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5. I

.
The hot Big Bang and why we need Inflation .

Big Bang theory predictions
Initial singularity
We start studying the evolution of density parameters : hi Ca) = Rio

a-""
w)

Hca) 2

→
o

.
? Starting with the values of the parameters measured

→ 0.3 today , we can use the Friedmann equation to

study its evolution (propagating backwards in time) .

We observe that radiation dominated in the

Early Universe
.

Since we know its density scales as en Ca) & a
-4
, Then when a→ 0 we have

er → N : singularity . And for the temperature : er n TU ⇒ T (a → o) → •

This is also related to the emission of the CMB : it was formed when the density of the

universe was low enough for photons to travel freely .

Structure formation
structure formation happens during the matter dominated

era (as was predicted by the Big Bang Theory) . However,
this theory does not justify the seeds that created
the large scale structure (we know when it isformed,
but not how ) .

Problems in the Big Bang theory (and solutions)
Horizon problem
An expanding universe has particle horizons

,
that is

, spatial regions beyond which causal

communication cannot occur .

The horizon distance can be defined as the maximum

distance that light could have travelled since the origin of the Universe:

rt, = Jot cadet, = act) Jot date, ~ H
- ' Ct) (cornering coordinates)

In radiation domination
, alt) a th , so at late times :

Dt, = Ro RH re 600£ h' Mpc

For instance
, at the beginning of nucleosynthesis, the horizon distance is a few light -

seconds, but grows linearly with time , and by the end of nucleosynthesis it is a few



light -minutes, i.e . a factor too larger , while the scale factor has only increased a factor
of 10 ( duet , a at

") .

The fact that the causal horizon increases faster than
the scale factor implies that at any given time the Universe contains regions within

itself that, according to the Big Bang theory , were never in causal contact before .

This is particularly sharp in the case of the observed

cosmic microwave background (Cub) . Information cannot

travel faster than the speed of light , so the casual

region at
the time of photon decoupling could not be

larger than dit (tdec) - 3×105 light years across
,
or

about ti
.
However

,
we measure that regions that are

separated by more than to degree have the same

temperature up to to
- 5k variations , even if they are not

supposed to be in causal contact when they were emitted .

This constitutes the so-called horizon problem .

This problem can be solved assuming a phase of accelerated expansion (w → - L) , where

the scale factor grows exponentially :

a ( t) = @
HI (t - tend )

and the horizon is : DH = EN
,
where N is defined as the number of e -folds :

N = - f dena = f Hdt

The horizon problem can be solved for Nn 60 .

Flatness problem

If we consider the sum of the densities today (without considering curvature) , we get :

I - Do = -K < O
. OI - curvature s 1%

Ro
'

Ho'
> observations

considering its evolution with the history of the Universe :

Kc2
I - D = - s f -Rft) = Ho' ( I - Do)

Roza(f) 2 Http H2Ct) a ' Ct)

Assuming matter domination : an EB

III. = barf t dm÷ > I - r Lt ) =
( t - soda'

=

I - ro

bro trmoa em, o
(¥ )

%



Which is an unstable solution : it is an increasing function of time, so it requires very fine -

toned initial conditions to obtain the values that we observe today .

This can be solved again with inflation :

H = const s an exp ( Ht )

acts)
⇒

= en > N = Hilts - ti)

Then :

I - D ft) =

"
s 11 -D ( tg ) = exp (-2N) II - r Iti)

ROZ AZ H2

which asymptotically goes
to zero when N grows .

Even

starting with a very curved universe (A) , it can become

as flat as we want after a certain number of e-folds (D) .

Monopole problem

Topological defects (like monopoles, cosmic strings , domain walls . . . . ) coming from GUTS

(n to" Gev) are created before inflation , finding at least one per horizon (distance) .
Until know

,
we have not found anything like this (neither gravitational waves, nor traces in

the CMB) .

If therewere any monopoles, according to GUT theories its contribution should be dominant :

M
Demon
"
= E lo

's
> the Universe would collapse on itself

3h02 Mpe
-

[D on
]
3

Assuming that there was I monopolehorizon ( before inflation), there would be diluted

since the horizon expanded like @
60
n 1027

Origin of large scale structure

This will be discussed in further lectures, but inflation explains where did the seeds of
large scale structure came from .

5.2
.
Scalar field models (and other curiosities) .

Basics of Inflation model - building
First

, we consider a phase of exponential expansion (de - sitter) . To find which cornponen of the

Universe could produce that, we use the 2nd Friedmann equation :

= - Gtf (eca ) t 3pm) ⇒ PL - Iz (condition for accelerated expansion)



w = 0 Non relativistic matter P ke

D= we { w = tz Relativistic matter D= tze
w e - I s Ps -§ (Expansion ) > Cosmological constant (w= - I )

3

The cosmological constant can produce the expansion we desire
,
but there is no

way to stop
that

expansion : the de- Sitter phase never ends
,
and dilutes everything .

This results in an empty
Universe

, which would need a reheating process (since after infation we are at radiation
domination era .

Model conditions

Possible inflationary models must :

I
. Solve "classical " problems : (horizon , flatness, monopole, etc) .

2
. End before radiation epoch , and be followed by reheating to create particles .

3 .
Set the initial conditions for large scale structure

.

4
.

Make unique and testable predictions

5 .
Be motivated from high - energy physics ( standard model or quantum gravity)

Scalar field inflation
One of the first approaches is adding a scalar field to the Lagrangian .

Scalar fields
( bosons with spin O) have already been observed

,
like the Higgs boson

. They are

already used in Dark Energy (which is also an accelerated phase) and their dynamics
are very well understood .

Starting with the lagrangian of general relativity :
S = TEJ dux Fg Rt Sm
we add the lagrangian of the scalar field :

S = faux Ff[2¥ Rt Lol) + Smes standard model
kinetic term

, Potential

Lol = - Egmond 20 - Vol)

From this lagrangian one can calculate the
energy

- momentum tensor (varying L with

respect to gun) :

Taj" = -⇒ 8 (FsLol)
= and an ol - guo [Egos saloon lot VOD

Pgma



Equation of state

From the energy - momentum tensor of the Scalar fields, one can write on its density

and pressure :

Pop = Iz Tei
'

'
= I 182 - vcp ) .

Equation of
, way = Pg =

42 - IVCd)

fog = - Todd) = Iz Io' tuco)
state 4.2 + 2nd)

In quintessence ( the model that we are using for Lg) , wCz) cannot cross - I . Using the

continuity equation :

Ep t 3h (eat PJ = O @ = - 3oz (e t Pce))
When w → - I

, Pce) → -e : f- o

Thus
, dim dnff# = O (higher order derivatives) . ⇒ wczs goes asymptotically to - I
w→ - I

This can be used to discriminate simple scalar fields from more complicated modes (modifications

of gravity , etc . ) .

Equations of motion

We can also analyse the equations of motion . Using the Friedmann equations :

H2 = HI[Iz Io ' t V Clo) ten] ti' = - I (di 't em t Pm ) KE 81TG

As well as the Klein - Gordon equation in an expanding Universe , which describes the dynamics of
the field , and the continuity equation .

To t 3HOI t V.¢ = O
,

V.io = dYd¢

Elo t 3h (eat Pa ) = 0

Some example models that will be discussed later are :

Freezing models : Thawing models :

• Ucf) = M
4th

¢
- n

(n s O) a Vcd ) = Vo t M
" -n

4
"

(n > o)

• V(¢ ) = M
""

¢
- n
exp ( x Olympe-) o Vlol) = M

"

cos
2

( 41g)

one can reconstruct the potential from the Friedmann equation if Ect) =
HCHIH o is known :

H2 =

'

II [ Ioi 't Vos tem) ly → gtzfdfzy-ffzdeIE.ae
- 37g

"

III, >
o

ti = - HI Cio tem t Pm ) kgf% = Eczs - ft Z DIII - I rmcoscitzp

The condition for reconstruction is : DIII > 3dm's Hoz ( rtzyz > go, + Po, > O
(weak energy
condition)



Slow roll infation
Let us study how a generic potential satisfies all the previous constrains .

This is related to the
"

slow roll
"

idea introduced by Lind et al .

If the potential is flat . the model behaves like a cosmological
constant ( the kinetic term will be n O) .

Now we can work with the equations of the model . Matter has not been created yet, so we

can cross all the terms associated to it ( ) .

Since it is slowly rolling, we can

ignore the derivatives of lo :

H2 = HI[Iz Io ' t V Clo) ten] 3 tf = e ± V

ti' = - II Colo 't en t Pm ) ⇒
- 2 ti = (Pte ) = Ici

SH Io re - OI
TO t 3HOI + V.¢ = 0 201

Slow roll parameters and inflation predictions .

We can describe an inflation model in terms of its slow roll parameters .
There are various

definitions depending on the literature . Note

log derivatives quantify
Es = - ft re I )

2

= q the
"

slope
"

of functions

Ez = d%n I -2 VIII t 2 (II)
'

= - 22, + 4g
NOTATION

V.¢ = 0%01
or

⇐ # ( '

Iii:D
'

' ÷. ( %:D
'

= a ⇐ i

s -
- E.

"

I:*, et. - t.li::D a - a .. .

Having a set of parameters, one can compare them to

observations to get constrains on their values .

For example,

Nv and Er were measured using the anisotropies on the

CMB . This is possible because the scalar field seeds

scalar metric perturbations :

Lol RE R u. to> = YI !!
)

( 2*13 83(E- E') ← Spectrum of perturbations

Pp (K) = II ( '⇒
2

(ayy)
's -w

= Af (a¥)
"- t

where As is the amplitude of the perturbations .

↳ a =
ItE - d

+
1

, a wave number

1- E
2



The spectral index no is a prediction of inflation .

Ns - I =
d en Dp (K)
d en k

= 3 - 2N = 2 (III ) E 2b v - GEv , Ns - I n 0

Since Vld) is not flat, the primordial power sputum might have a
"

running
' '

,
i.e

. higher order,

prediction :

dns
= -

dns = - z Ll (29 t 8EZ - to EP) I 2 Ev t 24 Ef - 162v Ev
denk deny

The Salar field also seeds tensor metric perturbations ( which will be discussed infurther
lectures) .

⇐ Lol his has to> = 8A!
-

Ivar 83 (E- ED = If!!) (zip 8 ' (E - E ')

PgCk) = 8*2 (ft)
"

(a¥)
""

= At (aka)
"

↳ n, =

den Pg (K)
d enk

= 3 - 2M =

- ZE
re - seu L O

l - E

Primordial power spectrum for tensors might also have a
"

running
"
:

{hath = - ddnentg = - z
Ll ( 4ez - 4ed) = 892 - 4g Eu

In single field slow- roll models , ht n - r18 , where r = Ptlps
en Ps Ck ) = ln Polk) t I ddlnnnf.ee en (kik) 2 t I dZdhen÷ la ( kik. )

'
t
. . .

ln Pt ( K) = ln (r As ) + ht la ( KIK. ) t . . . Constrains based on CMB

measurements

An additional parameter is the number of e -folds , which tell us how many times does the

Universe has grown exponentially ( until the end of inflation , when lo reaches the end of the

plateau : E = s ) .

Nct) = - Saga demi = - Sgt HCE ) at e fo,! !!4¥, dot

Reheating
After infation , Universe is empty and coed , it is [

During inflation - Pio = Ca e V

necessary
to reheat it . This can be done by friction

isterm in Klein - Gordon equation : E
8

Slow 8

TO t 3Hoi t V. a = O roll
'

E-

During the oscillations
,
the scalar field releases

energy in the Universe and converts energy from
inflation to SM particles .



Example calculations of slow roll parameters
Let us consider a simple exponential toy model :

✓(4) = Vo e
d's 202

We can calculate the slow roll parameters as :

E = #(v§ )
'

= 2*222 102

2 = ¥ ( ) = 2b (2K - d ol't 1)

The end of inflation happens when E=L
,
thus :

fend = 1- ( keeping the positive branch )
FL Kd

Then
,
the number of e -folds is :

Ning = Jg! K ÷,d¢ =

log (2 old")
⇒ ¢,µ, =

e
2> wins

Hd T2 Kd

Now N will be our variable . We can write the slow roll parameters as a function of the number

of e-folds :

E = @
ted Ney

2 = 2( d t e
4>Nis)

From those parameters we can derive the inflation predictions :

Ms = if
- GE t I = Hd - 2e

""Y
+ I

r = 16 E = If @
HNif }

From the values obtained from Planck observations
, we know that Ns ~ 0.96 .

From here
,

we can get the number of e -folds as a function of d .

Additional constrains on the parameters

can be obtained from the value of r . This helps us to accept or rode out models

Specific models
chaotic inflation

Proposed by Linden et al . in n 1980
.

The potential goes as :

VClo) = 14
-n

Ion

Allowed parameters are shown on the right.



It is not exactly slow rolling : while going down the potential there is some friction , which

will result in the loss of energy ,
and so a cheating .

The parameters of the model are given by :

na n

E =
¥

=

Inning} ns = I - 7757mg
y =

(n - I ) n
=

2h-t )
r =

16 n

k 2012 ht 4Nif n THNig

Nig = I!gdd K Ee =

'

II" - F

Plateau models

proposed by Stewart et al in 1995

The potential goes as :

VClo) = A
"

[ I - exp ( - rap)]2

(Flat and slowly decays to the vacuum) .

The slow roll and observables give :

we
expfool)

→ ng = I - f- , r = z%
282

Hill-op models

proposed by Boubekeur et al (2005)

The potential goes as :

VCO ) = Nfl - (E) P]
2

The scalar field starts at the top of the hill, falls to one of the sides and evaporates there
.

The relevant quantities are :

un-
*

"

c: III
"
→ rises . r. [a:*? n]p

Natural inflation proposed by Freese et al - (1993)
The potential goes as :

VClo) = A
" [It cos (¥1]

The scalar field falls and starts oscillating .

The observables are :

N = -2K w en[sin (¥ )) s ne s - ¥
e'Pl

*Te ) th

are;⇒ - s

- r=¥zap¥⇒ - if
'



Power law inflation (Lucchini , 1985 )

Vcd ) = 14 exp ( - d Kd)
observables are independent from N :

Ms = I - d r = 812

Since it will always stay in a flat plateau, it is important to make sure that

they don't get to dominate the Universe
. Parameters must be well tuned to make it

either evaporate or decay into the standard model
.

K - essence inflation
K - essence models can have scalar fields with generic kinetic terms (X, XZ, . . . ) .

X = - I (app - S=/ dux Fg P ( lo , X) > SE =) dux Fg [I R t k (6) X t 2$) X- t - - -]

We can calculate Trw and the equation of state as before :

Tn!" = - Ing
8 (FSL¢) =

P
.× on ¢ on + gu p { DO =P

8gmu ep = 2X D.× - P

P
Wp = PI = ← can cross w = - I : even more aggressive expansion ( less N)

lol 2X D.× - P

Modified gravity
Instead of explaining inflation with an scalar field , which is an extra particle that

nobody knows where it came from, one can say that there is a modification in gravity,
some more general theory that solves the problems with GR

.

The simplest thing that can be added to GR (on LHS) is R - f CR) . This is just a
scalar degree of freedom that has be used in Dark Energy models

. Dynamics are well

understood
, and it has been shown that it has a very reach phenomenology .

This model is

inspired on high energy physics .

S = 6¥ f deux Ff R t Sm ' S = q¥Jd4x Fg f CR) t Sm
The simplest example of fCR) is ACDM -

-

f CR) e f (Ro) t f ' (Ro ) Rt - - .

S = y÷Jd4x Fg fCR) t Sm → S = If f dux Fg (R - 2h ) t Sm

I



High energy physics motivate this theory because new terms appear when one tries to renormalize

GR at one - loop order : [Birrell Davis
,
1986]

R ⇒ R ta [ To Rams Rand - to RueRio - f ( E - E) DR t z (f - 9)
'

R 't
. . .]

The most general (pure) modified gravity is of the form :

R = gmo Rnb

P = Run Rm

R⇒ fc2.P.Q.tn. G) {QD ! Rg:3;%R!"! ①Alembert, an in curved space

G = Q - 4p + RZ ← Gauss - Bonet tern (topological invariant in 4D)

JCR) models

we can get the fCR) equations of motion by varying the action with respect to the metric (F=f'(RD

S = p÷gJd4x Fg for)ts.mg
,

= gmo togun 4 g- no = gun - Sgm

FGen - I (fCr) - RF)quot(gu, D - qua )F = K Tuo
(mt
← Equation of motion

The conservation equation is given by :

S = J dux Fg L
8S=Jd4x Fg [§g÷o gf] 8g-- = ⇒

= J d4x Fg
'

Sp 8gnu
Tu SM = 0

Assuming the Robertson - Walker metric, one can find the MoG version of the Friedmann equations :

3F H ' = em t Crad tf ( FR -f) - 3HE
- 2ft = em t Iz erad t E - HE

Properly choosing F and I can give acceleration .

Since f CR) modifies Newton 's constant
,

we need to talk about Geff ( perturbations)

f (R) = f (Ro ) tf ' (Ro )Rt - - -

S = gtfo fd4x Fg'

f IR) I÷
,
faux Ff Ef Cro) tf ' Cro) R] I g÷eggJd4× FUR - 217

↳ Geff ~ GulfCro)



Doing a conformal transformation ( Jordan → Einstein frame) , one gets that f CR) is just a scalar
as

field .

Jmu =D gun > R' =D'(pi t 65W - Ggn- on waw) w-- end

S=fd4x Fg[¥ Fr -2 (TR +615W - Ggman was w) - r
-W) tf dux Lm Cr'gun , Yu) D= F U= IRI

2152

Redefining the field : Hol = TE en F NOTE

This is a mathematical

trick
,
it does not have

a real physical meaning
SE =fd4x FF[÷, R - tzgn- and 20 - VCO)) tfd4x Ln (F-' C gun . Yu) because the Einstein

y
9 frame is not a physical

Quintessence Potential T
non - minimal

frame .

VCO) = ¥ =
FRI

coupling2K FZ

Starobins Ky inflation
Starobinsky proposed a simple f CR) model . The R2 term caused acceleration in the

Universe
, behaving like inflation .

f CR) = Rt %µz,
→ VCO) = AZ ( s - e

- 5301 Impe)
'

The slow - roll parameters of the model are :

Ms e I - Z re I
N NZ

It behaves like the plateau models .

Modified gravity and ghosts .

After introducing the corrections trying to renormalize gravity , one finds lagrangian, of the

form :

i

S = Jd " x Fg'

fCR. P. Q )

D= Rab Rab

Q = Rayed Rab
od

F = FR Jp = Ipd for = ¥Q > Fourth order derivative → Ghost

These lagrangian result in equations of motion with 4th order derivatives, which mightgive
ghosts .

Linear, -Zing and finding the propagator GCK) :

gmo = Yuu t hun
, ( K2 t MY:p

,. .

) Tru = O → GCK) 2h12 - Katt mzspin
how = him - I 2ms t Yu, hg Ess-

D hp = Ms?hg ghost,
makes

M3pin2 = -

g + ago..
Ms
'

= Is t.at?zcgpo+go.o, vacuum decay



Other Mob models

There are also models with extra dimensions : the Kaluza - Klein models
. Assuming an extra

dimension
, y , which is compactif i ed with cylindrical boundary conditions

,
then the

metric
gun satisfies

:

f (x. y) = f Cx, y tout) s 0932 = 0 Similar to UCI) symmetry

Expanding the SD metric in Fourier modes :

gmncx.gs = Egnew
"
Cx, ein" s guys = of

-"s ( oomfadf.ua- lotion)
performing a dimensional reduction, one obtains :

T
410 Grt Maxwell + scalar field

S = pg÷, Jd "x dy Fgc" Rts) = yg÷a Jd
"
x Fg

'

(Rtf ¢ Fun Ftw t# 2^0%10)
↳ Gum =

GN"Yaar

Adding a scalar field :

Sg =fd4x dy Fga ( gmt" dm & 2n I) =

= Girl E) dux Fgm[gun ( out if Au) In law + if Au) In - FI. Ina]
I ↳ Mn = InYrrf

an = 8176g
"'
n JI Qin n Mn Problem
¢

5. 3
.
CMB constrains and inflation predictions

constrains to inflation models .
On the cosmic microwave background we can see the imprint of inflation , since inflation is
the seed of the fluctuations .

Thus
, by measuring the CUB we can obtain constrains on

inflation by analysing its power spectrum ( this will be discussed in further lectures ) .

For the simplest model one can create needs the following 6 parameters .

Two of them

depend on inflation (ns , In lowAs ) , two of them depend on the kinematics of the universe

and two of them are related to the matter content .

Reminder

As - amplified of the

perturbations
Ns - spectral index



The plot shows comparators with the different models .
Itcan be seen that some

models are ruled out by observations
.

T

( Starobinsky Inflation model fits the observations )

Inflation predictions ( side - effects and prospects)
1

. Production of gravitational waves (Gws)
2

.

Production of primordial black holes (PB Hs )

3
. Inflation probes high - energy physics (out t) , not in reach of experiments

4
. Inflation can be used to test for BSM physics

5
. B -modes of CMB prove inflation .


