{\vec{k}}(t)=\delta_{-\vec{k}}(t)$

- We can take higher order moments:

$$
\begin{aligned}
& \xi_{2}=\left\langle\delta\left(\vec{x}_{1}, t\right) \delta\left(\vec{x}_{2}, t\right)\right\rangle \longrightarrow \text { two-point correlation function } \\
& \xi_{3}=\left\langle\delta\left(\vec{x}_{1}, t\right) \delta\left(\vec{x}_{2}, t\right) \delta\left(\vec{x}_{3}, t\right)\right\rangle \\
& \xi_{4}=\cdots
\end{aligned}
$$

And, since we are working with an homogeneous and isotropic Universe: $\xi_{2}=\xi_{2}\left(\left|\vec{x}_{1}-\vec{x}_{2}\right|\right)$ (we can only work with differences, not positions).

Two-point correlation function and Power spectrum
The two-point correlation function is commonly used to quantify the strength of perturbations.

This second moment quantifies the likelihood of finding another point at a certain distance to a given point (\equiv same density). This is compared to a random mass distribution.

$$
\xi_{2}(\vec{x})=\frac{n_{\text {pair }}(\vec{x}+d \vec{x})}{n_{\text {random }}(\vec{x}+d \vec{x})}-1 \quad \text { (difficult to calculate) }
$$

This correlation function has an analogous in Fourier space called the Power Spectrum.

$$
\begin{aligned}
& \xi_{2}(\vec{x})=\frac{1}{(2 \pi)^{3}} \int P(k) e^{-i \vec{k} \cdot \bar{x}} d^{3} k=\frac{1}{2 \pi^{3}} \int P(k) \frac{\sin (\bar{k} \cdot \bar{x})}{\bar{k} \cdot \bar{x}} k^{2} d k \\
& \left.P(k)=\left.\langle | \delta_{\bar{k}}\right|^{2}\right\rangle_{|\vec{k}|=k} \leftarrow \text { power spectrum }
\end{aligned}
$$

Knowing the Fourier amplitudes, it is easy to obtain the power Spectrum, and so ξ_{2}.
Taking models from different cosmologies, they all
 have the same shape. This is related to the Meszaros effect. (+inflation)

From Inflation, we know that the initial spectrum of matter perturbations is $P_{i}(k) \propto k$.
Then, $P(k)$ evolves as a function of time going through radiation domination and entering matter domination. Since $P(k)=\left\langle\delta_{k}^{2}\right\rangle$, and we know how δ_{k} evolves, then: 1. We have k coming out of inflation. We also need to add the size of the horizon

$$
k_{H}=\frac{2 \pi}{r_{H}}
$$

2. We know that the horizon is growing which means that K_{H} is moving to smaller k. If a perturbation is outside of the horizon, it is growing like a^{2}. If it is inside, it will not grow ($\alpha \ln a$ in rad. dom).
3. The same will happen for sequent time steps.
This will happen until matter domination. As soon as we enter matter domination, modes inside the horizon (m) will start to grow again as $\delta \alpha$ a. The peak in the power spectrum is the size of the horizon right at matter-radiation equallity.
Evolution of the Power Spectrum during matter domination
As we have mentioned before, the Power spectrum is the square of the amplitudes of the Fourier modes δ_{k}, which were defined as:

$$
\delta(\vec{x}, a)=\sum_{\vec{k}} \delta_{\vec{k}}(a) e^{i \vec{k} \cdot \vec{x}}
$$

This modes evolve, with respect to the linear growth factor:

$$
O=\frac{\partial^{2} D}{\partial t^{2}}+2 \frac{\dot{a}}{a} \frac{\partial D}{\partial t}-4 \pi G \bar{e} D \leftarrow \text { matier domination }
$$

Thus, recalling the definition of the power spectrum:

$$
\left.P(k)=\left.\langle | \delta_{k}\right|^{2}\right\rangle_{|\vec{k}|=k}
$$

We can find its dependence with time as:

$$
P(k)=\left(\frac{D(a)}{D\left(a_{0}\right)}\right)^{2} P_{0}(k)
$$

Bargonic oscillations in $P(k)$ and $\rho(k)$
DEFINITION + REMINDER

$$
\delta(\vec{x}, a)=\frac{D(a)}{D\left(a_{0}\right)} \delta_{\vec{k}}\left(a_{0}\right)
$$

Taking $a_{0}=1 \rightarrow D(a=1)=1$

- For $\Omega_{m}=1, a \alpha t^{2 / 3}$, must have $D(a) \alpha a$, ie. for small perturbations, overdensities grow as the scale factor everywhere.
- For $\Omega_{m}<1, D(a) \propto a$ at early times, at late times (when curvature or Λ term dominates expansion rate)
$D(a)$ increases more slowly \rightarrow structure growth is slower.
See: Evolution of 8 for arbitrary cosmologies $\left(8 \stackrel{\ell_{a}}{L_{a}}\right)$
Oscillations leave distinct features in the power spectrum and the two-point correlation function:

1. Power spectrum
2. Two-point ci.

9.4. Non Linear structure formation

Analytical extrapolations of linear theory
Until now, we were considering perturbations with $\delta(\vec{x}, t)<1$, but the structures that we observe have (obviously) $\delta(\vec{x}, t) \gg 1$. This is the territory of computational cosmology.
However, extrapolating linear theory results when $\delta \gg 1$ provides an useful insight on structure growth. Some existent analytical (quasi-linear) approaches are the Zel'dovich approximation, the Spherical Top-Hat Collapse model and the Phess-Schechter halo mass function.

Eel 'dovich approximation
The zel'dovich approximation is applying first order perturbation theory, but using a Lagrangian viewpoint (until now, we wore taking an Eulerian viewpoint).
Let us consider an overdense region that is collapsing. The position changes as a (linear) function of time:

$$
\vec{x}(t)=\vec{q}+D(t) \vec{S}(\vec{q})
$$

initial (unperturbed) position, background
\longrightarrow updated position

- Displacement field $\mathcal{S}(\bar{q})$

To obtain the displacement field, we take the first derivative of the $Z . A$:

$$
\dot{\bar{x}}=\dot{D} \vec{S}(\vec{q})
$$

- Temporal evolution:
$\delta(\vec{x}, t)=D(t) \delta\left(\vec{x}_{0}\right), \delta\left(\vec{x}_{0}\right)$ initial perturbation

$$
0=\frac{\partial^{2} D}{\partial t^{2}}+2 \frac{\dot{a}}{a} \frac{\partial D}{\partial t}-4 \pi G \bar{e} D
$$

And using the definition of the peculiar velocity field:

$$
\dot{\vec{x}}=\frac{1}{a} \vec{u}
$$

we can combine them to obtain an equation for the evolution of \vec{u} :

$$
\left.\begin{array}{r}
\vec{u}=\dot{D} a \vec{S}(q) \\
\frac{\partial \vec{u}}{\partial t}=\dot{a} \dot{D} \vec{S}(\vec{q})+a \ddot{D} \vec{S}(\vec{q})
\end{array}\right\}\left(2 a \dot{a} \dot{D}+a^{2} \ddot{D}\right) \vec{S}(\widetilde{q})=-\nabla \Phi
$$

Conservation of momentum, Eulerian perturbation theory $\frac{\partial \vec{u}}{\partial t}+\frac{\dot{a}}{a} \vec{u}=-\frac{1}{a} \nabla \Phi$
We have the equations:

$$
\left\{\begin{array}{l}
0=\ddot{D}+2 \frac{\dot{a}}{a} \dot{D}-4 \pi G \bar{\rho} D \\
\left(2 a \dot{a} \dot{D}+a^{2} \ddot{D}\right) \vec{S}(\vec{q})=-\nabla \Phi
\end{array} \quad+\begin{array}{ll}
\Delta \Phi=4 \pi G a^{2} \bar{\rho} \delta \quad & \text { (Poisson equation) } \\
\Phi=4 \pi G a^{2} \bar{\rho} \Psi \quad \text { (Definition of peculiar potential) }
\end{array}\right.
$$

And from them we can obtain:
$\vec{S}(\vec{q})=-\nabla \Psi \quad$ "force" coming from the peculiar potential $\Delta \Psi=\delta\left(\vec{x}_{0}\right) \quad \Psi$ sourced by initial perturbations since we know the solution for $D(a)$:

$$
D(a)=\frac{5}{2} \Omega_{m, 0} H \int_{0}^{a} \frac{1}{\left(\Omega_{m 00} a^{-3}+\left(1-\Omega_{m, 0}-\Omega_{n, 0}\right) a^{-2}+\Omega_{n, 0}\right.} d a
$$

We can study the evolution if we know $\delta\left(\vec{x}_{0}\right)$. This can be obtained from the power spectrum, so we need some analytical calculations for P(k) (e.g. from a Boltzmann solver).

$$
\dot{\delta}_{0}(k)=\sqrt{D_{0}(k)} R_{\vec{k}} e^{i \psi_{\vec{k}}}
$$

Once we have obtained δ_{0}, we can evolve it using the equations above.
This approach can be compared to the result of N-body simulations:

Reproduces structure, do not resolves properties of clusters ($\sim 10^{7}$ hours)
(Need parallel computing)

$2^{\text {nd }}$ order Lagrangian perturbation theony $\vec{x}(a)=\vec{q}-D(a) \nabla \Psi+D^{(2)} \Delta \Psi^{(2)}$
Resolves structure $\left(\sim 10^{\circ}\right.$ hours)

Spherical Top-Hat collapse
We want to predict the density contrast of a collapsing object. It is only possible to form structures if the overdonsity decouples from the expanding background. The density contrast needs to be enough to expand with the Universe and then collapse due to its self-gravity, forming a virialised object.

Spherical top-hat overdensity:

$$
\begin{aligned}
& R_{T H}=R_{T H}(t) \\
& M_{T H}=\text { cons }
\end{aligned}
$$

no spilling of mass outside $R_{T H}$

Let us treat the perturbation as a "closed Universe" with $K=1$ (curvature) ie. a Universe that collapses. We can analyse its evolution using the Fredmann equations:

$$
\begin{aligned}
& \quad R_{T H} \text { - dependent } \\
& \dot{R}_{T H}^{2}=\frac{8 \pi G}{3} e_{T H} R_{T H}^{2}-k c^{2}=\frac{8 \pi G}{3} \frac{M_{T H}^{\prime}}{\frac{4}{3} R_{T H}^{3}} R_{T H}^{2}-k c^{2}=\frac{2 G M_{T H}}{R_{T H}}-k c^{2} \\
& \frac{1}{2} \dot{R}_{T H}^{2}-\frac{G M_{T H}}{R_{T H}}=-|k| c^{2}<0 \quad(K=1 \text { for } T H \text { overdensity } \rightarrow \text { closed Universe })
\end{aligned}
$$

The solution to this equation was given on the $F R W$ Lecture:

$$
\left\{\begin{array}{ll}
\frac{R_{T H}}{R_{t a}}=\frac{1}{2}(1-\cos \eta) & R_{t a}=\frac{2 G M_{T H}}{c^{2}} \\
\frac{t}{t_{t a}}=\frac{1}{\pi}(\eta-\sin \eta) & t_{t a}=\frac{\pi R_{t a}}{2 c} \\
\eta \in[0,2 \pi]
\end{array}\right\} \text { All is characterized by } M_{T H} \text {, the mass enclosed in } R_{T H} .
$$

We are not interested in the absolute value of the overdensity, we want to compare it to the background density. Thus, we calculate the density contrast:

$$
\left.\begin{array}{l}
\delta_{T H}=\frac{\rho_{T H}-\bar{e}}{\bar{e}} \quad \rho_{T H} \rightarrow \text { Mass divided by volume } \quad \bar{\rho} \rightarrow \text { flat model with } \Omega_{m}=1 \\
\rho_{T H}=\frac{3 M_{T H}}{4 \pi R_{T+1}{ }^{3}}=\ldots=\frac{6 \mu_{T H}}{\pi R_{t a}^{2}}(1-\cos \eta)^{-3} \\
\bar{e}=\frac{1}{6 \pi G t^{2}}=\cdots=\frac{\pi^{2}}{6 \pi \sigma t^{2}+a}(\eta-\sin \eta)^{-2}
\end{array}\right\} 1+\delta_{T H}=\frac{\rho_{T H}}{\bar{\rho}} \stackrel{*}{=}=\frac{9}{2} \frac{(\eta-\sin \eta)^{2}}{(1-\cos 2)^{3}}
$$

* Proof:

$$
\begin{aligned}
\frac{e_{T H}}{\rho} & =\frac{6 \mu_{T H}}{\pi R_{t a}^{3}} \frac{6 \pi G t_{t a}^{2}}{\pi^{2}} \frac{(\eta-\sin \eta)^{2}}{(1-\cos \eta)^{3}}=\frac{t_{t a}^{2}}{R_{t a^{3}}^{3}} \frac{36 G \mu_{T H}}{\pi^{2}} \frac{(\eta-\sin \eta)^{2}}{(1-\sin \eta)^{3}}=\frac{\pi^{2} R_{t a^{2}}}{4 c^{2} R_{t a}^{3}} \frac{36 G \mu_{T H}}{\pi^{2}} \frac{(\eta-\sin \eta)^{2}}{(1-\cos \eta)^{3}}= \\
& =\frac{1}{R_{t a}} \frac{36 G \mu_{\mu_{H}}}{4 c^{2}} \frac{(\eta-\sin \eta)^{2}}{(1-\cos \eta)^{3}}=\frac{c^{2}}{2 G \mu_{T H}} \frac{9 G \mu_{T H}}{c^{2}} \frac{(\eta-\sin \eta)^{2}}{(1-\cos \eta)^{3}}=\frac{9}{2} \frac{(\eta-\sin \eta)^{2}}{(1-\cos \eta)^{3}}
\end{aligned}
$$

We want to calculate the density contrast at the beginning (turnaround) and the end of collapse (formation of the final object). Thus, we need to determine $\eta_{t a}$ and $\eta_{\text {use. }}$
Plotting $\left(\eta, R_{T H}(\eta) / R_{t a}\right)$ and $(\eta, t(\eta))$, it is possible to find $\eta_{t a}=\pi$ and $\eta_{\text {ur }}=2 \pi$. (tui $=2 t_{t a y}$).
At turnaround:

$$
1+\delta_{T H}\left(t_{t a}\right)=\frac{9 \pi^{2}}{16} \approx 5.5
$$

Once the callupse has finished:

$$
1+\delta_{T H}\left(t_{\text {vii }}\right)=\infty \rightarrow \text { Singularity }
$$

However, singular collapse is not a particularly useful model (it is unrealistic to assume purely radial motions). We can assume that the overdense region forms a virialized halo at collapse time.

The energy of the halo will be given by:

$$
\begin{array}{ll}
E_{t a}=U_{t a} & U_{t a}=-\frac{3}{5} \frac{G M_{T H}^{2}}{R_{t a}} \\
E_{\text {vir }}=T_{\text {vir }}+U_{\text {vir }} & U_{\text {vir }}=-\frac{3}{5} \frac{G M_{T H}^{2}}{R_{\text {vire }}}
\end{array} \quad+\text { virial theorem: } 0=2 T_{\text {vir }}+U_{\text {vir }}
$$

At turnaround, $T_{\text {vir }} \simeq 0$, so the total energy will be $E_{\text {vii }}=U_{\text {ta }}$
(or) $0=2 T_{\text {vir }}+U_{\text {vir }} \Rightarrow 2 E_{\text {vir }}=\underbrace{2 T_{\text {vi }}+U_{\text {vie }}}_{=0 \text { Th lir }}+U_{\text {vire }}=2 U_{\text {ta }} \longrightarrow$
Then, $R_{\text {vir }}=\frac{R_{\text {ta }}}{2}$
Thus, we will have for virialized overdensity:

$$
\rho_{T H}\left(t_{\text {vii }}\right)=\frac{3 M_{T H}}{4 \pi R_{\text {ur }}{ }^{3}}=8 \rho_{T H}\left(t_{t a}\right)
$$

And for the background density:

$$
t_{\text {vir }}=2 t_{\text {ta }} \xrightarrow[\bar{\rho}=\frac{1}{6 \pi G t^{2}}]{ } \bar{\rho}\left(t_{\text {vii }}\right)=\frac{1}{2^{2}} \bar{\rho}\left(t_{\text {ta }}\right)
$$

And so, for the density contrast:
Density contrast of a virialized object

$$
1+\delta_{T_{H}}\left(t_{\text {ir }}\right)=\frac{8 e\left(t_{\omega}\right)}{\bar{\rho}\left(t_{\text {ta }}\right) / 4}=32\left(1+\delta\left(t_{\text {tap }}\right)\right)=32 \frac{9 \pi^{2}}{16}=18 \pi^{2} \approx 178 \rightarrow 1+\delta_{T_{H}}\left(t_{\text {vir }}\right)=18 \pi^{2} \approx 178
$$

Another possible approach is taking the linear theory solution for the density contrast. Taylor-expanding $\cos \eta$ and $\sin \eta$ gives:

$$
\begin{aligned}
& R_{T H}(t)=\frac{R_{t a}}{4}\left(\frac{6 \pi t}{t_{\text {ta }}}\right)^{2 / 3}\left[1-\frac{1}{20}\left(\frac{6 \pi t}{t_{\text {ta }}}\right)^{2 / 3}+\ldots\right] \Rightarrow \delta(t)=\frac{3}{20}\left(\frac{6 \pi t}{t_{\text {ta }}}\right)^{2 / 3} \\
& \delta\left(t_{\text {lir }}=2 t_{\text {ta }}\right) \approx \frac{3}{20}(12 \pi)^{2 / 3} \approx 1.686 \Rightarrow \delta_{\text {lin }}\left(t_{\text {lir }}\right) \approx 1.686 \equiv \delta_{c}
\end{aligned}
$$

Linearized density contrast of collapsed object
Press-Schechter halo muss function
Once we have estimations of the threshold for structure formation, we want to calculate the number of objects that will form for a given mass, N(M).

At some point, this regions

A halo has formed when its linear density contrast $\delta(x, a)$ has reached $\delta_{c}=1.69$

Note
Time dependence is given by $f^{\prime}(x, t) \propto D(a)$

To find the mass of each object (i.e. inside each peak), one can filter the density constrast. This is done convolving it with a filter that peaks out a particular mass. This is done with several filters, counting the peaks above the theshald for each filter.
We consider perturbations on a certain scale R^{*}, which can be related to halo mass via $M=\Omega_{m} C_{\text {crit }} \frac{4 \pi}{3} R^{3}$:

$$
\delta_{R}(\vec{x}, a)=\int \delta\left(\vec{x}^{\prime}, a\right) W_{R}\left(\vec{x}-\vec{x}^{\prime}\right) d^{3} x^{\prime}
$$

It is important to bear in mind that some of the peaks are being counted twice, so the will need to be substracted (whenever the filter mass is smaller that its mass). The next assumption is that the density contrast $\delta_{R}(x)$ is a Gaussian field with variance σ_{R} :

$$
P\left(\delta_{R}\right)=\frac{1}{\sqrt{2 \pi \sigma_{R}{ }^{2}}} e^{-\frac{1}{2}\left(\frac{\delta_{R}}{\sigma_{R}}\right)^{2}} \quad \sigma_{R}^{2}=\frac{1}{2 \pi^{2}} \int_{0}^{+\infty} P(k) \hat{W}^{2}(k R) k^{2} d k
$$

where $P(k)$ is the power spectrum of the density fluctuation (all waves inside R-window affect σ_{R}). initial power spectrum of density perturbations at decoupling

$$
P(k)=\left(\frac{D(a)}{D\left(a_{0}\right)}\right)^{2} P_{0}(k) \text { initial power spectrum of density pert ion sealed using the growth factor }
$$

$P\left(\delta_{R}\right)$ is the probability of finding a peak with that particular value of δ_{R}. Thus, the probability of finding a peak above δ_{R} will be given by:

$$
F_{>\delta_{c}}(R)=\int_{\delta_{c}}^{\infty} p\left(\delta_{R}\right) d \delta_{R}
$$

An the number of peaks in rande $[R, R+d R]$ is given by:

$$
d N \propto F_{>\delta_{c}}(R)-F_{>\delta_{c}}(R+d R)
$$

This can be related to the mass M as:

$$
M=\Omega_{m} \rho_{c r i t} \frac{4 \pi}{3} R^{3}
$$

Following this steps, one arrives to the Press-Schechter formula:

$$
\frac{d n}{d M} d M=\sqrt{\frac{2}{\pi}} \frac{\bar{e}}{M} \frac{\delta_{C}}{\sigma_{M}}\left|\frac{d \ln \sigma_{M}}{d \ln M}\right| \exp \left(\frac{-\delta^{2}}{2 \sigma_{M}^{2}}\right) \frac{d M}{M}
$$

Press - Schechter function
where δ_{c} is the threshold density contrast of collapsed structures according to linear perturbation theory, $\bar{\rho}$ is the background (mean) density of the Universe and σ_{M} is the variance of the mass on scale corresponding to $M=(4 / 3) \Omega_{m}$ (crit R^{3}

$$
\sigma_{R}^{2}=\frac{1}{2 \pi^{2}} \int_{0}^{+\infty} P(k) \hat{w}^{2}(k R) k^{2} d k
$$

It is common to use a spherical top hat filter ($\hat{W}^{2}(k R)$ is its Fourier transform):

$$
\hat{W}(x)=\frac{3}{x^{3}}(\sin (x)-x \cos (x))
$$

The agreement between the model and simulations was improvable, but new models and calculations had not introduced new physics, just introduced new parameters.

$$
\begin{aligned}
& \frac{d n}{d M} d M=f\left(\sigma_{M}\right) \frac{\bar{e}}{M} \frac{d \ln \sigma_{M}^{-1}}{d M} d M \\
& f\left(\sigma_{M}\right)=A\left[\left(\frac{\beta}{\sigma_{M}}\right)^{\alpha}+1\right] \exp \left(-\gamma / \sigma_{M}^{2}\right)
\end{aligned}
$$

The mass function for a scale-free power spectrum is given by:

$$
\begin{aligned}
\sigma_{M}^{2} & =\sigma_{0}^{2}\left(\frac{4 n \bar{e}}{3}\right)^{\frac{n+3}{3}} M^{-\frac{n+3}{3}}=\left(\frac{M}{M_{*}}\right)^{-\frac{n+3}{3}} \\
\frac{d n}{d M} d M & =\frac{n+3}{\sqrt{2 \pi}} \frac{\bar{e}}{M^{2}} \delta_{c}\left(\frac{M}{M_{*}}\right)^{\frac{n+3}{\sigma}} \exp \left[-\frac{1}{2} \delta_{c}^{2}\left(\frac{M}{M_{*}}\right)^{\frac{n+3}{3}}\right] d M
\end{aligned}
$$

where M_{*} is the typical mass of an object at a given redshift.

Computational cosmology
Numerical simulations are necessary to obtain information about the internal properties or the spatial distribution of objects. It is possible to try different models (for example, for dark matter). Comparing this models to observations, they are validated or rejected (structures formed, power spectrum, etc.)

HDM power spectrum is suppressed for small wavelengths. Thus, ting objects and structures are not formed from overdensities. This difference gives rise to two formation scenarios in terms of the "nature" of dark matter: bottom-up (cold dark matter) and
 top-down (hot dark matter) structure formation.
Simulations Vs. observations
Galaxy redshift surveys cover $G p c^{3}$ volumes. Simulations cannot follow full set of physics in such large volumes. However, there are multiple approaches:
(Biased) galaxy formation models require:

- SAM - Semi-analytical galaxy formation modeling
- HOD - Halo occupation distribution
- CLF: Conditional luminosity function
-(S)HAM: (Subhalo) Halo abundance Matching
- Biasing model: $P_{\text {gal }}(k)=b^{2}(k) P_{D M}(k)$
+ other assumptions

