VIII. Cosmic Microwave background radiation
8.1. Measurements of the CMB

Predictions and Discovery
As we have discussed in previous lectures there are more photons than any other type of baryonic matter in the Universe. The baryon to phonton ratio is:

$$
\eta=\frac{n_{b}}{n_{\gamma}}=10^{-10} \eta_{10}=10^{10} \times 274 \Omega_{b} h^{2}
$$

This ratio was f frozen in at BBN.
Considering radiation as a bargotropic fluid $\left(p=\omega \rho c^{2}\right)$ with $\omega=1 / 3$, we find that the temperature of photons scales as $T \propto R^{-1}$
Even if their temperature dropped, we should be able to observe those photons today. Let us start with a distribution of photons in thermal equilibrium. Their spectral energy distribution is given by the Planck curve:

$$
u(\nu) d \nu=\frac{8 \pi h \nu \nu^{3}}{c^{3}} \frac{1}{e^{h_{2} / \log T-1}} d \nu
$$

Since we know how Prod scales with expansion on an adiabatically expanding Uniesse:

$$
T \alpha R^{-1}
$$

$$
e \propto R^{-1} \Leftrightarrow \omega \alpha R^{-1}
$$

We can introduce the expression of the energy distribution to obtain:
which is also a Planck curve with $\tilde{T}=T / R$.

NOTE:
Trad $\propto R^{-4}$, as seen in the Thermal history lecture

Black-body radiation in an expanding Universe cools down, but remains thermal. (Tolman, 1934)

We should be able to detect those photons, but we need to know their temperature (and so, $R(t)$).
Historic predictions
1946. George Gamov predicts $T \approx 50 \mathrm{k}$
1948. Ralph Alpher and Robert Herman predict $T \approx 5 k$
1960. Robert Dick re-estimates $T \approx 40 \mathrm{~K}$
1964. A Dorosh Kevich and Igor Novikov suggest to search for the CMB

Discovery
The discovery of the CuB was attributed to Penzius and Wilson (1965), but it was actually detected in 1957 by Emile Le Roux. This PhD student at Nancay Radio Observatory (France) found a near isotro pic background of $3 k$ at $\lambda=33 \mathrm{~cm}$ while he was doing a galaxy survey. However, this was removed from his article following a suggestion of her supervisor.
The CMB emission was (re)-discovered by Penzias \&Wilson, who won the Nobel Prize in 1978. The detection and the possible explanation were published together on the same journal. The interpretation of the measurements was given by Dike, Deebles \& Wilkinson, following the work of Alpher, Bethe and Gamow.

Measurements of the CMB
Monopole
Once it was discovered, it was necessary to proof that this radiation corresponded to the one of a Black body. This required to measure the photons emitted on the last scattering at various frequencies.
COBE satellite was launched in 1992 to the energy distribution of these background photons in every direction. The obtained data fitted very accurately to a blackbody with $T=2.725 \mathrm{~K}$ (better than the ones "created" in a laboratory).
It was found that the distribution agreed with that temperature, but not for local patches: there were higher order terms. However, any deviation from $T=2.728 \mathrm{~K}$ was very small (even for the dipole).
Dipole
Looking into a 180° separation, we measure a marginally different temperature: $\Delta T=3.353 \mathrm{mk}$

This difference in temperature indicates the existence of a dipole. It is caused by the movement of the Local Group towards the Great Attractor at ca. $627 \mathrm{~km} / \mathrm{s}$ (Doppler shift). Measuring the dipole allows to infer the velocity of this movement. A dipole has to exist unless MW is at rest with respect to the $C M B$ (otherwise we would be in a special coordinate frame, and that violates isotropy)
\longrightarrow The dipole can only be explained by movement of the observer
Higher order anisotropies
There are also lots of higher order anisotropies (quadropoles,...). There have been several missions to quantify them with the highest degree of accuracy as possible. The band in the middle is due to the Milky Way disc, which makes us unable to measure the anisotropies in that directions.

$$
\Delta T=18 \mu k
$$

Some of the missions that aimed to measure the CMB anisotro pies were:
1983: Launch of Russian satellite RELiKT-I (announced discovery of $\Delta T / T$ in 1992, but was unnoticed due to Cold War \& lack of translation).
1990: launch of COBE satellite (Nobel Prize in 2006 for discovery of ST/T).
1999: Boomer an 6 and Maxima balloon experiments
2001: launch of WMAP satellite
2002 : DASH discovers polarisation
2009: Launch of Planck satellite
After correcting the effect of the galactic disc, we can compare the accuracy of the different missions.

COBE satellite (1992)

Our current values for H and the density parameters Ω (as well as other parameters) come from the data of the Planck satellite. It will be difficult to obtain better results than the ones from Planck satellite for Primary anisotropies.
8.2. Origin of the CMB anisotropies

Qualitative approach:

before recombination:

After recombination:

The interactions between different components establish couplings between them. Perturbations in one component reflect on the others (via direct interactions) as long as they are coupled. Even if all components are coupled by the metric, this is weaker than the direct interactions (however, it is important to remember that this coupling exists).
We only can have a coupling between radiation and baryons if there are free elections (for Thomson scattering). Even after $e^{+} e^{-}$annihilation there are free electrons left, which are still coupled to the radiation.

- Prior to recombination

Electrons and photons are coupled by Thomson scattering. The Universe is opaque for radiation. There are also protons, which are combining with the electrons to form hydrogen. Once the electrons are captured, they are not available for scattering anymore. The union between electrons and protons is called REcombination.

AFTER RECOMBINATION
Electrons are bound to protons and photons are free to travel. These are the CMB photons. It is important to note that recombination and decoupling happened at different times: there is a short period in between.
We can calculate the times (temperatures) of both events to analyse what happened to photons and electrons.

CMBR origin calculation
Hydrogen recombination. Sana equation.
For recombination, we have the following reaction:

$$
e^{-}+P \longleftrightarrow H+\gamma \quad \text { (in equilibrium) }
$$

The number densities of the elements involved are:

$$
\begin{array}{ll}
n_{e}=g_{e}\left(\frac{m_{e} k T}{2 \pi \hbar^{2}}\right)^{3 / 2} e^{-\left(m_{e}-\mu_{e}\right) c^{2} / k T} & n_{P}=g_{p}\left(\frac{m_{p} k T}{2 \pi \hbar^{2}}\right)^{3 / 2} e^{-\left(m_{P}-\mu_{P}\right) c^{2} / k T} \\
n_{H}=g_{H}\left(\frac{m_{H} k T}{2 \pi \hbar^{2}}\right)^{3 / 2} e^{-\left(m_{H}-\mu_{H}\right) c^{2} / k T} &
\end{array}
$$

Since we are interested in a ratio, we calculate:

Where we have considered that, in equilibrium: $\mu_{e}+\mu_{p}=\mu_{H} \quad \mu_{\gamma}=0$

$$
\left(\frac{n_{H}}{n_{e} n_{p}}\right)=\frac{g_{H}}{g_{e} g_{p}}\left(\frac{m_{H}}{m_{e} m_{\rho}} \frac{2 \pi \hbar}{k T}\right)^{3 / 2} e^{B_{H} / k T}
$$

Prefactors are known or assumed:

$$
\begin{array}{llll}
n_{e}=n_{p} & \text { (charge neutrality) } & g_{e}=g_{p}=2 & (\text { spin } p-\text { down }) \\
m_{H} \approx m_{\rho} & \text { (only for pre-factor) } & g_{H}=4 & \text { (e aligned/antialisned to } p)
\end{array}
$$

Since the electrons are the ones coupled to photons, we express everything in terms of their number density (taking into account that $n_{e} \approx n_{P}$). Assuming that m_{H} is dominated by the proton mass:

$$
\left(\frac{n_{H}}{n_{e}^{2}}\right)=\left(\frac{2 \pi \hbar}{m_{e} k T}\right)^{3 / 2} e^{B_{H} / k T}
$$

We are interested in the fraction of free electrons:

$$
x_{e}=\frac{n_{e}}{n_{b}}
$$

The density of baryons n_{b} can be written in terms of the density of photons as: $n_{b}=\eta n_{\gamma}$, where:

$$
n_{\gamma}=\frac{2 \zeta(3)}{\pi^{2}}\left(\frac{k}{\hbar c}\right)^{3} T^{3} \quad \eta \equiv \text { photon to baryon fraction }
$$

Thus:

$$
n_{b}=\eta n_{\gamma}=\eta \frac{2 \zeta(z)}{\pi^{2}}\left(\frac{k}{\hbar c}\right)^{3} T^{3}
$$

We also know that the number density of baryons is given by (ignoring all nuclei $A>1$ and assuming charge neutrality):

$$
n_{b} \approx n_{p}+n_{H}=n_{e}+n_{H}
$$

We can rewrite the expression obtained for $n_{H 1} / n_{e}$ as:

$$
n_{H}=n_{e}\left(\frac{2 \pi \hbar}{m_{e} k T}\right)^{8 / 2} e^{B H / k T}
$$

And so:

$$
n_{b}=n_{e}+n_{H}=n_{e}\left(1+n_{e}\left(\frac{2 \pi \hbar}{m_{e} k T}\right)^{3 / 2} e^{B_{H} / k T}\right)
$$

We can rewrite the free-clectron fraction as:

$$
x_{e}=\frac{n_{e}}{n_{b}} \longrightarrow 1=\frac{x_{e} n_{b}}{n_{e}}
$$

And joining everything together:

$$
\begin{aligned}
& 1=X_{e}\left(1+n_{e}\left(\frac{2 \pi \hbar}{m_{e} k T}\right)^{3 / 2} e^{B_{H} / k T}\right) \longrightarrow \frac{1}{x_{e}}=1+n_{e}\left(\frac{2 n \hbar}{m_{e} k T}\right)^{3 / 2} e^{B_{H} / k T} \longrightarrow \\
& \frac{1}{x_{e}}-1=n_{e}\left(\frac{2 \pi \hbar}{m_{e} k T}\right)^{3 / 2} e^{B_{H} / k T} \longrightarrow \frac{1-x_{e}}{x_{e}}=n_{e}\left(\frac{2 \pi \hbar}{m_{e} k T}\right)^{3 / 2} e^{B_{H} / k T}=X_{e} n_{0}\left(\frac{2 \pi \hbar}{m_{e} k T}\right)^{3 / 2} e^{B_{H} / k T} \longrightarrow \\
& \frac{1-X_{e}}{x_{e}^{2}}=\eta \frac{2 \zeta(3)}{\pi^{2}}\left(\frac{k^{2}}{\hbar c}\right)^{3} T^{3}\left(\frac{2 \pi \hbar^{2}}{m_{e} k T}\right)^{3 / 2} e^{B_{H} / k T} \longrightarrow \frac{1-X_{e}}{x_{e}^{2}}=\frac{2 \zeta(3)}{\pi^{2}} \eta\left(\frac{2 \pi k T}{\hbar c^{2} m_{e}}\right)^{3 / 2} e^{B_{H} / k T}
\end{aligned}
$$

Sana equation
This is a non-linear equation, so we cannot get an explicit formula $X_{e}=\ldots$ we have an intrinsic definition that can be solved numerically.

Solving the equation, we find that in the very early Universe, at temperatures $\sim k l e V$, all the electrons are free. When T drops, Xe drops too. The dashed line represents the result of Sakha equation if no cosmology would happen in between.
we define the beginning of recombination as the point when we have $X_{e}=0.1$ (i.e. the point where we only have 10% of the initial free electrons). This gives:

$$
T=0.31 \mathrm{eV} \ll B_{H}!
$$

Naively, we could think that this temperature is too low because the binding energy of hydrogen is $B_{H}=13.6 \mathrm{eV}$: as soon as the temperature of the Universe (and so, the
photons) is below 13.6 ev, the reaction should only go in the direction $e^{-}+p \rightarrow H+\gamma$ (photons do nut have enough energy to dissociate H). However, we have to take into account that the number of photons is (way) larger than the number of baryons, so there are still photons with enough energy to dissociate H: 2 delays recombination.
Translating this to redshift, recombination takes place around $Z_{r e c}=1300$
In another lecture we calculated the redshift for matter-radiation equality (zoan 3400 , using Planck cosmology). Thus, recombination happens during matter domination.
Photon decoupling
After recombination, we still have some free electrons (10% of the initial quantity). Those electrons still interact with the photons. This stops at decoypling. We can calculate when does it happen through the interaction rate of Thomson scattering:

$$
e^{-}+\gamma \longleftrightarrow e^{-}+\gamma
$$

Electrons will decouple when $\Gamma / H \prec 0.1:$

$$
\Gamma_{\gamma} \approx n_{e} \sigma_{T} c=n_{b} X_{e} \sigma_{T} c=\eta \frac{2 \zeta(3)}{\pi^{2}}\left(\frac{k}{\hbar c}\right)^{3} T^{3} X_{e} \sigma_{T} c
$$

$H=\left(H_{0}^{2} \Omega_{\text {mol }} R^{-3}\right)^{1 / 2}$ matter domination (as $Z_{\text {rec }} \ll Z_{\text {eq }}$), from Friedmann equation
And taking into account the scaling with temperature: $T \propto R^{-1}$
$H=H_{0} \sqrt{\Omega_{\text {moo }}}\left(\frac{T}{T_{0}}\right)^{3 / 2}$ where $T_{\text {is }}$ the temperature of the photons
Equating both expressions, we use Sana equation for $X_{e}\left(T_{\text {dec }}\right)$ and solve for $T_{\text {dec }}$.

$$
\eta \frac{2 \zeta(3)}{\pi^{2}}\left(\frac{k}{\pi c}\right)^{3} T_{\operatorname{dec}}^{3} X_{e} \sigma_{T} c \approx H_{0} \sqrt{\Omega_{m, 0}}\left(\frac{T_{\text {dec }}}{T_{0}}\right)^{3 / 2}
$$

Numerically, we find that:

$$
\begin{aligned}
& T_{d e c}=0.27 \mathrm{eV} \\
& z_{\text {dec }}=1090
\end{aligned}
$$

Both recombination and decoupling happen at approximately the same temperature, but decouple happens a bit later.
A proper (mure accurate) calculation would require solving the Boltzmann equation.
$z=1090$ (decoupling) defines the last scattering surface. From that onwards we are able to see the Universe.

8．3．CMB fluctuations
Primary fluctuations
Intrinsic fluctuations
Before the emision of the CMB，everything was homogeneous and isotropic．Afterwards，during the evolution of the Universe，non－linearities are developing，giving rise to non－isotropic and non homogeneous structures．There must be some primordial matter fluctuations acting as seeds for all the structures in the Universe．
At inflation，quantum fluctuations grew up and became macroscopic（but they were still ting）：primordial matter 㠩luctuations．These structures grew gravitationally over time， and lead to intrinsic fluctuations in the CMB（which are conserved）．

Matter structures keep growing over time．Today，we observe $\Delta \mathrm{cm}_{m} / e_{m}$ and $\Delta T / T$ ．The latter are the reflection of the anisotropies in the matter distribution at $z \sim 1100$ ．
We can make predictions about $\Delta T / T$ at that redshift based on the $\mathrm{sp} / \mathrm{em}$ that we observe today．
Since the photons are decoupled，they evolve as $T_{\gamma} \propto R^{-1}$ ．Therefore，$\Delta T / T$ is not changing：
$T \propto R^{-1}, \Delta T / T=$ cons

At the time of electron decoupling，photons are free to travel．A photon that starts travelling from an overdense region will be gravitationally redshifted（because it must scape from the potential well）．Redshifted photons will have a lower temperature than unaltered photons since $E=h_{2}=K T$
Cold spots in CMB \equiv high density regions Hot spots in CMB $=$ low density regions

We want to obtain $\Delta T / T$ and a relation such as $\Delta T / T=k \Delta \rho_{m} / e_{m}$
The first step will be translating the sem/em that we observe today back to its value at decoupling. To do so, we can use the following equation for the evolution of the density contrast:

$$
\ddot{\delta}_{m}+2 H \dot{\delta}_{m}=4 \pi G e_{m} \delta_{m} \quad \delta_{m}=\frac{1 e}{e}
$$

For a matter dominated Universe with $\Omega_{m}=1$, we get:

$$
\delta_{m, 0}=\delta_{m, d e c} a
$$

Today, we observe that $\delta_{m, 0} \geq 1$. This is a lower limit, since taking two galaxies and the background gives a higher value ($\sim 10^{6}$)
We know the value of redshift for decoupling $(z \approx 1100)$, so we can scale $\delta\left(a=\frac{1}{1+2}\right)$ and find:
$\delta_{m, \text { dec }} \geqslant 10^{-3}$ which is, again, a lower limit.
Now we need to relate it to $\Delta T / T$. To do so, we will find first a connection between $\Delta \mathrm{e}_{\mathrm{m}} / \mathrm{e}_{\mathrm{m}}$ and $\Delta \mathrm{e}_{\mathrm{r}} / \mathrm{e}_{\mathrm{r}}$, and then translate the latter to ST / T.
Relating $\Delta e_{m} / e_{m}$ and $\Delta e_{r} / e_{r}$ is easy, since we are dealing with adiabatic perturbations. We know that: taking differentials

$$
\left.\begin{array}{l}
e_{m} \propto R^{-3} \Rightarrow \Delta e_{m} \propto-3 R^{2} \Delta R=-3 e_{m} \frac{\Delta R}{R} \Rightarrow \frac{\Delta e_{m}}{e_{m}}=-3 \frac{\Delta R}{R} \\
\operatorname{er} \propto R^{-4} \Rightarrow \operatorname{ter} \alpha-4 R^{-3} \Delta R=-4 \operatorname{er} \frac{\Delta R}{R} \Rightarrow \frac{\Delta e_{r}}{e_{r}}=-4 \frac{\Delta R}{R}
\end{array}\right\} \frac{\Delta e_{m}}{e_{m}}=\frac{3}{4} \frac{\Delta e_{r}}{e_{r}}
$$

Now it is necessary to relate ser/er to $\Delta T / T$. This can be done as:

$$
\operatorname{Cr} \propto T^{4} \Rightarrow \operatorname{ser} \propto 4 T^{3} \Delta T=4 \frac{\operatorname{Cr}}{T} \Delta T \longrightarrow \frac{\operatorname{ser}}{\operatorname{Cr}}=4 \frac{\Delta T}{T}
$$

Combining both expressions we find:

$$
\frac{\Delta T}{T}=\frac{1}{3} \frac{\Delta e_{m}}{e_{m}}
$$

At decoupling, we had $\delta_{m, d e c}=\left(\frac{\Delta e_{m}}{e_{m}}\right)_{\text {dec }} \geqslant 10^{-3}$, so $\Delta T / T \approx 10^{-3}$ (and this was a lower limit). Since $\Delta T / T$ remained constant, we should have observed this anisotropies in 1970's and 1980's. However, instead of this we observe is $1 T / T \sim 10^{-5}$, two orders of magnitude smaller. To explain this, we need something that starts forming structures before decoupling \Rightarrow The strength of the anisotropies in the CMB is another hint at the existence of dark matter.

Dark matter could form structures prior to recombination. The gravity coupling makes possible to create potential wells to explain the observed $\Delta T / T$.
Thus, the observed $1 T / T \approx 10^{5}$ with dark mater is compatible with $\left(\Delta e_{m} / e_{m}\right)_{0}>1$

Quantifying fluctuations.
Since we take observations as if we were at the centre of a sphere, the best way of analysing the anisotropies is using the Legendre polynomials, she they are an orthogonal system on spherical coordinates. We can decompose $\frac{\Delta T}{T}$ as:
 invariance) we can combine the different m-terms:

$$
C_{l}=\frac{1}{2 l+1} \sum_{m=-l}^{+l}\left|a_{l n}\right|^{2}
$$

Power spectrum of temperature fluctuations
And define $D_{e}=\frac{1}{2 \pi} l(l+1) C l$

Nature of the fluctuations. Bargonic accoustic oscillations and Sachs-Wolje effect. (Baryonic) matter was coupled to radiation prior to $z_{\text {rec }} \sim 1380$. The existence of perturbations in the coupled baryons lead to (adiabatic) perturbations in the radiation field. [As we have already calculated, $\delta_{b}=\frac{3}{4} \delta_{r}$]. It also leads to baryonic acoustic oscillations. This happens because of the effect of gravity and radiation pressure.

Gravity wants to pull the material inside, but the radiation is exerting a pressure that goes into the other direction that wants to tear things apart. This constant feud generates oscillations.
At decoupling this does not happen anymore: oscillations are frozen and photons acre caught at extremes.
This translates in to temperature fluctuations: we see peaks and dips in the observed $\Delta T / T$. These are called baron accoustic oscillations.
 Sound waves have an associated speed $c_{s}=\sqrt{\frac{\partial p}{\partial e}} \approx \frac{C}{\sqrt{3}}$ For an overdensity in $D \mu$, neutrinos, gas and photons:

- DM is decoupled, and hence able to gravitationally collapse right away (creating gravitational wells).
- Neutrinos are about to decouple and gree stream out of the overdensity.
- Gas and photons remain coupled until photon decoupling: we get sound waves, the overdensity /orerpressured region travels outwards with $v=c_{s}$

(4)

(2)

(3)

(5)

(6)

We start when everything is still coupled (1). With the expansion of the universe, gas, photons and neutrinos start to decouple (2). The dark matter is not expanding (it is actually collapsing, since it decoupled a long time ago. Neutrinos are about to decouple as well. Photons and gas are still coupled, so they evolve together. At recombination (3) (t decoupling) they will start evolving differently (4). Photons and neutrinos evolve on a similar way after they decoupling. There is still a peak for the baryons. That peak now feels the gravity towards the DM peak. If we continue 6, (7), we still have a peak at the size of the horizon at decoupling. This peak should be observable in the Universe (matter overdensity peak) when we look at the distribution of galaxies. To find it, we require for huge surveys to resolve the BAO scale.

This peak has been found on the distribution of galaxies.

We had found that, for adiabatic fluctuations, the temperature and baryon fluctuations were related as:

$$
\frac{\delta T}{T}=\frac{1}{3} \frac{\delta e_{m}}{e_{m}}
$$

This fluctuations can be related to the total gravitational potential (which also includes dark matter as:

$$
\frac{\delta T}{T}=\frac{1}{3} \frac{\delta \Phi}{c^{2}}
$$

\checkmark angular scale of the effect

Sach-wolfe effect
This equation describes the temperature fluctuations in the $C M B$ photons due to the loss in the potential wells created by $D \mu$ (which was discussed before)

There are other effects that cause some $\delta T / T$, for example, the velocity distribution $o f$ the electrons

$$
\frac{\delta T}{T}=-\frac{\vec{v} \cdot \vec{n}}{c} \quad \Delta \theta \approx 1^{0}
$$

(related to Doppler effect).

last scattering surface

We also have Silk dumpling:

Secondary fluctuations
Nature of the fluctiations
This fluctuations appear due to the interaction of CMB photons with matter (e.g. a galaxy cluster) inbetween $z_{\text {dec }}$ and $z=0$.

- Sunyaev - Zel'dovich effect:

1. Thermal: CMB photons scatter off the hot intra-cluster gas.
2. Kinetic: The cluster gas has a bulk motion with respect to the CMB, and hence induces a Doppler shift.
SZ effect is used to study galaxy clusters.
\leftarrow Integrated Sachs -Wolfe effect Fluctuations due to global (timevarying) gravitational potential. They are caused by time-varying linear perturbations (e.g. superclusters)

- Rees - Seiama effect:

Caused by local (time-varying) gravitational potential. Caused by time-varying non-linear perturbations (e.g. halos).

ICROWAVE PHOTON

- Ostriver-Vishniac effect

Higher order coupling between bulk flow of electrons and their density perturbation (outside virialized objects).

- Patchy re-icnisation of the Universe: there are HII regions with free e^{-}for scattering

Importance of secondary anisotropes

(10) clusters thermal SZ

- Primary anisotropies

All the other lines are theoretical calculations of $\delta T / T$ for the secondary effects. These effects are important on very small scales.
For $l>3000$, lensing and tS dominate anisotropies \rightarrow if we resolve them we an get information about clusters.

8.4. CMB anisotropies and spectrum

Measurements

We can measure the $C M B$ anisotropies in various frequencies (channels). This variety of channels can be used to substract the Galactic noise. We measure the temperature and polarization of the CMB photons.
The extra channels also increase resolution, which means that higher multipoles can be measured.

This measures can be translated into C_{l} (power spectrum)

We can split CMB maps into:

- TT: temperature-temperature anisotropy
- TE: temperature-polarization (electric + magnetic) Oscillations are due to the coupling to baryons (BAO, baryon accoustic oscillations)

CMB data analysis. HEAL Pix.
As we have discussed before, we can analyse the CMB temperature fluctuations expanding on Legendre polynomials and spherical harmonies
$\Delta \equiv \Delta T / T \longleftarrow$ Temperature anisotropy (the CMB map)

$$
\begin{aligned}
& \Delta(\vec{x}, \hat{n}, \tau)=\int d^{3} k e^{i \vec{k} \cdot \vec{x}} \Delta(\vec{k}, \hat{n}, \tau) \equiv \int_{\text {expand }} d^{3} k e^{i \vec{k} \cdot \vec{x}} \sum_{l=0}^{\infty}(-i)^{l}(2 l+1) \Delta_{l}(\vec{k}, z) P_{l}(\hat{k} \cdot \hat{n}) \\
& \Delta(\hat{n})=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{l m} Y_{l m}(\hat{n}) \quad \quad a_{l m}=(-i)^{l} 4 \pi \int d^{3} k Y_{l m}^{*}(\hat{k}) \Delta_{l}(\vec{k}, \tau)
\end{aligned}
$$

spherical harmonics
This is done because it is more efficient to work with spherical harmonics than with the pixels, which allows us to reduce the computational weight without losing information.
note

- Properties of the Legendre polynomials

$$
\begin{array}{ll}
\int_{-1}^{1} d x P_{l}(x) P_{l^{\prime}}(x)=\delta_{l l^{\prime}} \frac{2}{2 l+1} \leftarrow \text { orthogonality } & P_{l}(x)=1 \\
& P_{1}(x)=x \\
(l+1) P_{l+1}(x)=(2 l+1) \times P_{l}(x)-l P_{l-1}(x) & P_{2}(x)=\frac{3 x^{2}-1}{2}
\end{array}
$$

- Properties of the Spherical harmonics

$$
\begin{aligned}
& \int d \Omega Y_{l m}^{*}(\Omega) Y_{l^{\prime} \cdot}^{\prime}(\Omega)=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \rightarrow p_{l}\left(\hat{x} \cdot \hat{x}^{\prime}\right)=\frac{4 \pi}{2 l+1} \sum_{m=-l}^{l} Y_{l m}(\hat{x}) Y_{l m}^{+}\left(x^{\prime}\right) \\
& Y_{00}(\theta, \phi)=\frac{1}{\sqrt{2 \pi}} \\
& Y_{1, \pm 1}(\theta, \phi)=\mp i \sqrt{\frac{3}{8 \pi}} \sin (\theta) e^{ \pm i \phi}
\end{aligned}
$$

We are not interested in the temperature anisotropy itself, we are interested on the two-point correlation function for the temperature anisotropy:

$$
C(\theta) \equiv\left\langle\Delta\left(\hat{n}_{1}\right) \Delta\left(\hat{n}_{2}\right)\right\rangle=\frac{1}{4 \pi} \sum_{l=0}^{\infty}(2 l+1) C_{l} P_{l}\left(\hat{n}_{1} \cdot \hat{n}_{2}\right)
$$

Considering the properties whiten above, we have:

$$
\left\langle a_{\ell_{m}} a_{e^{\prime} m^{\prime}}^{*}\right\rangle=C_{e} \delta_{\ell_{\ell^{\prime}}} \delta_{m m^{\prime}}
$$

Decomposing also the Fourier transform of the temperature anisotropy:

$$
\Delta_{l}(\vec{k}, \tau)=\psi_{i}(\vec{k}) \Delta_{l}\left(k_{1} T\right) \longrightarrow\left\langle\psi_{i}\left(\vec{k}_{1}\right) \psi_{i}\left(\vec{k}_{2}\right)\right\rangle=P_{\psi}(k) \delta_{0}\left(\vec{k}_{1}+\vec{k}_{2}\right)
$$

G initial perturbation (from inflation) \hookrightarrow Primordial power spectra
thing together, it is possible to calculate the $C_{e s}$ as:

$$
C_{l}=4 \pi \int d^{3} k P_{\psi}(k) \Delta_{l}^{2}(k, z)
$$

$P_{\psi}(k) \rightarrow$ Primordial power spectrum
$\Delta_{l} \rightarrow$ Legendre expansion of the F.T. of the T anisotropy The Cos compress inf
~ 2500 multipoles.

HEAL PIx
(Hierarchical Equal Area isoLatitude Pixelisation). A 2 -sphere is tesselated into curvilinear quadrilaterals with different resolutions. The lowest one has 12 pixels, and the resolution is increased partitioning every pixel into 4 new.
 resolution are identical!

$N_{\text {pix }}=12 \times N_{\text {side }}^{2}=12,48,192,768$.

Plane projection

If the intensity (or temperature) of the photons is known in every pixel, we can

$$
\begin{aligned}
& \text { Obtain: } \\
& \hat{a}_{l m}=\frac{4 \pi}{N_{p i n}} \sum_{p=0}^{N_{p l x-1}} Y_{l m}^{*}\left(\gamma_{p}\right) f\left(\gamma_{p}\right) \rightarrow \hat{C}_{l}=\frac{1}{2 l+1} \sum_{m}\left|\hat{a}_{l m}\right|^{2}
\end{aligned}
$$

It is necessary to know the angles associated to each pixel.
CMB polarization modes
Until now, we were talking about temperature fluctuations, but it is also possible to measure the polarization from Thomson scattering (E and B modes).

Photons coming from the x and y axis will be scattered by the electron at the origin, adquiring some polarization in the z direction (normal to the direction of motion, all the other information is lost due to the Thomson scattering).
Photons with different energies (i.e. coming from regions with different matter densities) will produce differences on the polarization after the scatter (mixed signal on the different axis).

This signal can be decomposed in Electric and Magnetic parts (convention).
The E mode is caused by thermal over/under-densities. B mode is caused by GW and dust (due to magnetic fields and imperfect alignment).

8.5. Features of the TT CMB spectrum

We have already discussed qualitatively some of the features of the CMB Power spectrum (like baryonic acoustic oscillations), but now we are taking a deeper look into it.

For now, we will only pay attention to the $T T$ power spectrum. Some of the outstanding features are:

- Plateau for large scales (SW + Isw, flat $C_{l s}$ for $\ell<30$)
- BAO peaks - baryonic accoustic oscillations, damped for small

scales (diffusion damping, due to an increase in mean free paten of photons).
There are also some other effects, like:
- Adiabatic/isocurvature perturbations $\}$ (primary anisotropies - before last scattering surface)
$\left.\begin{array}{l}\text { - Integrated sachs - Wolfe effect (ISW) } \\ \text { - Reionization at } z=10\end{array}\right\}$ (secondary anisotropies - after CMB emision)

Baryon accoustic oscillations
We have coupled photons and baryons inside a potential well. We must solve the fluid equations for both components. To do so, we can use the following perturbation equations for Baryon- Photon plasma:

Metric perturbations, Newtonian potentials

$$
\begin{aligned}
& \dot{\delta}_{\gamma}=-\frac{4}{3} \theta_{\gamma}+4 \dot{\phi} \\
& \dot{\theta}_{\gamma}=k^{2}\left(\frac{1}{4} \delta_{\gamma}-\sigma_{\gamma}\right)+k^{2} \psi+a_{n} \sigma_{T}\left(\theta_{b}-\theta_{\gamma}\right) \\
& \dot{\delta}_{b}=-\theta_{b}+3 \dot{\phi} \text { Isotropic stress } \\
& \dot{\theta}_{b}=-\frac{\dot{a}}{a} \theta_{b}+c_{s}^{2} k^{2} \delta_{b}+\frac{4 \bar{e} \gamma}{3 \bar{e} b} a n_{e} \sigma_{T}\left(\theta_{\gamma}-\theta_{b}\right)+k^{2} \psi
\end{aligned}
$$

NOTATION
$\delta \equiv s e / \mathrm{L} \rightarrow$ Density perturbations of photons / baryons $\theta=i k^{j} v_{j} \rightarrow$ Velocity perturbation

Without the $\left(\theta_{b}-\theta_{\gamma}\right)$ term, the equations would be decoupled and there would be no B4O. To solve them analytically, we can define δ as:

$$
8_{\gamma}-4 \phi \equiv 4 S
$$

And elliminate all except $\delta \gamma$
driving force
$\ddot{S}+\underbrace{\frac{\dot{R}}{1+R}}_{\longrightarrow} \dot{S}+\underbrace{k^{2} c_{s}^{2} S}_{\text {damping term }}=\left(-\frac{k^{2}}{3} \psi-\frac{k^{2}}{3} \frac{\phi}{1+(\mathbb{R})}\right)$ oscillatory term Ratio $\Omega_{b} / \Omega_{\gamma}$, will be defined later

To get an initial approximation to the behavior of the solution, we can consider the zero order solution (ignoring the dumping and force):

$$
\ddot{S}+K^{2} c_{S}^{2} S \simeq 0 \longrightarrow S=A \cos \left(k r_{s}+\theta_{0}\right)
$$

Comparing the position of the peaks:

$$
K_{p}=\frac{n \pi}{r_{s}}
$$

where $r_{S}=\int_{0}^{\eta} d \eta^{\prime} C_{S}\left(\eta^{\prime}\right) \simeq C_{S}(\eta) \eta$ (sound horizon)
$C_{s}^{2}=\frac{1}{3(1+R)}$ - $\begin{aligned} & \text { sound speed of the bargon-photon } \\ & \text { plasma }\end{aligned}$

$$
R=\frac{3}{4} \frac{\Omega_{b}}{\Omega_{\gamma}}=\frac{a^{-3}}{a^{-4}} R_{0}=R_{0} a
$$

A more careful calculation yields:

$$
\begin{aligned}
& l_{A} \equiv \Pi D / S_{*} \\
& l_{A} \approx 172 d\left(\frac{z_{*}}{10^{3}}\right)^{1 / 2}\left(\frac{1}{\sqrt{R_{*}}} \ln \frac{\sqrt{1+R_{*}}+\sqrt{R_{*}+C_{*} R_{*}}}{1+\sqrt{r_{*} R_{*}}}\right)^{-1}
\end{aligned}
$$

Where D is the distance to the sound horizon (recombination),
l_{A} is the multipole of the spectrum, s is the sound horizon.
The peaks are located at:

$$
\begin{aligned}
& l_{m}=l_{A}(m-\phi) \\
& \phi \approx 0.267\left(\frac{r_{*}}{0.3}\right)^{0.1} \quad m \equiv \text { number of the peak }
\end{aligned}
$$

Hot and Cold spots
Photons going through overdense or underdense regions of the Universe will change their T. To calculate this, we consider the perturbed FRW metric with Newtonian potentials φ, ψ.

$$
d s^{2}=a^{2}(\tau)\left\{-(1+2 \psi) d \tau^{2}+(1-2 \phi) d x^{i} d x_{i}\right\}
$$

The Photon four momentum, given the FRW metric:

$$
p^{\mu}=\left(a^{-1} p(1-\psi), a^{-1} p^{i}(1+\phi)\right) \xrightarrow{\text { temporal port }} p^{0}=a^{-1} p(1-\psi) \sim \frac{1}{\lambda}
$$

Einstein equations $(0,0)$ and (i, j) parts give Poisson equations:

$$
\left.\begin{array}{rl}
K^{2} \phi & =-4 \pi G_{N} a^{2} \rho_{m} \delta_{m} \\
\phi & =\psi
\end{array}\right\} \psi=-4 \pi G_{N} \frac{a^{2}}{k^{2}} \rho_{m} \delta_{m}
$$

$\hookrightarrow \psi$ is related to the DM density perturbations.
δ is the density contrast, defined as $\delta=(e-e) / \bar{e}$. We can define over/under densities as: $\delta_{\text {over }} \gg\left(\delta_{\text {average }}\right) \gg \delta_{\text {under }}$
This translates into redshift for photons trying to escape:

$$
\text { over }>\delta_{\text {under }} \rightarrow \psi_{\text {over }}<\psi_{\text {under }} \rightarrow \text { Power }_{0}^{0}>\text { Pander }^{\circ} \rightarrow \text { dover } 2 \text { dundee }
$$

This leads to temperature decreases (coldspot) between overdensity and underdensity:

$$
\begin{aligned}
& \frac{\Delta T}{T} \sim \frac{1}{3} \delta \psi \longrightarrow \frac{\Delta T}{T}<0 \\
& \Delta T=T_{\text {over }}-T_{\text {under }} \\
& \delta \psi=\psi_{\text {over }}-\Psi_{\text {under }}<0
\end{aligned}
$$

For some reason, that region is colder

Derivation of Sachs - Wolfe effect
Scalar perturbations
It appears when a photon escapes a static potential. Since $\frac{\Delta T}{T} \sim \frac{1}{3} \delta \psi$, it is important on large scales. To zero order, the sw effect contribution is a spherical Bessel function (see Dodelson 8.6). \longrightarrow Legendre expansion coefficient

$$
\Delta\left(\hat{n}, \tau_{0}\right) \approx \frac{1}{3} \psi\left(\vec{x}=-\vec{n} x, \tau_{\text {rec }}\right) \longrightarrow \Delta_{e}(k, z)=\frac{1}{3} j_{e}(k x)
$$

If we assume that the spectrum from inflation is a Power law:

$$
P_{\psi}(k)=A x^{3}(k x)^{n-4} \propto k^{n-4}
$$

The coefficients give:

$$
\begin{aligned}
& C_{e} \approx \frac{2^{n} \pi^{3}}{9} A \frac{\Gamma(3-n) \Gamma\left(\frac{2 l+n-1}{2}\right)}{\Gamma^{2}\left(\frac{4-n}{2}\right) \Gamma\left(\frac{2 l+5-n}{2}\right)} \\
& n=1: \quad C_{e} \approx \frac{8 \pi^{2}}{9} \frac{A}{e(l+1)} \Longleftarrow \text { constant }
\end{aligned}
$$

Some people use different notations that give some extra factors, but they can be re-absorbed in the amplitude:

$$
\begin{aligned}
& C(\theta)=\left\langle\frac{\delta T^{*}}{T}(\vec{n}) \frac{\delta T}{T}\left(\vec{n}^{\prime}\right)\right\rangle_{\vec{n} \cdot \vec{n}^{\prime}=\cos \theta}=\frac{1}{4 \pi} \sum_{l=2}^{\infty}(2 l+1) C_{l} P_{l}(\cos \theta) \\
& \frac{\delta T}{T}(\theta, \phi)=\frac{1}{3} \Phi\left(\eta_{l s}\right) Q=\frac{1}{5} Q Q\left(\eta_{0}, \theta, \phi\right) \equiv \sum_{l=2}^{\infty} \sum_{m=-l}^{\ell} a_{l m} Y_{l m}(\theta, \phi) \\
& \longrightarrow \Phi=\frac{3}{5} R \\
& C_{l}{ }^{(s)}=\frac{4 \pi}{25} \int_{0}^{\infty} \frac{d k}{k} P_{R}(k) j_{l}^{2}\left(k \eta_{0}\right) \longrightarrow C_{l}^{(s)}=\frac{2 \pi}{25} A_{s}^{2} \frac{\Gamma\left[\frac{3}{2}\right] \Gamma\left(1-\frac{n-1}{2}\right) \Gamma\left(l+\frac{n-1}{2}\right)}{\Gamma\left(\frac{3}{2}-\frac{n-1}{2}\right) \Gamma\left(l+2-\frac{n-1}{2}\right)} \\
& \frac{l(l+1) C_{l}^{(s)}}{2 \pi}=\frac{A_{s}^{2}}{2 s}=\text { constant for } n=1
\end{aligned}
$$

The amplitude is more or less constant because the fourier modes have not entered the horizon yet (large scales). The perturbations are frozen, they are outside any causal contact. They still have the primordial values from inflation.

Tensor perturbations
Tensor perturbations follow the following ODE:

$$
h_{k}^{\prime \prime}+3 \phi h_{k}^{\prime}+\left(k^{2}+2 k\right) h_{k}=0
$$

The contribution in the spectrum is:

$$
\frac{\delta T}{T}(\theta, \phi)=\int_{\eta_{L s}}^{\eta_{0}} d r h^{\prime}\left(\eta_{0}-r\right) Q_{r r}(r, \theta, \phi) \quad Q_{k e}^{r}(r)=\left[\frac{(l-1) l(l+1)(l+2)}{\pi k^{2}}\right]^{1 / 2} \frac{j_{l}(k r)}{r^{2}}
$$

We can calculate the hes as:

$$
C_{l}^{(T)}=\frac{q_{\pi}}{4}(l-1) l(l+1)(l+2) \int_{0}^{\infty} \frac{d k}{k} P_{g}(k) I_{k l}^{2} \quad I_{k e}=\int_{0}^{x_{0}} d x \frac{j_{2}\left(x_{0}-x\right) j_{l}(x)}{\left(x_{0}-x\right) x^{2}}
$$

And again, for large scales (small multipules):

$$
\begin{aligned}
& l(l+1) C_{l}^{(T)}=\frac{\pi}{36}\left(1+\frac{48 \pi^{2}}{385}\right) A_{T}^{2} B_{l} \\
& B_{l}=(1.1184,0.8789, \ldots, 1.00) \text { for } l=2,3, \ldots, 30
\end{aligned}
$$

The Integrated Sachs-Wolfe effect
ISW appears when photon escapes time varying potential due to accelerated expansion caused by dark energy. It appears at late times at large scales ($l<20$)

$$
\begin{aligned}
\frac{\Delta T}{T} \simeq \int_{0}^{\eta_{0}}(\dot{\phi}+\dot{\psi}) d \eta \xrightarrow{\text { expansion }} \quad \Delta & \simeq \int_{0}^{\eta_{0}} e^{-z}(\dot{\phi}+\dot{\psi}) j_{p}\left[k\left(\eta_{0}-\eta\right)\right] d \eta \\
\tau & =\int_{\eta_{\text {rec }}}^{\eta_{0}} d_{\eta} n_{e} \sigma_{z} a(\eta)-\text { optical depth }
\end{aligned}
$$

The Cl s strongly depend on $D E$:

$$
\begin{aligned}
& J_{e}{ }^{\text {sJw }}(k)=2 \int d z \frac{d G}{d z} j_{e}(k r(z)) \\
& \leftrightarrows G(a, k)=\frac{\Phi(a, k)+\Psi(a, k)}{\Phi\left(a_{\text {init }} ; k\right)+\psi\left(a_{\text {init; }} k\right)}
\end{aligned}
$$

However, for small multipoles we have a problem with cosmic variance. There are few m coefficients, so the errors are large.

Other effects
Diffusion damping
Damping at small scales (large l) due to an increase in the mean free path of photons.

$$
\ddot{S}+\frac{\dot{R}}{1+R} \dot{S}+k^{2} C_{s}^{2} S=\left(-\frac{k^{2}}{3} \psi-\frac{k^{2}}{3} \frac{\phi}{1+R}\right)
$$

\longrightarrow oscillatory term \longrightarrow driving force
damping term
The damping term gives rise to an exponential suppression in Che. (Dodelson 8.4)

$$
\begin{aligned}
& \delta_{\gamma} \simeq \cos \left(k r_{s}(z)\right) e^{-k^{2} / k_{0}^{2}} \\
& k_{D}^{-2} \equiv \int_{0}^{2} \frac{d \eta^{\prime}}{6(1+R) n_{e} \sigma_{T} a\left(q^{\prime}\right)}\left[\frac{R^{2}}{1+R}+\frac{8}{9}\right] \rightarrow \text { Because we want an integrated effect for all times }
\end{aligned}
$$

Adiabatic / isocurvature perturbations
Until now, we were not considering which kinds of perturbations were we dealing with. Considering a volume with equal distribution of matter and radiation, it can be perturbed in two ways:
i) Change volume adiabatically (conserving the entropy) \rightarrow the number density is the same

$$
\delta_{\gamma}=\frac{\delta g}{e_{\gamma}}=\frac{\delta n_{\gamma}}{n_{\gamma}} \xrightarrow{n_{\gamma} \sim T^{3}} \frac{\delta T}{T}=\frac{\delta_{\gamma}}{3} \longrightarrow \delta_{\gamma}=3 \frac{\delta T}{T}
$$

ii) Perturb entropy, Keep energy density the same (isocurvature): $e_{m} \delta_{m}=e_{\gamma} \delta_{\delta}$ $\delta_{\gamma}=3 \frac{\delta T}{T}+$ canst
\longrightarrow extra correction
This kinds of perturbations have been included in codes, which show that the adiabatic ones are prefered.
Dopler shift (dipole):
Plasma had non-zero velocity at recombination, and the Milky Way moves at $600 \mathrm{~km} / \mathrm{s}$ w.r.t. the CMB. This produces a dipole (first multipole).

$$
\frac{\delta T}{T}(\vec{r})=-\frac{\vec{r} \cdot \vec{v}}{c}
$$

Reionization at $z \sim 10$.
From quazar spectra, we know that the Universe reionized at $z_{n}[6,20]$.
These elections scattered again CMB photons, affecting modes within the horizon at the time of reionization, $l \gg 1$ (small scales) by reducing
 the $C_{l_{s}}: \Delta_{e} \longrightarrow \Delta_{e} e^{-2} \quad z=\int_{\text {rec }}^{20} d \eta r_{e} \sigma_{T} a(n)$

Cosmic variance
For each l we have $2 l+1 \mathrm{alm}$ coefficients, of which we can only predict the distribution, not actual values (they are random values).
$l=100 \rightarrow 201 \mathrm{alm}$ (good for statistics)

$$
l=2 \quad \rightarrow \delta a_{l m} \quad \text { (not good for stat) }
$$

$$
\begin{aligned}
& a_{l m}=(-i)^{l} 4 \pi \int d^{3} k y_{l m}^{+}(\vec{k}) \Delta_{l}(\vec{k}, \tau) \\
& \left\langle a_{l m} a_{\ell^{\prime} m^{\prime}}\right\rangle=C_{l} \delta_{\ell e^{\prime}} \delta_{m m^{\prime}}
\end{aligned}
$$

Sensitivity to cosmological parameters

Taking our typical decomposition in spherical harmonics of $\delta T / T$ characterized by their l (scale), we can find the dependences on the position of the peaks with the cosmological density parameters.
a) Curvature does not change the shape of the spectrum, but shifts the position of the peaks. We have measured the first peak on $l=200$, which means that the Universe is almost flat.
c) Changing the baryon content modifies the difference between the height y the first and the second peak.
d) Changing all the matter content changes mostly the height of the third peak and its position.
b) 1 has a similar effect than k

NOTE
Anisotropies primarly depend on baryon-photon interactions - ratio
Dark matter has decoupled long before the emergence of the anisotropies

The shape of the power spectrum of the intrinsic temperature fluctuations in the CMB depends sensitively on the cosmological parameters.

Curvature
Curvature changes distances:

$$
d_{A}=\frac{1}{1+z} \frac{c}{H_{0} \sqrt{\Omega_{k}^{(0)}}} \sinh \left(\sqrt{Q_{k}^{(0)}} \int_{0}^{z} \frac{d z}{E(z)}\right.
$$

Its main effect is on the location of the $1^{\text {st }}$ peak (\sim distance to recombination). As it was discussed before, the location of the peaks is given by: $l_{m}=l_{A}(m-\phi), \quad l_{A} \propto D$,

$$
\phi \approx 0.267\left(r_{*} / 0.3\right)^{0.1}
$$

Spectral index
The spectral index n_{s} affects normalization

$$
\begin{aligned}
C_{l}=4 \pi & \int_{P_{4}} d^{3} k P_{\psi}(k) k_{l}^{2}(k, \tau) \xrightarrow{\text { Taylor }} \frac{C_{l}\left(n_{s}\right)}{C_{l}\left(n_{s}=1\right)} \simeq\left(\frac{l}{l_{0}}\right)^{n_{s}-1}
\end{aligned}
$$

Dark energy
It has a late time effect $(z<1)$ at large scales (l <10) [Integrated SW]

$$
C_{l}^{\text {sw }}=4 \pi \int \frac{d k}{k} J_{l}^{\text {Ssw }}(k)^{2} \frac{9}{2 s} \frac{k^{3} P_{\rho}}{2 \pi^{2}} \quad J_{l}^{\text {sw }}(k)=2 \int d z \frac{d G}{d z} j_{l}(k r(z))
$$

It also changes the distance to recombination, since it is changing slightly the expansion velocity.
Matter content Ω_{m}
Ω_{m} affects the DM potentials. Deeper potentials imply less BAO.

$$
\psi=-4 \pi G_{N} \frac{a^{2}}{k^{2}} e_{m} \delta_{m}
$$

Baryon content Ω_{b}
Ω_{b} affects the height of the peaks.

$$
\ddot{S}+\frac{\dot{R}}{1+R} \dot{S}+k^{2} C_{S}^{2} S=\left(-\frac{k^{2}}{3} \psi-\frac{k^{2}}{3} \frac{\phi}{1+R}\right)
$$

$R=\frac{3}{4} \frac{\Omega_{b}}{\Omega_{\gamma}}=\frac{a^{-3}}{a^{-4}} R_{0}=R_{0} a \longrightarrow$ Amplitude, appears in the driving force

Behaviour of the power spectrum
The matter power spectrum is the expectation value of the dark matter density perturbations:

$$
\left.P(k)=\left.\langle | \delta k\right|^{2}\right\rangle
$$

It is an important quantity that implicitely affects the CMB. The PS can tell us what is happening with the perturbations and how can they affect the CMB. If we take the potential, we

Beware
It is not the same of the P_{ψ} that we had before. P ψ is the power inflation from inflation. can decompose it into:

$$
\Phi(k, a)=\Phi_{\rho}(k) \times T(k) \times \delta(a) \rightarrow \text { Matter density contrast }
$$

Initial value from inflation

$$
\left\langle\Phi_{P}^{2}\right\rangle \sim k^{3} k^{n_{B}-1}
$$

$$
T(k)=\frac{\Phi\left(k, a_{\text {eater }}\right)}{\Phi_{\text {large }}\left(k, a_{\text {auk }}\right)}
$$

Difference in the potentials between any scale and large scale

With these definitions, we can express $P(k)$ as:

$$
P(k)=\left\langle\delta_{k}^{2}\right\rangle=k^{4}\left\langle\Phi_{\rho}^{2}\right\rangle T(k)^{2} \delta(a)^{2} \sim k^{4} k^{-3} k^{n s-1} T(k)^{2} \sim k^{n_{s}} T(k)^{2}
$$

And Using the Poisson equation:

$$
\begin{aligned}
& K>K_{\text {eq }} \longrightarrow \delta \sim \text { canst } \rightarrow \Phi \sim \frac{1}{k^{2}} \rightarrow T \sim 1 / k^{2} \rightarrow P(k) \sim K^{-3} \\
& K<K_{\text {eq }} \longrightarrow \Phi \sim \text { cons } \rightarrow \delta \sim k^{2} \rightarrow T \sim 1 \rightarrow P(k) \sim K
\end{aligned}
$$

NOTE

$$
k_{\text {eq }}=0.073 \Omega_{m o l} h\left(h / \mathrm{Mmc}_{2}\right)
$$

Scale that corresponds to the equality between matter and radiation

Modes beyond Keg (right hand side of the graph) enter the horizon during radiation domination. The transfer function behaves as:

$$
T(k)= \begin{cases}1 / k^{2} & k \gg k_{e q} \\ 1 & k \ll k_{\text {eq }}\end{cases}
$$

And the power spectrum goes as:

$$
P(k)= \begin{cases}1 / k^{3} & k \gg k_{e q} \\ k & k \ll k_{e q}\end{cases}
$$

Calculating the Fourier transform of P(k), one obtains the two-point correlation function $(\xi(r))$ (\sim prob. of galaxies at r)

$$
\begin{aligned}
& \xi(r)=\frac{1}{2 \pi^{2}} \int_{0}^{\infty} P(k) j_{0}(k r) k^{2} d k \\
& \xi(r)=r^{-n-3} \quad n=(1,-3)
\end{aligned}
$$

Discussion of Planck papers
The main Planck papers on the matter are 1807.06205, 1807.0629, 1807.06211

- Planck 2018 results. I. Overview, and the cosmological legacy of Planck
- Planck 2018 results VI. Cosmological parameters
- Planck 2018 results. X. Constrains on inflation

They discuss the main characteristics and frequencies:

The position of the peaks

And the matter power spectrum in a six parameter $\Lambda C D M$ model

8.6. Boltzmann codes

Some existent codes
There are some codes to calculate the CMB anisotropies and power spectrum.

- CAMB: Code for Anisotropies in the Microwave background
+ Code in 890, fast, recently updated, forum support
- code in f90, not very modular
- CLASS: Cosmic Linear Anisotropy Solving System
+ Code in CIt, recently updated, very modular (to introduce new models)
- Documentation a bit confusing sometime

CLASS
The variables and the equations
Once the cosmological parameters are introduced, the code solves the Friedmann equations:

$$
\begin{aligned}
& \left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi}{3} 6 a^{2} \bar{e}-k \\
& \frac{d}{d z}\left(\frac{\dot{a}}{a}\right)=-\frac{4 \pi}{3} 6 a^{2}(\bar{e}+3 \bar{P})
\end{aligned}
$$

And the perturbation equations for the metric (can choose between synchronous and conformal gouges):
i) Conformal Newtonian Gauge: $d_{\sigma}^{2}=a^{2}(z)\left\{-(1+2 \psi) d z^{2}+(1-2 \phi) d x^{i} d x_{i}\right\}$
ii) Synchronous gauge: $d s^{2}=a^{2}(z)\left\{-d z^{2}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right\}$

The equations for each gauge are given by:

$$
\begin{aligned}
k^{2} \phi+3 \frac{\dot{a}}{a}\left(\dot{\phi}+\frac{\dot{a}}{a} \psi\right) & =4 \pi G a^{2} \delta T^{0}{ }_{0}(\mathrm{Con}), \\
k^{2}\left(\dot{\phi}+\frac{\dot{a}}{a} \psi\right) & =4 \pi G a^{2}(\bar{\rho}+\bar{P}) \theta(\mathrm{Con}), \\
\ddot{\phi}+\frac{\dot{a}}{a}(\dot{\psi}+2 \dot{\phi})+\left(2 \frac{\ddot{a}}{a}-\frac{\dot{a}^{2}}{a^{2}}\right) \psi+\frac{k^{2}}{3}(\phi-\psi) & =\frac{4 \pi}{3} G a^{2} \delta T^{i}{ }_{i}(\mathrm{Con}), \\
k^{2}(\phi-\psi) & =12 \pi G a^{2}(\bar{\rho}+\bar{P}) \sigma(\mathrm{Con}), \\
k^{2} \eta-\frac{1}{2} \frac{\dot{a}}{a} \dot{h} & =4 \pi G a^{2} \delta T^{0}{ }_{0}(\mathrm{Syn}), \\
k^{2} \dot{\eta} & =4 \pi G a^{2}(\bar{\rho}+\bar{P}) \theta(\mathrm{Syn}), \\
\ddot{h}+2 \frac{\dot{a}}{a} \dot{h}-2 k^{2} \eta & =-8 \pi G a^{2} \delta T_{i}^{i}(\mathrm{Syn}), \\
\ddot{h}+6 \ddot{\eta}+2 \frac{\dot{a}}{a}(\dot{h}+6 \dot{\eta})-2 k^{2} \eta & =-24 \pi G a^{2}(\bar{\rho}+\bar{P}) \sigma(\mathrm{Syn}) .
\end{aligned}
$$

Basic code flowchart

1. User inputs main cosmological parameters $\Omega_{m}, \Omega_{b}, n_{s}, H_{0}, \ldots$
2. Calculate background evolution $H(z)$ and $a(t)$
3. The code solves perturbation equations of Boltzmann hierarchy and multipoles $\Delta_{e}(k)$ for a grid of values of k, usually in $k \in[0.0001,10] \mathrm{h} / \mathrm{\mu pc}$
4. Calculate matter power spectrum $P(k)$ and C_{l}. Also, include other secondary effects.
5. Output results or feed MCMC code to estimate best-jeed paranoters.

After executing the code, the result is given in $t \times t$ files with the $C_{l s}$.

$$
\begin{aligned}
& T(\vec{x}, \hat{p}, \eta)=T(\eta)[1+\Theta(\vec{x}, \hat{p}, \eta)] \\
& \Theta(\vec{x}, \vec{p}, \hat{\eta})=\sum_{l=1}^{\infty} \sum_{m=-l}^{l} a_{l m}(\vec{x}, \eta) Y_{l m}(\hat{p}) \\
& \left\langle a_{l m}\right\rangle=0 \\
& \left\langle a_{l m} a_{l^{\prime} m^{\prime}}^{\prime}\right\rangle=\delta_{l l^{\prime}} \delta_{m m^{\prime}} C_{l}
\end{aligned}
$$

It also returns the matter power spectrum, P_{k}, from the which we can obtain the two point correlation function (denotes probability of finding a galaxy at position r) as:

$$
\xi=\frac{1}{(2 \pi)^{3}} \int P(k) \frac{\sin (k r)}{k r} 4 \pi k^{2} d k
$$

