VI. Gauge Invariant Perturbations
6.1. Theory of Gauge Invariant perturbations
"Inflation practically is quantum mechanics on Curved space time".
Inflation perturbations affect metric, which is coupled to matter.
Thus, if the quantum fluctuations (ϕ) had an unique signature, this could be detected in g_{μ} and \mathscr{L} (it would be imprinted on them, e.g. on primordial gravitational waves).
Reparametrization invariant perturbation theory
Background
We can write the Robertson- Walker metric as:

$$
\begin{aligned}
& d s^{2}=a^{2}(\eta)\left[-d \eta^{2}+\gamma_{i j} d x^{i} d x^{j}\right] \\
& \eta=\int d t / a(t) \quad \text { conformal time }
\end{aligned}
$$

And using the scalar field $\phi=\phi(\eta)$ (which cannot depend on space because of homogeneity and isotropy) we can derive the Friedmann and Klein-Gordon equations

$$
\begin{array}{ll}
\mu^{2}=\frac{k^{2}}{2}\left(\frac{1}{2} \phi^{\prime 2}+a^{2} V(\phi)\right) & \phi^{\prime \prime}+2 H \phi^{\prime}+a^{2} V^{\prime}(\phi)=0 . \\
H^{\prime}-H^{2}=-\frac{h^{2}}{2} \phi^{\prime 2} & \mu=a H \quad \phi^{\prime}=a \dot{\phi}
\end{array}
$$

NOTATION
de : conformal Hubble parameter

Perturbations and gauge potentials.
If the metric has any perturbations, it is important to be careful with the decomposition (since it is a tensor). Perturbations can be "broken" into Scalar - Vector - Tensor (SUT), and use this decomposition.
For a vector, we can decompose it as:

$$
\omega_{i}=w_{i}^{\prime \prime}+w_{i}^{\perp}
$$

\longrightarrow transverse

This components satisfy: $\left\{\begin{array}{l}\vec{\nabla} \times \vec{\omega}^{\prime \prime}=0 \Rightarrow \omega_{i}^{\prime \prime}=\nabla_{i} A \quad A \equiv \text { potential } \\ \vec{\nabla} \cdot \vec{\omega}^{\perp}=0\end{array}\right.$
Extrapolating to a tensor $S_{i j}$:
Orthogonal, non interacting

$$
S_{i j}=S_{i j}^{\prime \prime}+S_{i j}^{\perp}+S_{i j}^{\top} \xrightarrow{\longrightarrow \text { (traceless) }} \boldsymbol{\longrightarrow}\left\{\begin{aligned}
S_{i j}{ }^{\perp} & =\nabla_{i} S_{j}^{\perp}+\nabla_{j} \delta_{i}^{\perp} \\
\partial^{i} \delta_{i j}{ }^{\top} & =0 \\
\delta_{i j}^{\prime \prime} & =\left(\nabla_{i} \nabla_{j}-\frac{1}{3} g_{i j} \nabla^{2}\right) B
\end{aligned}\right.
$$

During inflation, the quantum fluctuations of the scalar field will include metric perturbations which will backreact on the scalar field. Letus consider, in linear perturbation theory, the most general line element with both scalar and tensor metric perturbations, together with the scalar field perturbations (from FWR metric):

$$
\begin{aligned}
& \text { (A, B, R, E gouge } \\
& d \delta^{2}=a^{2}(\eta)\left[-(1+2 A) d \eta^{2}+2 B_{1 i} d x^{i} d \eta+\left\{(1+2 R) \gamma_{i j}+2 E_{1 i j}+2 h_{i j}\right\} d x^{i} d x^{j}\right] \\
& \phi=\phi(\eta)+\delta \phi\left(\eta, x^{i}\right) \quad
\end{aligned}
$$

The indices $\{i, j\}$ label the three-dimensional spatial coordinates with metric $\gamma_{i j}$, and the $1 i$ denotes covariant derivative with respect to that metric. The gauge invariant tensor perturbation $h_{i j}$ corresponds to a transverse traceless grav. wave, $\nabla^{i} h_{u j}=h_{i}^{i}=0$. The four scalar perturbations (A, B, R, E) are gave dependent functions of $\left(\eta, x^{i}\right)$.
The number of degrees of freedom of g_{μ} are:

$$
4 \times 4=16 \xrightarrow{\text { symmetry }} 10 \longrightarrow 2 \text { (propagating d.o.f.) })+4\binom{\text { gauge }}{\text { freedom }}+4\binom{\text { coordinate }}{\text { freedom }}
$$

Under a general (gauge) transformation:

$$
\begin{aligned}
& \tilde{\eta}=\eta+\xi^{0}\left(\eta, x^{i}\right) \\
& \tilde{x}=x^{i}+\gamma^{i j} \xi_{1 j}\left(\eta, x^{i}\right)
\end{aligned}
$$

with arbitrary functions $\left(\xi^{0}, \xi\right)$ the scalar and tensor perturbations transform, in linear order, as:

$$
\begin{array}{cc}
\tilde{A}=A-\xi^{01}-H \xi^{0} & \tilde{B}=B+\xi^{0}-\xi^{1} \\
\tilde{R}=R-\alpha \xi^{0} & \tilde{E}=E-\xi \\
\tilde{h}_{i j}=h_{i j} \quad \text { (invariant!) } &
\end{array}
$$

where a prime denotes derivative with respect to conformal time.
Since we look for measurable quantities, we need to construct objects that do not depend on the gauge. It is possible to construct two gauge-invariant gravitational potentials (Barden potentials).

$$
\begin{aligned}
& \Phi=A+\left(B-E^{\prime}\right)^{\prime}+\alpha l\left(B-E^{\prime}\right) \\
& \psi=R+\alpha l\left(B-E^{\prime}\right)
\end{aligned}
$$

Two point correlation functions and perturbations.
The end goal of perturbation analysis is to calculate the two point function for scalar potentials $\Phi \sim R_{k}$, where R_{k} is the curvature perturbation (which will be discused later).

$$
\begin{aligned}
& \langle O| R_{k}^{*} R_{k^{\prime}}|0\rangle=\frac{\left|u_{k}\right|^{2}}{z^{2}} \delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right) \equiv \frac{P_{R}(k)}{4 \pi k^{3}}(2 \pi)^{3} \delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right) \\
& P_{R}(k)=\frac{k^{3}}{2 \pi^{2}} \frac{\left|u_{k}\right|^{2}}{z^{2}}=\frac{k^{2}}{2 \varepsilon}\left(\frac{H}{2 \pi}\right)^{2}\left(\frac{k}{a H}\right)^{3-2 \nu} \equiv A_{s}^{2}\left(\frac{k}{a H}\right)^{n_{s}-1} \longrightarrow \text { Prinurd. }
\end{aligned}
$$

\rightarrow Primordial power spectrum
$\underset{\substack{\text { inflation perturbation } \\ \text { we need a solution }}}{ } \quad\left\{\begin{array}{l}u \equiv a \delta \phi+z \Phi \\ z \equiv a \frac{\phi}{d l}\end{array}\right.$
And similarly for tensor perturbations:

$$
\begin{aligned}
& \sum_{\lambda}\langle 0| h_{k \lambda}^{*} h_{k^{\prime} \lambda}|0\rangle=\frac{8 k^{2}}{a^{2}}\left|v_{k}\right|^{2} \delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right) \equiv \frac{\Phi_{g}(k)}{4 \pi k^{3}}(2 \pi)^{3} \delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right) \\
& P_{g}(k)=8 k^{2}\left(\frac{H}{2 \pi}\right)^{2}\left(\frac{k}{a H}\right)^{3-2 \mu} \equiv A_{T}^{2}\left(\frac{k}{a H}\right)^{n_{T}}
\end{aligned}
$$

Barden potentials and Einstein equations.
Burden potentials are related through the perturbed Einstein equations:

$$
\Phi=\Psi \quad \leftarrow N_{0} \text { isotropic stress }
$$

$\frac{K^{2}-3 k}{a^{2}} \Psi=\frac{k^{2}}{2}$ \&e $\quad K \equiv$ curvature of the Universe
where \&e is the gauge-invariant density perturbation. The latter equation is the expression of the Poisson equation for the gravitational potential, written in relativistic form.
During inflation, the energy density is given in terms of a scalar field, and thus the gauge -invariant equations for the perturbations on comoving hypersuffaces (constant energy density hypersuffaces) are (rest of Einstein + Klein Gordon):

$$
\begin{aligned}
& \Phi^{\prime \prime}+3 \mu \Phi^{\prime}+\left(\mu^{\prime}+2 \mu^{2}\right) \Phi=\frac{k^{2}}{2}\left[\phi^{\prime} \delta \phi^{\prime}-a^{2} V^{\prime}(\phi) \delta \phi\right] \\
&-\nabla^{2} \Phi+3 \alpha \Phi^{\prime}+\left(\mu^{\prime}+2 l^{2}\right) \Phi=-\frac{k^{2}}{2}\left[\phi^{\prime} \delta \phi^{\prime}+a^{2} V^{\prime}(\phi) \delta \phi\right] \\
& \Phi^{\prime}+2 \Phi=\frac{k^{2}}{2} \phi^{\prime} \delta \phi \\
& \delta \phi^{\prime \prime}+2 \alpha \delta \phi^{\prime}-\nabla^{2} \delta \phi=4 \phi^{\prime} \Phi^{\prime}-2 a^{2} V^{\prime}(\phi) \Phi-a^{2} V^{\prime \prime}(\phi) \delta \phi^{K} \text { Scalar field } \\
& \text { pert. equation }
\end{aligned}
$$

This system of equations seem difficult to solve at first sight. However, there is a gauge invariant combination of variables that allows one to find exact solutions.

Let us define:
Warning

$$
\begin{aligned}
& u \equiv a \delta \phi+z \Phi \\
& z \equiv a \frac{\phi^{\prime}}{\mu}
\end{aligned}
$$

Under this redefinition, the above equations simplify enormously to just three independent equations:

$$
\begin{aligned}
& u^{\prime \prime}-\nabla^{2} u-\frac{z^{\prime \prime}}{z} u=0 \\
& \nabla^{2} \Phi=\frac{k^{2}}{2} \frac{\mathscr{l}}{a^{2}}\left(z u^{\prime}-z^{\prime} u\right) \\
& \left(\frac{a^{2} \Phi}{d}\right)^{\prime}=\frac{k^{2}}{2} z u
\end{aligned}
$$

This equations can be solved analytically, egg. in Matter domination, or numerically in general for the classical system. From the first equation we can find a Solution $u(z)$, which substituted into the last one can be integrated to give $\Phi(z)$, and together with $u(z)$ allow us to obtain $\delta \phi(z)$

$$
u^{\prime \prime}-\nabla^{2} u-\frac{z^{\prime \prime}}{z} u=0 \longrightarrow u(z) \longrightarrow\left(\frac{a^{2} \Phi}{2 l}\right)^{\prime}=\frac{k^{2}}{2} z u \longrightarrow \Phi(z) \longrightarrow \delta \phi(z)
$$

Quantum mechanics in curved space-time
Until now, we have treated the perturbations as classical, but we should in fact consider the perturbations Φ and $\delta \phi$ as quantum fields. Note that the perturbed action for the scalar mode u can be written as:

$$
\delta S=\frac{1}{2} \int d^{3} x d \eta\left[\left(u^{\prime}\right)^{2}-(\nabla u)^{2}+\frac{z^{\prime \prime}}{z} u^{2}\right]
$$

Kinetic term $?$ potential with time dependent mass term
In order to quantize the field u in the curved background defined by the metric we wrote before, we can use the operator:

$$
\hat{u}(\eta, x)=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3 / 2}}\left[u_{k}(\eta) \hat{a}_{k} e^{i \vec{k} \cdot \vec{x}}+u_{k}^{*}(\eta) \hat{a}_{k}^{+} e^{-i \vec{k} \cdot \vec{x}}\right]
$$

anninilution operator \uparrow creation operator
Where the creation and annihilation operators satisfy the commutation relation of bosonic fields, and the scalar field's Frock space is defined through the vacuum condition:

$$
\left[\hat{a}_{\vec{k}}, \hat{a}_{\vec{k}^{\prime}}+\right]=\delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right) \quad \hat{a}_{k}|0\rangle=0
$$

The equations of motion for each mode $u_{k}(\eta)$ are decoupled in linear perturbation theory:

$$
u_{k}^{\prime \prime}+\left(k^{2}-\frac{z^{\prime \prime}}{z}\right) u_{k}=0
$$

Mode equation
The ratio $z^{\prime \prime} / z$ acts like a time-dependent potential for this Schrödinger-like equation. Introduction of the slow roll parameters
In order to find exact solutions to the mode equation, we will use the slow-roll parameters:

$$
\begin{aligned}
& \varepsilon=1-\frac{d^{\prime}}{d \ell^{2}}=\frac{k^{2}}{2} \frac{z^{2}}{a^{2}} \\
& \delta=1-\frac{\phi^{\prime \prime}}{d \phi^{\prime}}=1+\varepsilon-\frac{z^{\prime}}{d z} \\
& \xi=-\left(2-\varepsilon-2 \delta+\delta^{2}-\frac{\phi^{\prime \prime}}{\partial \phi^{2} \phi^{\prime}}\right)
\end{aligned}
$$

In terms of these parameters, the conformal time and the effective potential for the u_{k} mode can be writer as:

$$
\begin{aligned}
& \eta=\frac{-1}{\alpha l}+\int \frac{\varepsilon d a}{a d l} \\
& \frac{z^{\prime \prime}}{z}=\alpha l^{2}\left[(1+\varepsilon-8)(2-8)+\alpha l^{-1}\left(\varepsilon^{\prime}-\delta^{\prime}\right)\right]
\end{aligned}
$$

Note that the slow-roll parameters evolve slowly. ε and δ can be taken as constants to order ε^{2}.

$$
\begin{aligned}
& \varepsilon^{\prime}=2 \mu\left(\varepsilon^{2}-\varepsilon \delta\right)=\theta\left(\varepsilon^{2}\right) \\
& \delta^{\prime}=\mu(\varepsilon \delta-\xi)=\theta\left(\varepsilon^{2}\right)
\end{aligned}
$$

In that case, for constant slow -roll parameters, we can write:

$$
\begin{aligned}
& \eta=\frac{-1}{d \ell} \frac{1}{1-\varepsilon} \\
& \frac{z^{\prime \prime}}{z}=\frac{1}{\eta^{2}}\left(\alpha^{2}-\frac{1}{4}\right), \quad \text { where } \quad \omega=\frac{1+\varepsilon-8}{1-\varepsilon}+\frac{1}{2}
\end{aligned}
$$

Mode equation solutions (scalar perturbations)
Now we are going to search for approximate solutions of the mode equation, where the effective potential is of order $z^{\prime \prime} / z \simeq 2 d l^{2}$ in the slow approximation. In quasi - de sitter, there is a charasteristic scale given by the (event) horizon size or Hubble scale during inflation H^{-1}.

- There will be modes u_{k} with physical wavelengths much smaller than this
scale, $K / a>H$, that are well within the de Sitter horizon and therefore do not feel the curvature of space-time $\lambda \ll 1 / H \rightarrow k \gg a H$
- There will be modes with physical wavelengths much greater than the Hubble Scale, $k / a \ll H$.

$$
\lambda \Delta>1 / H \rightarrow k \ll a H
$$

In these two asymptotic regimes, the solutions can be written as:

$$
\begin{cases}u_{k}=\frac{1}{\sqrt{2 k}} e^{-i k_{2}} & k \gg a H \\ u_{n}=c_{1} z & k \ll a H\end{cases}
$$

Proof for $k \gg a H$:

Proof for $k \ll a H$:

$$
\begin{aligned}
& u_{k}^{\prime \prime}+\left(k^{2}-\frac{z^{\prime \prime}}{z}\right) u_{k}=0 \xrightarrow{k \ll a H} u_{k}^{\prime \prime}-\frac{z^{\prime \prime}}{z} u_{k}=0 \\
& \frac{z^{\prime \prime}}{z}=\frac{1}{\eta^{2}}\left(\nu-\frac{1}{4}\right) \quad \rightarrow \quad z=c_{1} \eta^{\frac{1}{2}-\omega}+c_{2} \eta^{\frac{1}{2}+\infty} \quad \text { (oDE for mass term) } \\
& u_{k}=\tilde{c}_{1} \eta^{\frac{1}{2}-\omega}+\tilde{c}_{2} \eta^{\frac{1}{2}+\nu} \longrightarrow u_{k}=\alpha_{1} z
\end{aligned}
$$

In the limit $K \gg a H$ the modes behave like ordinary quantum modes in Minkowski space-time, approximately normalized, while the opposite limit, u / z becomes constant on superhorizon scales. For approximately constant slow-roll parameters one can find solutions to the mode equation that interpolate between the two asymptotic solutions:

$$
u_{k}(\eta)=\frac{\sqrt{\pi}}{2} e^{i(\nu+1 / 2)^{\pi / 2}}(-\eta)^{1 / 2} H_{\nu}^{(1)}(-k \eta)
$$

General solution
where $H_{\Delta}{ }^{(1)}(z)$ is the Hankel function of the first $K_{i n}$, and α is given by $\nu=\frac{1+\varepsilon-\delta}{1-\varepsilon}+\frac{1}{2}$ (in terms of the slow-roll parameters). In the limit $k_{\eta} \rightarrow 0$, the solution becomes:

$$
\begin{aligned}
& \left|u_{k}\right|=\frac{2^{\nu-3 / 2}}{\sqrt{2 k}} \frac{\Gamma(\nu)}{\Gamma(3 / 2)}(-k \eta)^{\frac{1}{2}-\omega} \equiv \frac{C(\nu)}{\sqrt{2 k}}\left(\frac{k}{a H}\right)^{\frac{1}{2}-\omega} \\
& C(\nu)=2^{\nu-\frac{3}{2}} \frac{\Gamma(\nu)}{\Gamma(8 / 2)}(1-\varepsilon)^{\nu-1 / 2} \simeq 1 \text { for } \varepsilon, \delta \ll 1
\end{aligned}
$$

We can now compute Φ and $\delta \phi$ from the super-Hubble-scale mode solution (kazaK). Substituting into $\left(\frac{a^{2} \Phi}{2 l}\right)^{\prime}=\frac{k^{2}}{2} z u$, we find:

$$
\begin{aligned}
& \Phi=c_{1}\left(1-\frac{\alpha}{a^{2}} \int a^{2} d \eta\right)+c_{2} \frac{\alpha}{a^{2}} \\
& \delta \phi=\frac{c_{1}}{a^{2}} \int a^{2} d \eta-\frac{c_{2}}{a^{2}}
\end{aligned}
$$

The term proportional to C_{1} corresponds to the growing solution, while that proportional to C_{2} correspond to the decaying solution, which can soon be ignored. These quantities are gouge invariant but evolve with time outside the horizon, during inflation, and before entering again the horizon during the radiation or matter eras. We would like to write an expression for a gauge invariant quantity that is also constant for super horizon modes. Fortunatelly, in the case of adiabatic perturbations, there is such a quantity:

$$
\left.\begin{array}{l}
\left(\frac{a^{2} \Phi}{\partial l}\right)^{\prime}=\frac{k^{2}}{2} z u \\
\varepsilon=1-\frac{\mu^{\prime}}{d l^{2}}=\frac{k^{2}}{2} \frac{z^{2}}{a^{2}}
\end{array}\right\} \quad \zeta \equiv \Phi+\frac{1}{\varepsilon \alpha}\left(\Phi^{\prime}+\alpha \Phi\right)=\frac{u}{z}
$$

We can find a solution for Φ in radiation/matter domination:

$$
\begin{aligned}
\Phi & =C_{1}\left(1-\frac{\partial l}{a^{2}} \int a^{2} d \eta\right) \longrightarrow \Phi_{k}=\left(1-\frac{\partial \varphi}{a^{2}} \int a^{2} d \eta\right) R_{k} \\
H^{2} & =H_{0}^{2} a^{-3(1+\omega)} \\
\partial l^{2} / a^{2} & =H_{0}^{2} a^{-3(1+\omega)} \\
& a \sim \eta^{2 /(1+3 \omega)}
\end{aligned} \quad \longrightarrow \Phi_{k}=\frac{3+3 \omega}{5+3 \omega} \quad R_{k}=\left\{\begin{array}{l}
\frac{2}{3} R_{k} \text { radiation era } \\
\frac{3}{5} R_{k} \text { matter era }
\end{array}\right.
$$

One can calculate the initial curvature perturbation ζ (which is more or less constant in super horizon modes) and relate it to Q_{k}. We want to calculate the two point function for S, which is related to de two-point function of Φ, and so to the two-point function of R_{k}. This will be discussed in the Primordial Power spectrum section.

Tensor perturbations
Let us now compute the tensor or gravitational wave metric perturbations generated during inflation. The perturbed action for the tensor mode can be written as:

$$
\delta S=\frac{1}{2} \int d^{3} x d \eta \frac{a^{2}}{2 k^{2}}\left[\left(h_{i j}^{\prime}\right)^{2}-\left(\nabla h_{i j}\right)^{2}\right] \text { Kinetic term }
$$

with the tensor field $h_{a j}$ considered as a quantum field:

$$
\hat{h}_{v i}(\eta, \vec{x})=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3 / 2}} \sum_{d=1,2}\left[h_{k}(\eta) e_{i j}(\vec{k}, d) \hat{a}_{\vec{k}, \lambda} e^{i \vec{k} \cdot \vec{x}}+h . c .\right]
$$

where $e_{i j}(\vec{k}, d)$ are two polarization tensors, satisfying symmetric, transverse and traceless conditions.

$$
\begin{array}{ll}
e_{i j}=e_{j i} & k^{i} e_{i j}=0
\end{array} e_{i i}=0 .
$$

While the creation and annihilation operators satisfy the usual commutation relation of bosonic fields. We can now redefine our gauge invariant tensor amplitude as:

$$
V_{k}(\eta)=\frac{a}{\sqrt{2} k} h_{k}(\eta)
$$

which satisfies the following evolution equation, decoupled for each mode $v_{k}(\eta)$ in linear perturbation theory:

$$
v_{k}^{\prime \prime}+\left(k^{2}-\frac{a^{\prime \prime}}{a}\right) v_{k}=0
$$

The ratio $a^{\prime \prime} / a$ acts like a time-dependent potential for this Schro"dinger like equation analogous to the term $z^{\prime \prime} / z$ for the scalar meter perturbation. For constant slow-roll parameters, the potential becomes:

$$
\begin{aligned}
& \frac{a^{\prime \prime}}{a}=2 \partial \partial^{2}\left(1-\frac{\varepsilon^{2}}{2}\right)=\frac{1}{\eta^{2}}\left(\mu^{2}-\frac{1}{4}\right) \\
& \mu=\frac{1}{1-\varepsilon}+\frac{1}{2}
\end{aligned}
$$

We can solve the equation for v_{k} in the two asymptotic regimes:

$$
\begin{array}{ll}
v_{k}=\frac{1}{\sqrt{2 k}} e^{-i k \eta} & k \gg a H \\
v_{k}=c a & k \ll a H
\end{array}
$$

In the limit $k \gg a H$ the modes behave like ordinary quantum modes in Minkouski spacetime, approximately normalized, while in the opposite limit the metric perturbation h_{k} becomes constant on superhorizon scales.

Primordial power spectrum
Not only we do expect to measure the amplitude of the metric perturbations generated during inflation and responsible for the anisotropies in the MMB and density fluctuations
in large scale structure, but we should also be able to measure its power spectrum, or two-point correlation function in Fourier space. Let us consider first the scalar metric perturbations R_{K}, which enter the horizon at $a=K / H$. Its correlator is given by:
\rightarrow Different modes are decoupled

$$
\begin{aligned}
& \langle 0| R_{k}^{*} R_{k^{\prime}}|0\rangle \equiv \frac{\left|u_{k}\right|^{2}}{2^{2}} \delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right) \equiv \frac{\Phi_{Q}(k)}{4 \pi k^{3}}(2 \pi)^{3} \delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right) \\
& \Phi_{Q}(k)=\frac{k^{3}}{2 \pi^{2}} \frac{\left|u_{u}\right|^{2}}{z^{2}}=\frac{k^{2}}{2 \varepsilon}\left(\frac{H}{2 \pi}\right)^{2}\left(\frac{k}{a H}\right)^{3-2 \nu} \equiv A_{S}^{2}\left(\frac{k}{a H}\right)^{n_{B}-1}
\end{aligned}
$$

where P_{R} is the Primordial power spectrum and we have used that $R_{k} \approx \zeta_{k}=\frac{u_{z}}{z}$ NOTE

1. If $n_{S}=1$, we have equal power on all scales (flat spectrum)
2. n_{s} is determined from the inflationary model (since it is related to the slow roll parameters).

$$
n_{s}-1 \equiv \frac{d \ln \Phi_{R}(k)}{d \ln k}=3-2 \nu=2\left(\frac{\delta-2 \varepsilon}{1-\varepsilon}\right) \simeq 2 q_{v}-6 \varepsilon_{v} \quad \text { (small) }
$$

3. As is the amplitude of inflation perturbations

The primordial power spectrum might have a "running" term (evolution of the slow roll parameters):

$$
\frac{d n s}{d \ln k}=-\frac{d n s}{d \ln \eta}=-\eta \operatorname{ll}\left(2 \xi+8 \varepsilon^{2}-10 \varepsilon \delta\right) \simeq 2 \xi_{v}+24 \varepsilon_{v}^{2}-16 q_{v} \varepsilon_{v}
$$

Similarly, for tensor perturbations, we can calculate the two-point correlation function and find the power spectrum.

$$
\begin{aligned}
& \sum_{\lambda}\left\langle 01 h_{k, \lambda}^{*} h_{k} \cdot \lambda \mid 0\right\rangle=\frac{8 k^{2}}{a^{2}}\left|v_{k}\right|^{2} \delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right) \equiv \frac{P_{g}(k)}{4 \pi k^{3}}(2 \pi)^{3} \delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right) \\
& \Phi_{g}(k)=8 k^{2}\left(\frac{H}{2 \pi}\right)^{2}\left(\frac{k}{a H}\right)^{3-2 \mu} \equiv A_{T}^{2}\left(\frac{k}{a H}\right)^{n_{T}} \\
& n_{T} \equiv \frac{\operatorname{dn} P_{g}(k)}{\operatorname{den} k}=3-2 \mu=\frac{-2 \varepsilon}{1-\varepsilon} \simeq-2 \varepsilon_{v}<0
\end{aligned}
$$

There will also be a running for the primordial power spectrum for tensors.

$$
\frac{d n_{T}}{d \ln k}=-\frac{d n_{T}}{d \ln \eta}=-\eta \mu\left(4 \varepsilon^{2}-4 \varepsilon 8\right) \simeq 8 \varepsilon_{v}^{2}-4 \eta_{v} \varepsilon_{v}
$$

Constrains on the slow roll parameters
As it was discussed in the previous lecture, the CMB constrains the values of the slow roll parameters. We can define the amplitude of the scalar and tensor perturbations and the ratio between them (r).

In single field slow-rall models, $n_{t} \sim-r / 8$, where $r=P_{t} / P_{s}$

$$
\ln P_{s}(k)=\ln P_{0}(k)+\frac{1}{2} \frac{d \ln n_{s}}{d \ln k} \ln \left(k / k_{*}\right)^{2}+\frac{1}{6} \frac{d^{2} \ln n_{s}}{d \ln k^{2}} \ln \left(k / k_{*}\right)^{3}+\ldots
$$ $\ln P_{t}(k)=\ln \left(r A_{s}\right)+n_{t} \ln \left(k / k_{t}\right)+\ldots$

The Planck 2018 constrains on scalar parameters and the running are:

Cosmological model $\Lambda \mathrm{CDM}+r$	Parameter	Planck TT,TE,EE +lowEB+lensing	Planck TT,TE,EE +lowE+lensing+BK14	Planck TT,TE,EE +lowE+lensing+BK14+BAO
	r	<0.11	<0.070	<0.070
	$r_{0.002}$	<0.10	<0.064	<0.065
	n_{s}	0.9659 ± 0.0041	0.9653 ± 0.0041	0.9670 ± 0.0037
	r	<0.16	<0.079	<0.076
$+d n_{\mathrm{s}} / d \ln k$	$r_{0.002}$	<0.16	<0.077	<0.072
	n_{s}	0.9647 ± 0.0044	0.9640 ± 0.0043	0.9658 ± 0.0038
	$d n_{\mathrm{s}} / d \ln k$	-0.0085 ± 0.0073	-0.0071 ± 0.0068	-0.0065 ± 0.0066

Parameter	TT,TE,EE+lowE+lensing
$\Omega_{\mathrm{b}} h^{2}$	0.02237 ± 0.00015
$\Omega_{\mathrm{c}} h^{2}$	0.1200 ± 0.0012
$100 \theta_{\mathrm{MC}}$	1.04092 ± 0.00031
τ	0.0544 ± 0.0073
$\ln \left(10^{10} A_{\mathrm{s}}\right)$	3.044 ± 0.014
n_{s}	0.9649 ± 0.0042
H_{0}	67.36 ± 0.54
Ω_{m}	0.3153 ± 0.0073
σ_{8}	0.8111 ± 0.0060

6.2. Transplanckias physics and the power spectrum

There is a very brief window for inflation to act (after the Planck epoch), so it is easy to get above Planck scales ($10^{19} \mathrm{GeV}$). At these seales, quantum gravity becomes important (and we do not have that theory).

Since we do not have a theory for quantum gravity, we can consider the operators that are not part of the standard model (because they break Lorentz invariance,...) but could be important in high energy physics (Planck scales). We distinguish between relevant ($\operatorname{dim}<d$, restore symmetry at high energies) and irrelevant operators (dim $>d$, do not restore symmetry). The procedure is to consider various operators (quad in φ) and add them to the inflation Lagrangian.

$$
\begin{aligned}
& \measuredangle D \equiv\left(h^{\mu \nu} \nabla_{\mu} \nabla_{\nu}-K n^{\mu} \nabla_{\mu}\right)^{1 / 2} \text { Momentum projection operator } \\
& \text { (Lorentz invariance violating) } \\
& \frac{1}{9} k^{2} \varphi^{2}, \frac{1}{3} k \varphi D \varphi,-h^{\mu \nu} \nabla_{\mu} \varphi \nabla_{\nu} \varphi \leftarrow \operatorname{Dimension} 4 \\
& \sim K_{\mu \nu} d x^{\mu} d x^{\nu}=-a^{2} H d \vec{x} \cdot d \bar{x}
\end{aligned}
$$

Once they are added to the Lagrangian, it is possible to find their effect on the Primordial power spectrum (and thus, finding predictions on inflation).

$$
\mathcal{L}_{N R}=\frac{d_{1}}{M} H^{3} \varphi^{2}+\frac{d_{2}}{a_{M}} H^{2} \varphi(-\vec{\nabla} \cdot \vec{\nabla})^{1 / 2} \varphi+\frac{d_{3}}{a^{2} M} H \vec{\nabla} \varphi \cdot \vec{\nabla} \varphi+\frac{d_{4}}{a^{3} M} \varphi(-\vec{\nabla} \cdot \vec{\nabla})^{3 / 2} \varphi
$$

obtain power spectrum

$$
\begin{aligned}
& \langle O(\eta)| \varphi(\eta, \vec{x}) \varphi(n, \vec{y})|O(n)\rangle=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} e^{i \vec{k}(\vec{x}-\vec{y})}\left[\frac{2 \pi^{2}}{k^{3}} P_{k}(\eta)\right] \\
& \uparrow \quad|O(\eta)\rangle=T e^{-i \int_{n_{0}}^{2} d n^{\prime} H_{I}\left(n^{\prime}\right)|0\rangle} \\
& H_{I}(\eta)=-\int d^{3} \vec{x} \sqrt{-g} \mathscr{L}_{N R}
\end{aligned}
$$

The corrections introduced in the power spectum are:

$$
\begin{aligned}
& K^{3} \varphi^{2} \rightarrow H^{3} \varphi^{2} \Rightarrow P_{k}(\eta)=\frac{H^{2}}{4 \pi^{2}}\left[1+\frac{4}{3} d_{1} \frac{H}{M}[\ln |2 k \eta|-2+\gamma]+\ldots\right]=\frac{H^{2}}{4 \pi^{2}} \frac{4^{2} \Gamma(\nu)}{2 \pi}|k \eta|^{3-2 \nu}+\ldots \\
& K^{2} \varphi D \varphi \rightarrow H^{2} \varphi(-\vec{\nabla} \cdot \vec{\nabla})^{1 / 2} \varphi \Rightarrow P_{k}(\eta)=\frac{H^{2}}{4 \pi^{2}}\left[1+d_{2} \frac{H}{M}\left[\pi+\frac{\cos \left(2 k \eta_{0}\right)}{k \eta_{0}}\right]+\ldots\right] \\
& K h^{\mu \nu} \nabla_{\mu} \varphi \nabla_{\nu} \varphi \rightarrow H \vec{\nabla}_{\varphi} \vec{\nabla}_{\varphi} \Rightarrow P_{k}(\eta)=\frac{H^{2}}{4 \pi^{2}}\left[1+d_{3} \frac{H}{M}\left[3+\cos \left(2 \frac{k}{k_{*}} \frac{\mu}{H}\right)\right]+\ldots\right] \\
& \varphi D^{3} \varphi \rightarrow \varphi(-\vec{\nabla} \cdot \vec{\nabla})^{3 / 2} \varphi \Rightarrow P_{k}(\eta)=\frac{H^{2}}{4 \pi^{2}}\left[1-d_{4} \frac{k}{k_{*}} \cos \left(2 \frac{k}{k_{*}} \frac{\mu}{H}\right)+\ldots\right]
\end{aligned}
$$

If we get to measwe any of this terms, it would mean that inflation starts a bit above the Planck scale.
6.3. Primordial black holes and inflation

Dark matter and primordial BH.
As it was discussed in the first lecture, roughly a 27% of the Universe is dark matter, which is collissionless and non relativistic. We only know that it interacts gravitationallyAll the evidences for its existence ore indirect (gravitational lensing, galactic notation curves, ...)
There are many "candidates" to be dark matter, like axions, wimps, neutralinos, etc, but nowadays primordial black holes are becoming suitable candidates. These are quantum fluctuations that are really strong, collapse and form a blackhole. They would behave like DM because they are collissionless, numerous and non relativistic. Primordial BH
This is an old idea (Garcia-Bellido, Linde and Wands 1996) that became hot recently after GWis discovery. PBH are formed after inflation when broad peaks in the primordial curvature power spectrum Ck) collapsed gravitationally during the radiation era and formed clusters of BH that merge and increase in mass after recombination until today. Masses range from 0.01 to $10^{5} M_{0}$ and could jumpstart structure formation.
PBHs could make up almost all DM with a nun-monochromatic distribution. Based on experimental constrains:

Peaks in the spectrum can be formed by inflection points in the potential $(P \sim 1 / \varepsilon, \varepsilon \rightarrow 0$ $\rightarrow P \gg 1$)

$\log P(k)^{1 / 2} \quad$ Power spectrum

$\log n(M) \quad$ Black Hole Mass Distribution

PBHs can have a range of masses (are not "mono-chromatic". They would fill the gap between stellar BH and Super massive black holes in the centre of galaxies

They have many potential signatures and side effects.

- Since they were created by curvature perturbations, PBH have no spin.
- Emissions of GW in binaries and hyperbolic encounters
- Microlensing of type Ia Supenoval : Possible explanation for superluminal Sn Ja Cor super - Chandrasekhar).
- Missing baryon problem: PBH might have eaten up the baryons
- Stochastic background of GW: uniform distribution of GW sounces cheater a background that could be visible by LiSA
- Anomalous motion of stars: compare PDM vs. PBH-DM (could be seen by GAiA)

Orbiting around "nothing"
Not orbiting

