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6. I
. Theory of Gauge Invariant perturbations

"

Inflation practically is quantum mechanics on Curved space time
"

.

Inflator perturbations affect metric, which is coupled to matter
.

Thus
, if the quantum fluctuations ( ol) had an unique signature , this

could be detected in gun and L ( it would be imprinted on

them
, e. g . on primordial gravitational waves ) .

Reparametrization invariant perturbation theory
Background
We can write the Robertson - Walker metric as :

ds2 = a'(q) [- dy 2 + Ji; dxidxi]

2 = f dtlact, conformal time
And using the scalar field of = 4cg) (which cannot depend on space because of homogeneity

and isotropy ) we can derive the Friedmann and Klein - Gordon equations

H' = (¥10" t a2V(Of 10
"
t 2 H ¢

'
+ as V

'

(¢) = O.

NOTATION

H : conformal HubbleH '
- H2 = - HI 0112 D= att ol

'

-_ ago
.

parameter

Perturbations and gauge potentials .

If the metric has any perturbations , it is important to be careful with the decomposition

(since it is a tensor) . Perturbations can be
"

broken " into Scalar - Vector - Tensor (SVT) ,

and use this decomposition .

For a vector, we can decompose it as :

Wi = wi" t wit
↳ transverse

↳ longitudinal

This components satisfy : {Tx W
"
= O ⇒ wi

' '
= 7- A A = potential

J . Tut = 0

Extrapolating to a tensor Sij : Orthogonal, non interacting

Sijt = Ti Sj' t Tj Sit

Sij = Seg
"
t Sijt t Sij T

↳ (traceless,

> § "
sit = o

Sii " = (Ti Tj - Iz go; 72) B



During inflation , the quantum fluctuations of the scalar field will include metric

perturbations which will backreact on the scalar field . Let us consider
,
in linear perturbation

theory , the most general line element with both scalar and tensor metric perturbations ,

together with the scalar field perturbations (from FWR metric) :
(A, B. R, E gauge

<

dependent functions)

D8 = a'(z) [- (It 2A) dry t 2B, i dxi dry t { (St 2K) ti; t 2Ee; t Zhij } dxidxi]
>

¢ = pay + 801lb , xi)
hij = hz de; t hi;

"
t hijt this?

The indices hi, j Y label the three - dimensional spatial coordinates with metric rig
,

and the ti denotes covariant derivative with respect to that metric .
The

gauge invariant tensor perturbation his- corresponds to a transverse traceless grav .

wave,
Ji hun; = hii = O .

The four scalar perturbations (A, B ,R , E) are gauge

dependent functions of Cn, xi) .
The number of degrees of freedom of gun are :

4x4 = 16 symmetry
> do s 2 (propagating d.of .) t 4 ( of:{fan ) t 4 ({III:hate)

Under a general (gauge) transformation :

§ =p t Go (q, xi)

I = Xi t 8" G,; ( z , xi)

with arbitrary functions (90 , E) the scalar and tensor perturbations transform,
in linear order

,
as :

A = A - E
"
- HE

° B = B t E
°
- E

'

pi = R - te Ei E = E - E

tiij = hi; ( invariant !)

where a prime denotes derivative with respect to conformal time .

Since we look for measurable quantities , we need to construct objects that do

not depend on thegauge .

It is possible to construct two gauge
- invariant

gravitational potentials (Barden potentials ) .

§ = A t (B - E ')
'

t H (B - E ')

Y = R t H ( B - E ')



Two point correlation functions and perturbations .

The end goal of perturbation analysis is to calculate the two point function for scalar

potentials § n Rk , where Ru is the curvature perturbation (which will be discussed

later ) .

Lol R'T
.
Rulo> = tuz 83 (E- E

'

) = P%f (at) ' 83(E - E')

Pack) = L÷zhz = II (¥12 (att)
"

! As' (¥ )
"

primordial power spectrum

↳
inflator perturbation , {

u = a 84 t ZE
we need a solution

z = ad
H

And similarly for tensor perturbations :

-3 Lol hast hr.is/03--8aII1vr.12 83 ( E- I') = P÷ (zip 83 (E- Ey

Pg Ck) = 8k- ( ¥)
-

(aka)3
-"
= Af (a¥)

"

Barden potentials and Einstein equations .

Barden potentials are related through the perturbed Einstein equations :

§ = I ← No isotropic stress

K2

-az3k VI = 8C K = curvature of the Universe

where de is the
gauge

- invariant density perturbation .
The latter equation is the

expression of the Poisson equation for the gravitational potential, written in relativistic

form .

During inflation , the energy density is given in terms of a scalar field , and thus

the gauge
- invariant equations for the perturbations on connoting hypersurfaces (constant

energy density hypersurface) are (rest of Einstein t Klein Gordon) :

OI " t 3 H IO
'

t ( D '
t 2 H2) IO = [ ol' or ol ' - a' V' Clo) 801 ]

- J2 & t 3D IO ' t ( fl ' t 2 H2) IO = - HI [ol ' 80 '
ta
' V' (d) 80)

IO '

t H § = KI ol ' 801 scalar field
84

"

t 2N 84 ' - pool = 44
'

I ' - 2A
- V

' Clo) IO - azv
"CoD 84

←
perf. equation

This system of equations seem difficult to solve at first sight . However, there

is a gauge invariant combination of variables that allows one to find exact

solutions
.



Let us define : WARNING

U = a810 t z Io z t redshift

2- = aI
H

Under this redefinition , the above equations simplify enormously to just three

independent equations :

U
"
- TZU - II U = O

T2 § = HI Hay (zu' - z '
u)

(ae )
'
= HI zu

This equations can be solved analytically , e.g . in Malter domination, or numerically
in general for the classical system .

From the first equation we can find a
solution uczy , which substituted into the last one can be integrated to give
⑤G)

,
and together with uczj allow us to obtain dot Cz)

U
"
- Tzu - II U = O - UCH s ( age )

'

= HI zu → § Cz, - 84 CH

Quantum mechanics in curved space - time

Until now, we have treated the perturbations as classical, but we should infact consider
the perturbations § and 84 as quantum fields . Note that the perturbed action for
the scalar mode u can be written as :

IS = I fdsx dy [Cup - ( Tu) 2 + II U2]
kinetic tent ← potential with time dependent mass term

In order to quantize the field u in the curved background defined by the metric we

wrote before , we can use the operator :

iv. x, =/ I:3. L-uncna.ie"" turncoat
operatorannihilation operator

where the creation and annihilation operators satisfy the commutation relation of
bosonic fields, and the scalar field 's Fock space is defined through the
vacuum condition :

[are , a'pit] = 83 ( E- E'

) du lo> = O



The equations of motion for each mode unCy) are decoupled in linear perturbation theory :

Wh t ( K2 - ZI ) un = 0
Mode equation

The ratio Z'Iz acts like a time - dependent potential for this Schrodinger - like equation.

Introduction of the slow roll parameters
In order to find exact solutions to the mode equation, we will use the slow - roll

parameters :

• = I - I. = '

II.
8 = I -I = is + e - I

Hol ' Hz

E = - (2 - E - 28+82 - fI÷)
In terms of these parameters, the conformal time and the effective potential

for the Un mode can be writer as :

Y = Let + fedsate
IT = tell It E - 8) (2 - 8) t Ll -Ye '

- 8D]

Note that the slow - roll parameters evolve slowly .
E and I can be taken as

constants to order E?

E '
= 2 H (EZ - Ed) = OCED

8 '

= H (Ed - E) = 067

In that case
, for constant slow - roll parameters , we can write :

z =
I s

H t-E

ZI = tf (wz -⇒ Where u =
Ite - 8

+ I
> I - E 2

Mode equation solutions (scalar perturbations )
Now we are going

to search for approximate solutions of the mode equation , where

the effective potential is of order
Z''
Iz a 2dL

' in the slow approximation .

In

quasi - de sitter , there is a characteristic scale given by the (event) horizon size
or Hubble scale during inflation H

- t
.

• There will be modes ur, with physical wavelengths much smaller than this



Scale
, Kla → H

,
that are well within the de Sitter horizon and therefore

do not feel the curvature of space - time d ⇐ %,
→ k>salt

• There will be modes with physical wavelengths much greater than the Hubble
scale

,
Klaas H ,

d ⇒%, →
KaraH

In these two asymptotic regimes , the solutions can be written as :

i: :*:
"

: :::
Proof for Ks> att :

U
' 're t ( K2 - II) Un = O

k >> att
s U'

'

k
t K2 un = O → Uk = 2¥ @

- ikrh

Proof for KK att :
U'
'

k
t ( K2 - II) Uk = O

K⇐ a "
s U'

'

k
- 2¥ Uk = O

Iz = tf (w - tf ) → 2- = G y
E--
t Cz y

#° CODE for mass term)

Uk = Es 2¥
-°

+ Ez 21+0- the = as Z

In the limit Kss at the modes behave like ordinary quantum modes in Minkowski

space -time , approximately normalized
,
while the opposite limit, Utz becomes

constant on superhorizon scales .

For approximately constant slow - roll parameters

one can find solutions to the mode equation that interpolate between the two

asymptotic solutions :

ur. (g) = Ez e it
+ "2) ""

fry,
"z
Ho
' ' ' C - kg,

General solution

where Ho"' Cz) is the Hankel function of the first kind , and so is given by

2=119-8-+12 ( in terms of the slow - roll parameters) . In the limit Ky→ 0, the

solution becomes :

2
to - 32

taut -
ra FIL, C-Kai

--

= (aka) 's
'

CG) = 2
-⇒

f{÷ ( e - e)
- - "

e s for e. 8<-1

We can now compute § and 801 from the super - Hubble - scale mode solution (Kuralt)
.

Substituting into fagot)
'

= II zu , we find :



§ = Cs ( I - Kaz) AZdy) t Cz ¥
84 = oat) azdz - aft

The term proportional to Cy corresponds to the growing solution , while that proportional
to Cz correspond to the decaying solution, which can soon be ignored .

These quantities
are gauge invariant but

evolve with time outside the horizon
, during inflation ,

and before entering again the horizon during the radiation or matter eras
.

We

would like to write an expression for a gauge invariant quantity that is also
constant for super horizon modes . Fortunately , in the case of adiabatic perturbations,
there is such a quantity :

(II)
'

=
zu

E = I -F
'

= II za÷} 5 = & + eat (E '
t Hoh = ¥

We can find a solution for I in radiation/ matter domination :

I = Cs ( I - Haz) a' dry) - Er
.

= ( I -⇒a
' dy) Rk

H2 = Ho
2
a
-3CItw)

Haz = HE a-34+9 , g-r. = 3Gt}now pay
,

= { ERK
radiation era

¥ Rk matter era

an y
%it3W)

One can calculate the initial curvature perturbation 5 (which is more or less constant in

super horizon modes) and relate it to Rk .

We want to calculate the two - point

function for 5 , which is related to de two -point function of § , and so to the

two- point function of Rx .

This will be discussed in the Primordial Power spectrum

section .

Tensor perturbations

Let us now compute the tensor or gravitational wave metric perturbations generated

during inflation .

The perturbed action for the tensor mode can be written as:

← kinetic term

85 = If d3x dy 2¥ [(h 'ij) 2 - (Thi;) 2]



with the tensor field hey. considered as a quantum field :

"
"
' H'⇒ = Jc!! Em L-hnczjei.fr, Dana, e

iii.*
+ h

Fourier modes

where ei; Cri. d) are two polarization tensors , satisfying symmetric, transverse and traceless

conditions
.

eij = Eje
' kieij = O Cii = O

ee; C- E. d) = e (E. d) Jet; (E, d) e (E, d) = 4

While the creation and annihilation operators satisfy the usual commutation relation of
bosonic fields . We can now redefine our gauge invariant tensor amplitude as :

Vr
. (2) = ha ( R)

which satisfies the following evolution equation, decoupled for each mode Ye Cy) in

linear perturbation theory :

Vi t ( K2 - FI) he = 0

The ratio a'Ya acts like a time - dependent potential for this Schrodinger like

equation analogous to the term Z''Iz for the scalar meter perturbation .
For constant

slow - roll parameters, the potential becomes :

= 22h ( I - E) = ft (m2 -f)

a-÷ + I

we can solve the equation for Va in the two asymptotic regimes :

he = tf e
-" Z

K ⇒ at

the = Ca ka att

In the limit k→ at the modes behave like ordinary quantum modes in Minkowski spacetime,

approximately normalized , while in the opposite limit the metric perturbation ha

becomes constant on superhorizon scales .

Primordial power spectrum

Not only we do expect to measure the amplitude of the metric perturbations generated

during inflation and responsible for the anisotropies in the CMB and density fluctuations



in large scale structure, but we should also be able to measure its power spectrum,
or two - point correlation function in Fourier space .

Let us consider first the scalar
metric perturbations Rk, which enter the horizon at a = KIH .

Its correlation is given

by : y Different modes are decoupled

/ Un 12 Pp (K)
Lol RE R u to> = ¥83(E- E') =

y,µ
( 2*13 83(E- E')

Rain =÷.
'¥2 -

- III'⇒4a¥)
"

= A:(¥1
"'

where PR is the primordial power spectrum and we have used that Rk = 5k =¥
NOTE

I
. If ns =L, we have equal power on all scales (flat spectrum)
2 . Ns is determined from the inflationary model (since it is related to the slow
roll parameters) .

ng - I =
den PR (K)

= z - 2, = 2( SIZE) e 22 u - Gev (small)denk

3. As is the amplitude of inflation perturbations

The primordial power spectrum might have a
"

running
" term (evolution of the slow roll

parameters) :

dns
= -

dns
= - z fl (2g t 85- does) I 2 Ev t 2492 - 16Ev Ev

denk deny

similarly , for tensor perturbations, we can calculate the two - point correlation function and

find the power spectrum .

I Lol h¥, ha.> to> = ¥3 / but 283(E- ri ') = P8g!k↳ (2*13 83(E- Ey

Pg Ck) = 8*2(LIT)
'

(¥)
3-"

= A,2 (¥)
n'

NT =
dlnpgck)
Teak

= 3 -2n = IF I - 2g so

There will also be a running for the primordial power spectrum for tensors .

defeat = - dyeing = - ztl (40 - He e 892 - 4% Ev



Constrains on the slow roll parameters

As it was discussed in the previous lecture, the CUB constrains

the values of the slow roll parameters .

We can define the

amplitude of the scalar and tensor perturbations and the

ratio between them Cry .

In single field slow- roll models , ht n - rise , where r = Ptlps
en Ps Ck ) = ln Polk) t I ddlnnnf.ee en (kik) 2 t I d2dhen÷ la ( kik. )

'
t
. . .

ln Pt ( k) = la (r As ) + ht la ( KIK* ) t . . .

The Planck 2018 constrains on scalar parameters and the running are :

6.2 - TransplaneKian physics and the power spectrum
There is a very brief window for inflation to act ( after the Planck epoch) , so it is

easy to get above Planck scales ( 1019 GeV) . At these scales, quantum gravity becomes

important (and we do not have that theory) .



Since we do not have a theory for quantum gravity , we can consider the operators that
are not part of the standard model (because they break Lorentz invariance

, . .
. ) but could

be important in high energy physics (Planck scales) . We distinguish between relevant

( din s d , restore symmetry at high energies) and irrelevant operators ( dim > d , do
not restore symmetry) . The procedure is to consider various operators (quad in le )

and add them to the inflator Lagrangian .

←
D= (howTib - Khufu)

"
Momentum projection operator

Iz k 62 , 9 9 ← Dimension 3
GorenA invariance violating)

f- K2 42 , I ke 4
,
- how Full Joy ← Dimension 4

←
km dxndxo = - AZ H detox

Once they are added to the Lagrangian , it is possible to find their effect on the
Primordial power spectrum (and thus, finding predictions on inflation) .

Lnr = dnt H342 taken tree C- J - J)
'"
e t days HJE . Jee t adf.EC-J 5)"29

obtain power spectrum
V

<
once) 16Caxton, 5) load> =/E!÷e

""""

III. R.cn]

/OCR) > = Te
- iho dn ' Hs Cni) , o,

HI Cy) = -Jd35 Fg Lvn

The corrections introduced in the power specters are :

k302 → Hae ⇒ Pk Cz) = yH÷[It I da tht[en 12km - 2 to] t - - .] = j÷ WILL lkzp-Zf
. . .

Kae a → try f-JJ)
"

e ⇒ Pk Cz) = t÷[it dznttfittcoscfk.IT t - -I
know on ez e-s H Je Ty ⇒ Pr

.
Cu) = 4¥[it do [St cos 6k¥ FT)] t - - -]

4034 - X- J -F)me ⇒ Pr
. (g) = III ( t - da ¥

.

cos ( 2¥
.
ET) t - - -]

If we get to measure any of this terms, it would mean that inflation starts a bit above
the Planck scale .



G.3
.
Primordial black holes and inflation

Dark matter and primordial BH .

As it was discussed in the first lecture , roughly a 27% of the Universe is dark

matter
,
which is collisionless and non relativistic .

We only know that it interacts gravitationally.
All the evidences for its existence are indirect (gravitational lensing , galactic rotation
curves , . . . )

There are many
" candidates

"

to be dark matter
,
like axioms

,
wimps

,
neutralinos

,
etc,

but nowadays primordial black holes are becoming suitable candidates
.
These are

quantum fluctuations that are really strong , collapse and form a blackhole . They
would behave like DM because they are collision less, numerous and non relativistic .

Primordial BH

This is an old idea (Garcia -Bellido , Linde and Wands 1996) that became hot

recently after Gws discovery .

PBH are formed after inflation when broad peaks

in the primordial curvature power spectrum PCK) collapsed gravitationally during the

radiation era and formed clusters of BH that merge and increase in mass after
recombination until today .

Masses range from 0.01 to lose Mo and could jump-

start structure formation .

PBHS could make up almost all DM with a non -monochromatic distribution
.

Based on experimental constrains :

other constains come from extragalactic
photon background (orange) , femto lensing
(red ) , microlensing by MACHO (green)

and EROS (blue) , from wide binaries

(light brown) , and CMB distortions by
FiRAS (cian) and WMAP 3 (purple) .

Peaks in the spectrum can be

formed by inflection points in
>the potential (Puke , E → o

→ P→ I)



PBHs can have a range of masses Care not
"

mono - chromaticY . They would fill the gap
between stellar BH and Super massive

black holes in the centre of galaxies

They have many potential signatures and side effects .
• Since they were created by curvature perturbations, PBH have no spin .

• Emissions of GW in binaries and hyperbolic encounters

• Microlensing of type Ia Supernovae : possible explanation for superluminal Sn Ia for

super - Chandrasekhar) .

• Missing baryon problem : PBH might have eaten up the baryons
• Stochastic background of GW : uniform distribution of GW sources creates a background
that could be visible by LISA

• Anomalous motion of stars : compare PDM Vs
.
PBH - DM (could be seen by GAIA)

orbiting around " nothing 's

Not orbiting


