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3.I
.
The hot Big Bang Model

We have already seen that the Universe is expanding following the Friedmann equation, but we

have not said anything about the temperature . The dominant component of the Universe were

photons and so
,
when we refer to the temperature of the Universe we will be talking

about the temperature of those photons .

We also know that entropy is being conserved (Tds = du tpdv = o) , since there is

not any heat flow . Having a heat flow would mean that energy is going from one place

to another
,
which would create a preferred direction (and does not comply with the

cosmological principle) . The universe expands adiabatically , i. e . like a fluid in thermal

equilibrium .

For barotropic fluids (p = wea) , this implies that ; e = R
""w'

t const
,
thus :

Radiation : w = 43 e a R
"

>

Tyg ,Rg? } when decoupled
Malter : W -- O p a R

'
s

The Universe is cooling down when expanding .

The fact that we are working with barotropic fluids expanding adiabatically makes that

the closer we get to the Big Bang (singularity) , the hotter the Universe will be
.

3. 2
. Thermal equilibrium .

Thermal bath in equilibrium .

When photons and matter were coupled, they evolved in the same way ,
which was dictated by

the dominant component (photons ) . In order to do calculations
, we need a mathematical

description of thermal equilibrium for radiation and matter
.

thermal bath

1-
*

Let us start with a thermal bad, assuming that there

y
t t y are only photons at a certain temperature T (they

y r

j t
t

g r
all do not need to have exactly the same

t
y y

t
y r energy ,

in fact their energies follow a Planck
distribution) .

Let us now add more
"

ingredients
" to that thermal bath : neutrinos, electrons , positrons,

protons . . .



Neutrinos
, protons, electrons ,

neutrons and positrons are kept in

equilibrium by the weak interaction and Thomson scattering .

• Weak interaction : . Thomson scattering

De th ⇐ p te
-

e
-

t 8 ← e
-

tr

et + n ⇒ p t Je

n ⇐ p te
-

toe

since the photons outnumber everything , they dictate how the temperature of the thermal bath

evolves
.

Interaction rate : decoupling from the equilibrium
Particles can maintain that equilibrium as long as their own interaction rate is larger
that the cosmic expansion rate . Jd the cosmic expansion rate is larger, then there
is not enough time for the interaction to take place , thus, they decouple from

the thermal bad .
The interaction rate is defined as :

Me a n ou
n = number density T = interaction cross - section V = relative velocity

Once a particle species is decoupled, it evolves indepentlg . Neutrinos were the first
to decouple when ICtaec ) = Tctdec ) when the interaction rate of the weak interaction

,

Tw became Pw < Mc
. This leaves us with a

"

relativistic neutrino background
"

in the

Universe
. Unless disturbed

,
the unopened particles remain in their own equilibrium .

Characterization of particles in equilibrium : n, e , P.

We can characterise ensembles of particles through :

• number density : n =
9

Edith 23 Jfc 4Tp2 dp

•

energy density : co = ¥, ,z JE(p)fcp) 4 itpdp
• Pressure P = £÷ JP} fcp) 4itpzdp E2=1,542 t me"

which can be determined if the phase space distribution function (fcp)) and the statistical weight
are known

.

For the phase space distribution
,
one needs to solve the integra- differential equation

(Boltzmann equation ) : IF + 3Hn = JCESCEI]d3p



If it is in kinetic equilibrium, this equation is easy to solve, and we obtain :

Relativistic : Non - relativistic ( TLE-m)

JCP) = ee
!
.ms/r..,-

± y
fcpy a e

- (ma +

PY2ma-nkk.it
: Fermi - Dirac distribution (Fermions) E = 11542 t m'd = me p42mcz t 1 I mo t PIma
- : Bose-Einstein distribution (Bosons)

Relativistic particles in kinetic equilibrium (meat , µ =D

Introducing the expression for the phase space in the equations we get :

p2
• number density : n = ftp.yyz/ecp2tme4noT+ydP

p2 NOTE
•

energy density : Cd =
(ftp.gz/cp2tm2c2ecpa+m.cyr..- ±, DP In the Early Universe

, MKT, (Mr = 0 anyways).
Further

, for relativistic particles which are

pz c
- P2

dp continuously created and annihilated there• Pressure P = ÷hyz Jc p
. + mzczecp2tm.cz/koT+y is no net change in particle number, and hence

their chemical potential can be neglected in

Taking m ⇐ T, this expressions reduce to : (P's> me) general .

p2
• number density : n = ftp.yyzfecpz/kBTtsdP

p2
•

energy density : co = ¥, ,z Jcrpz dp
cc p2 IKBT If

pz c
- P2

dp• Pressure P = §¥3 Jc Tpa ec pz IKBT It

And simplifying terms :
pz

• number density : n = ftp.yyzfecp/kBTtsdP
p2

• ""%
*""¥ " "

"
=

(%"" £" e
" """ H

"

} Same int rat
.
The Fatio" "^ be combined

• Pressure D= effs f op P2
dp to get D= . . .

ecp IKBT If

⇒ D= Izca

Doing an
"

smart
" coordinate transformation we can write the integrals as :

E = ¥g,
⇒ p = Kotek dp = KBT desk

• number density : n = 92
, .az/(kcIt)ZeE! , KIT DE = 92*2 (IE) T' fees:±s des

•

Energy density : ee = 291µF(KII)
'

e
: ! , KEI de =z÷z III. tuff des

The solution to this integral are f
-functions



MATHEMATICA & co :

%! , If =PCnts )5Cntt) (t) f : Riemann zeta function
n = 2 (1) = 2513)

⇒
Je÷, de = ÷ff÷ des (2) Mn) = (n -D ! (2) = ¥2913)

§f÷j des = IJeE# des (3)
n =3 ( 17 = 65 (4) = 6

Mn) = (n - I ) ! ⇒

(s) = I 65141=3-6%4

We obtain :

Number density : n = 9¥ (k¥13513

Energy density : ee =¥) t.kz?s-gT4 [ ] - only for bosons

pressure : P = Iz ed

Non relativistic particles in kinetic equilibrium (MDT)

Now f (p) z e
- (mo +

PY2ma-nyk.IE
= IPT 12 t me " = me p42mcz t 1 I M CZ t P%mcz

Solving the integrals one gets :

• Number density : n = gfmz.hn#)3kT3ke-Cmc2-nKkrsT
• Energy density : Co2 = nma t Zz NKBT

• Pressure : D= NKBT

Non - degenerated relativistic gas CKBT ⇒ mc3µ=o)
Recap : BOSONS FERMIONS

Non relativistic gas (KBT Kma)

NUMBER

DENSITY n = %# (III)
>

GT3 n = I 51,31 (III)
>

GT3 n =

gfmz.fi#)3kT3ke-Cmc2-nKkrsTEEfsfY
,

ee = I3÷gT4 ee = I 734514 coz = nmcztsznkrst

PRESSURE P = tzec
' P = tzec

'

D= NKBT

NOTE :

• The energy density of relativistic particles scales with temperature as TH :

Co2 L -14

Stefan - Boltzmann law

1 The number density of the non - relativistic component is exponentially sopressed . If it

would have stayed in equilibrium with the temperature of the photon bath, it would be

diluted
.

Alexander Knebe
fermions



2 If it is able to freeze - out, the species

in H decouples from the photons and it

s
'

Id
"

remains at is own equilibrium :

Ta R
-Z

Mnr L R
-3

⇒ nm x T
312

EARLY LATE (without the exponential factor because it is

UNIVERSE decreasing temperature
>
UNIVERSE

(expansion ) not coupled to the photons anymore, i.e . not

in equilibrium with them) .

All the particles in the thermal bath share the same temperature, but they all have

different distribution functions . Species are characterised by their mass, statistical

weight g and maybe integration factors (bosons Vs . fermions) .
However , relativistic species can be combined via an effective g* .

Energy densities and effective statistical weight
Let us focus first on energy density , considering all the possible contributions : coupled

[not] relativistic and decoupled [not] relativistic particles .

C = erath tent + edge tenrec

Relativistic species in thermal equilibrium @thee ,
> effective statistical weight g*

Cree CZ = ? Cree.ie =÷ ¥B÷ 9*4) T " g*thCT) = Igi B t E¥giF

At some point in the Universe everything was relativistic and in thermal equilibrium . This was at temperatures

above Krs T s> 175 GeV
,
thus

,
all the particles in the standard model of particle physics were

in thermal equilibrium with each other
.

We can calculate the effective statistical weight :

GB = gluons t photons t W
'
t Zo t Higgs = 8×2 t 2 t 3×3 t I = 28

Gf = quarks t leptons t neutrinos = 12×6 t 6×2 t 3×2 = 90

g* = 28 t It 90 = 106.75

As T drops, various of those relativistic species become non -relativistic (and annihilate),

and so they are removed from g* .

BUT neutrinos
, for instance , continue to exist and remain relativistic after decoupling .



Relativistic species (coupled and decoupled , Ethel t edge) .

We can add the contribution of decoupled relativistic species to the total energy density to

the effective statistical weight as :

g*
dec (T) = -3,2 gits ( )

"
t f-¥ Sit )

"

where Ti is the temperature of the decoupled species, which can be different to the temperature of
the Universe (thermal/photon bath) .

The graph shows how the effective weight of all

the components in the thermal bath evolve as a

function of the temperature of the Universe
.

It is usually aproximed as a step function .

>

decreasing T

^

Neutrino

decoupling
Electron -

positron
annihilation

is
E
e

-8
+



Non relativistic species

We need add their contribution to the energy density of the Universe
.

Cnr CZ X ? Mi Chi t Z ni KbT

n ith = gi ( mail.IT )
"

4312 e-
' mi"-Herst

n idea x Ti 312

3.3
. Entropy of the universe

Total entropy
We have already seen that the entropy is a conserved quantity .

It is expected that it is proportional
to the scale factor and the temperature .
We start with the second law of thermodynamics : Tds = d U tpd V = 0

And writing DV and du in terms of the scale factor :
DV = d (RD } ds =÷ [d U t PDD
du = d( Ved) = d (Red)

DS = IT [d U t p dV] = ÷ [d. (Rsguy + pdcrzjy = 2 Pdcm) = d(pm) - R3dp

= ÷ [d (R' led TP)) - R
Repeace in favour of dT : Cauchy - Riemann integrability condition :

225 225
=#[d (Rs(eatp)) - tf Rs(eatp) DT] = =

En,
⇒ dp = (ed tp)

= fed (R'(ed TP)) - R÷z (ee tp)DT =

= d[teeters + const]
d Integration by parts

⇒ SCT) = 123
(eatp)
f-

= const

-

Relativistic species

p = tf Cree CZ ⇒ NOTE

g*sth = goth CT)
SCT) = RI ( It }) ere a = }I÷ak3÷g*sT4=2÷sI3÷g*s (RTP g.Eec gif '

t7z¥giFy3

SCT) = 2÷I3÷g*s (RT)3
SCT' ""its Tag*s pie

9*8" t g*decCT)

↳
changes in time ! !

The expression for SCT) that we obtained before from the second law of thermodynamics takes into

account everything that is contained in the Universe
, coupled or decoupled from the thermal bath

.



After electron-positron annihilation something
happens to the thermal bath . The two

effective statistical weights start to

differ . Whatever decouples at that point
disappears .

Temperature evolution

Ta
g*'s

' 's R-I > when particles become non - relativistic and decouple, g*s drops and its

entropy is transferred to heat bath, which increases its temperature

(Entropy of decoupled species is conserved separately ) .

Usually what decouples becomes non - relativistic or annihilated . The only

remaining relativistic decoupled species were neutrinos .

• Dr =L :

steer = 1.5 g*s-
"4 (¥)

"

( time in seconds after de Big Bang)

Dem : From FRW lecture
, Dr =L :

f
RCH at

"
⇒ Ha IA

H = 8¥ er = 8¥ kh3÷ g.* CT) -14 2 g* CT) T
'

aft

Particle numbers

ni = (E) 51¥ (Kfz)
'

gits ⇒ II -- [⇒ 425,72333¥ Is LI] for Fermions

3.4
. Decoupling

Generalities

As it was mentioned before , particles drop out of thermal equilibrium when their interaction

rate is less than the expansion rate of the Universe
. The interaction rate was defined as :

Me a n ou
n = number density T = interaction cross - section v = relative velocity

The interaction rate depends on the carrier of the interaction :

• Interaction mediated by massless gauge bosons : R x T (gluon, photon)
• Interaction mediated by massive gauge bosons ( T < Mx ) : R x T

' (wi Z)



Universe expansion rate

We aim to compare the interaction rate to the expansion rate of the Universe
,
which

is the Hubble parameter .
Me a H

We would like to know how it scales with T
.

I
. Radiation domination : Ta R

-I
2. Matter domination : Tx R

-Z

Friedmann equation : Friedmann equation : Ha R
-3h

H2 = Hour
, o ( 11-2-24 Dro =' > Ha R

-2 ⇒ It a T 413
R = Gtz) - I

⇒ Ha T
'

condition for particles to remain in thermal equilibrium
• Interaction mediated by massless gauge bosons : R x T

• Interaction mediated by massive gauge bosons ( TF Mx ) ! ¥12 Ts > 1
The quantitative calculation requires actual Mc = nov and H -

-
Friedmann equation, thus , we

need to know the evolution of the number density using the Boltzmann equation :

Ft t 3Hn = - Lov> (m - neg2) → n (t) decoupled
↳ still in equilibrium↳

cross section keeping species in eg.

na neg ⇒ r
.

h
-
s
.
so

} n → neg → Tries to be again in
NL neg ⇒ r

.

h
-

s
.
do equilibrium

The larger the cross section
, the longer an species

remains in equilibrium .

Decouple : 0=0 ⇒ n a R
-3

(freeze - out) ↳ 7,23

Neutrino decoupling (during radiation domination) .
Neutrinos were coupled to the thermal bath via the weak interaction :

n to 2- Pte
-

pts te n t et

Its interaction rate is given by :

Bo =3
. 66 GETS

, where GF is the Fermi constant

We want to figure out at what temperature did neutrinos decouple .

• Radiation domination : H2 = Herr
. o
R
"

= Ho
' f÷÷o R-a = 8¥ er.. R

-4
= 8¥ er = 8¥ g.* T

'

r
tf =

3
-

G 6+-2 T
5

(851 9*1%-12



This can be written as : 7¥23 Mp GF
'

Ts
, GF : Fermi constant

, Mp '

- Planck mass

And
,
to find the decoupling temperature :

MIT = I ⇒ Tod" a 0.8 MeV

This is larger than the rest mass of the electrons ( O - S MeV) , so electrons and positrons

are still around being created in the thermal bath .

T > 0.8MeV , Idea • R
- I

The temperature of the decoupled (still relativistic) neutrinos drops like R
- ? After a

decoupling ( range Te [0.8, 0.5117 MeV) the thermal bath contained photons, electrons

and positrons (all the rest has decoupled) . We can calculate the effective statistical

Weights ← photons
f
e
-

and positrons

• TE [0.8, 0.5117 MeV > g*s =
2 t I 4

• T - 0.511 MeV > gas =
2 ( electron - positron annihilation)

since Ta g*j"' R' , the temperature of the
thermal bath raised due to the change in

g*s . Through entropy conservation :

¥ = (¥)
"'

To = 2. zzsk
> Tn = 1.945 K

- - - - Neutrinos : R'

- Thermal bath : reheated
R

NOTE

At some point neutrinos become non relativistic and start scaling like R
-2

Photon decoupling
Photons were coupled to the thermal bath via Thomson scattering with remaining electrons

e
-

t 8 ← e- to

Following the same steps as before :
• Matter domination : H2 = Hokmo (RE)

-3

- H = Ho Rm,o"2 (Rohr )
"

%
=

Ne OT C

F Ho Don
'

(Rok)
312

Relativistic photons :
Tar

-t

s Tgdec = O. 27 eVDecoupling condition : THI = 1
Non - rel

electrons : he = ge ( Meath) e
- Cme -ne)HKT



3. 5 . Matter -radiation equality
For this calculation we consider the scaling s of
matter and radiation (not the cosmological

constant) .

The equality time is defined as :

Cree (Reg) = Enr (Reg) ⇒

Itz_EmoCrio@nrR3-Enr.eqReq3-fnr.oRo3ErelR4-erel.eq
.
Regi = Gee, o Roa } Leg = e%÷ tho

we just need to calculate today's radiation and matter density : NOTE

• Matter density : emo = Dm
, o

3¥
= 1

.
9×10-29 emo h2 gym ,

Cnr = em

81T6 end = Er
• Radiation density :

Er, o = Pompeo t G.o { GMB"
= ¥13 Sours Tomb

" Ho = too h km/s ,µpc

Go = I ¥g÷ go#
"
Tcu.)

"

y photons f
neutrino species /

Nw =3

⇒ er. o = at Igf ¥3÷ Tcm: ( 2 t F x 2N, x (⇒
"

3) = 7.8×10-349
Cm3

↳ neutrinos

It Zeg = EMI = 24000 Dm
,o
h2 > Zeq I 3440 Trio = 2.73 K

s To,eq
I 0.8 eV

Eno Ty x (t t Z)(Planck cosmology)

{ Radiation domination

f Matter domination


