
III. Friedemann - Robertson -Walker mmooddellss
2. 1

.
Friedmann Equations : comowing coordinates and redshift

The Friedmann equation describes the background , not the formation of galaxies or other observable

structures
.

2. h
.
I
. Robertson - Walker -Metric

Introduction

Friedmann was the first one to recast Einsteins equations into a form that allows a solution

for a Universe that is either expanding or collapsing , but to do so he did not use the most

general homogeneous and isotropic metric .

This metric was derived ten
years

later by
Robertson and Walker (1935) .

Derivation

The starting point is the principle of relativity : the equations describing the laws of physics
have the same form irrespective of the coordinate system .

This is fulfilled by Einstein

equations :

Rm - I Rgm - A gun = 81T G Tru ,
which require a metric

.
This metric must be homogeneous and isotropic in space (cosmological

principle) → Robertson - Walker metric .

Let us start with a general metric :

do = gu, dxndxo , with { Xm = (Ct, xi) = vector (coordinates)

> distance between two points gun = metric tensor
,
describes space

- I O O O NOTE

gµ, =
0 He 42 813 git = 0( O f;; f!! %; ) If time depended on space,

O measurements of time could

Vij should describe a homogeneous and isotropic 3D space, distinguish one place from another

(not homogeneous or isotropic)

i.e
. maximal symmetry for the 4D hypersurface described

by xi . y
Metric of ID curved space

^

de = dxztdyzBsf
ID space = hypersurface in 2b (maximally symmetric in 2b) s ×

R2 = X2ty2
> do⇒ ID distance on 2B hypersurface t

R2 ⇒ 2B hypersurface



/

We can get rid of the second dimension (e.g . y) as we live on ID space (e.g . only x) .

Taking the derivative of the second equation :

R2 = x.
2
t y

2
s O = Xdxtydy > dy =

-

×{× } dez = dx 't YI!
re - arranging terms > y

2
= R2 - X' Distance in curved ID space

NOTE : We recover Euclidean distance when R→ (dez = dxz)

Metric in 3D curved space (HD maximally symmetric hypersurface) .
The calculation is similar to the ID case .

We have three possible cases for homogeneous and isotropic metrics :

1. Spherical 3D space
2

. Hyperbolic 3D space : 3
.
Euclidean 3D space :

de ' = deft dad tdxs tdzz do = dxe' t dad tdxs tdzz de' = dxit dxzztdxz

R2 = XP t XP t XI + ZZ - R2 = XP t XP t XI + ZZ

3D space NOTE

Euclidean - trivial Homogeneity : de is invariant under translations

spherical > inherited from HD symmetry Xi - Xi t D

Hyperbolic > Sec 13.2 in Weinberg 's Isotropy : dl is invariant under rotations

" Gravitation & cosmology
"

Xi - R
"

i Xr.

Differenceating in the expression for R2 .. O = Xedxr t Xzdxzt xodxs t Zdz and using it to obtain

an expression for z, one gets to the line element .
.

(x, dxet Xzdxztxsdxs)
2

d = dxp + dxz2 t dis t ( spherical 3D case )
R2 - Exit Xz2tx5)

And changing to spherical coordinates :

gr = IT =L

F = (Fz ) = (r! side ) > dxitdxitdxs-grdrztgodo.ge dez { go = It = r

go = 3÷ = rsino

⇒ de' = dr2 [ p?! rz ) tr'@Eh + sin20 dez) (spherical 3D case )

To take R as a prefactor, we introduce new rescaled (Conaing) coordinates

r = Rx dr = Rdx r = spherical coordinate



de2 = R2 (dx2 [ , 1×2 ) tx (dot since de')) spherical 3D case

For the hyperbolic and Euclidean cases we just take into account the change of sign in (or disappearance

of ) R . This allows us to rewrite the metric as :

K = t 1 spherical
de2 = 122 ( yd!!

× ,
t x
' (do't sinOdd)) with { k = o Euclidean

K = - 1 Hyperbolic

rii.fi::
" ÷.
.
:*
..
) ti: ::::c::*. . .. ÷: ÷. ÷!!

Which gives us the Robertson - Walker metric :

(de -- gu dxudx.)
do = - (cdt)

'
t R2 [ y ¥1, tx (dot + sin' Edie))

Robertson - Walker metric

NOTES

• Curvature of 3D space : R = Gkzz
Curvature of space-time : R = 6 t 6 (Ea )

'

t 6 (Iz)
° Any non - trivial goo component can be absorbed by re - defining time : dt ' = groo dt

• The inclusion of go; or gio components would break isotropy

2. 1.2
. Geodesics

General case .

We can built the geodesic equation from the position 4- vector and the metric of space -time:

XM = (Ct, xi)

do = gun dxmdx
- with gun = Robertson Walker metric

In absence of external force, the geodesic equation is :

d÷= - r:

with IT = Igm-[ ag;÷ +395. - 397T]

And in terms of the proper velocity :
O = dy÷ + PI u-ud with u = DI

ds



Particularization to Robertson- Walker metric
.

First, we calculate the Christoffel symbols :

A.° = RI ri; Mj. = TE R2 di; f: = f- oil 137%2 t 3¥: - afire)
All other components are zero

In FRW metric : 9=0 , Rig = Pizzi;
Physical 3D velocityThus

, we can write the geodesic equation as :
luiz ai; uiui

o = III + % wud = d÷ + R; uiui = dats t II ri; uiui !f÷ + LI ,ur

⇒ o = d÷ t Yz her

We can do an additional change of variables to write DI in terms of t :

ds

W = - Cdt wi = DI
des ' DS

÷=÷÷±i÷÷ a.

-CZ
= u, uh ⇒ Uo duo = - l U l duel

(1) v

d÷=f÷ Is = - EEE -- - YET =

'II:
'
=

'

I nil

we obtain the geodesic equation :

O = lie l t 'LL I up

From it
, we can read that 1% a - In . With one more charge of variables we find :

'It a - I
date = It iz

r
s fiddly iz a - iz > FIT a - ¥ . lui at

magnitude of physical 3D velocity
Thus

,
the momentum of particles scales like %

Ipl at
R

2. 1.3
.
Comoving coordinates and redshift . Expanding Universe.

Expanding Universe

cosmological expansion and redshift .

Let us look again at the Robertson - Walker metric .

de = - (cdt ) ' t R2 (t)[ ¥1
,

t XZ ( da t sin -0 dez))



Note that Rft) can be an arbitrary function of time . Using Rct) , we had defined the

conning coordinates
as :

Fct) = Rct) I
> Comoving coordinate

we want to find if there is any connection

between Rct) and observables
.

Since all lengths scale like RCTI , this will also affect
to waves

.
We can define redshift as :

z = do { do = observed wavelength
DE DE = emitted wavelength

If we are able to find a relation between Rct) and Z,

we would have a connection between Rct) and an observable.

This relation is given by :

• De Broglie relation . p -- hi,

• FRW geodesics :

"

p a Iq } ! =L÷
Expansion factor and redshift .

Working with our definition of redshift and the relation between Rct) and the wavelength,

we can write : NOTE

This relation is very
•

BaeR (te ) I
> RR÷ = =

d!g⇐ = }÷ - a + y =

z
! , Reto ,

=

y + z
important because it

does not depend

And defining the scale factor aft) as the normalization of Rtt) by Rfto)
on cosmology

(alto ) =L) :

act) =
Rct)

µ
Reto,

= ytzt s act) = cosmic expansion factor
calculable

↳ observable

2- observable
,
act) related to cosmology (need to learn how to calculate it)

2.2
. Perfect fluids : equation of state and adiabatic expansion

2.2.1
.

Derivation of Friedmann Equations
Friedmann equations and general relativity .

As we have already seen
,
Einstein 's equations govern the behaviour of spacetime :



Run - f- Rgm, -Agp = 81T G Tun
--

geometry properties of matter,

> described by the energy - stress

tensor Tun .

> described by the Ricci tensor Run and the Ricci scalar R
.

Run =L Cgm ) R =h(Run)

Assuming isotropy /homogeneity for space (Robertson Walker metric) and that matter

is a perfect fluid :

Tre, = - Pgm + (eat p) unuo,

one can obtain the Friedmann equations .

)
'

= 851 e - KIT +%
(Both equations are corrected via Energy conservation)

if = - 4¥ (etE) +

Friedmann equations
From this equations we can obtain Rct) (or act)) and study its dependences .

Critical density
Assuming no curvature and A

, we can define the critical density as :

C Fearit =
SHI H =
I

856 R

It will be used to normalise the Friedmann equation .

2.2.2
. Equation of state

Equation of state of barotropic fluids
solving the Friedmann Equations still requires an equation of state .

We will restrict ourselves

to barotropic fluids (i.e .
linear relation between p and e ) :

p = WCT ) Co2

This expression is derived from the equation of state of an ideal gas :

p = n KBT =

KB T E"
= WCT)ec2

Mpcz
Pm CZ =

Krs T

Mpd ( s + knot n = number density
✓

Co - 1)mpd
)

em = mass density
number density µ - mass density

"

s energy density {
e = energy density

assume main contribution ndeed to include the thermal energy .
is coming from protons



Dem : Mass density - Energy density :

Co2 = ema t E = em tI = em et II:} = em a t Eff, 'm:3? = emo (I took:Tmpa)
co-s)

v

p = ( o- t.IE , 2- adiabatic coefficient , E thermal energy

BaroTropic fluids in cosmology
All the terms in Friedmann equations can be interpreted as densities, and so have an

associated equation of state .

• radiation : W = 113 (photons)

• collisionless matter : w = 0 a absence of collisions cannot build up pressure

• Vacuum energy : w = - I

• Curvature : W = - 113

2. 2.3
.
Adiabatic expansion

Energy conservation and Friedmann equations .

Almost all solutions predict an expansion or collapse of the Universe
. This expansion is adiabatic

(not isothermal or any other process) .

In an adiabatic expansion there is a balance between the change in temperature (or energy)
and pressure work

.
In adiabatic processes, entropy is conserved .

From the combination of 1st and 2nd Friedmann equations (also from T.I
.

= O) we can

obtain energy conservation equation :

I
.
Friedmann equation 2 . Friedmann equation

132 = 856 e R2 - Koz + of R2 Piz = - 4¥ (et 3¥) t
] It

2ND = 836 (e. pit 2eRpi) t 2RR

E=4EI ( E?÷ toner) t r

EL = 451 (EF t 2e) t

Equating both expressions :

456 (EF t 2e ) + = - 41¥ ( e t 3¥) +of



(EF t 2e) = - Ce t )

EF toe = - e - 3¥

O = Et 3 Ig (et Ia)

o -- e
'

t SEL(et Ia)
Energy conservation

Adiabatic expansion and energy conservation
.

Now it is interesting to look at the second law of thermodynamics :

Tds = du t pdv

The change in entropy is given by the change in energy and the pressure work . Let us take
a look at the difeentials :
• Volume element : DV = d (Rs)

a
constant

scales like R' since r = Rx (Conaing coordinates) → V = Rs Vc s du = Vc dCR3)

• Energy : need to multiply energy density by the volume , which scales like R's

du = d (Vea) = d (piece)

Dividing by dt the expression of the 2nd law of thermodynamics we find :

date + p d¥ =

d(Rifted
)
t p date) = 3piped t Rs@ c

'
t 3pAPi = O

^

From energy conservation equation:

O
= Rise on t 3DR2 eat 3Pimp

> Tdd = 0 a Tds = 0

lot

During cosmic expansion entropy is conserved, and hence the expansion is adiabatic .

du t pdv = 0

Any change in energy must be compensated by pressure work : The volume is changing , so

enemy for the expansion must come from somewhere
.
It comes from the change in

energy of the contents of the Universe : the photons are redshifted .

Implication for barotropic fluids
Let us remember the equation of state for this fluids :

p = wear



Using again du and DV, but substituting p by the equation of state :

du = d (Pisco) ) d(Pisco) = - p d (Rs) = - weed ( Rs)

DV = d (Rs)

O = Rs de te dos) + wed (Rs) = R3de t ( Itu) e d(Rs)

f- de = - (stay dCR
R3

This differential equations gives the relation between e and the scale factor . If we solve it,
we find : NOTE

CR
'
= Co Rod o Matter density scales like 1ps because

e peut
w )

= const
choose scaling Rod =L it is mass /volumes

° The additional Kr factor for radiation is

• radiation : W = 113 a era R
-4 due to de

energy change produced by z
matter radiation equality

• collisionless matter : w = O > em a R
-3

• Vacuum energy : W = - I > Pr = Const
radiation
domination

• Curvature : W = - 1/3 s en x R
-Z -

Tmoahtinration

2.2.4
. Density parameters

Definition . Rewriting Friedmann equations
First Friedmann equation

The introduction of density parameters leads to the most memorable form for the Friedmann

equations . We start with Friedmanns equation :

Ca )
'
= 8¥ e - FI + Is

where e = Few (Rct))
Radiation : w = Yz s eCR) a R

-4

{Collisionless matter : w -- O s e CR) a R
-3

We could also include A and K in the density term
,
but we will focus first on radiation

and dark matter .

Since we know how energy
densities scale

,
we can rewrite the Friedmann equation in terms of

the present density content and Ro .

> TEK 'S limo (E)
'

ter.

-

Y - Eoe. #
'

t



We can use the critical density to normalise the densities and

ellin irate the prefactor. We can define :

REMINDER

THE COSMOLOGICAL PARAMETERS
critical density :

• Matter density : Dm. o = 8g of emo = emoji
. Grito = SHI

81TG
• Radiation density : Dr

. o
= 857¥ er, o =

Eriko

• Vacuum energy : Rao = SI, A
• Curvature : DK

, o
= - HIRoz K

• Expansion rate : Ho = (Az)o

Substituting this on the Friedmann equation and remembering that Zo = 1¥ :

H2 = Ho' [Dr,o (It Z) " t Dm, o (ttz) 3 t Dk,o ( tt Z )
'

the
, o] > Uses density parameters at present time

Note that these cosmological density parameters are the values measured today . Calculating
the Hubble parameter at today 's time gives the known cosmic sum rule :

I = Dr
,o
t Sm

, o
t DK

, o
t Dr

,
o

This holds at any time : I = Dr Cz) +Dm (Z ) t Da (
Z) trft) (for decoupled matter

and radiation
.

Second Friedmann equation ,
barotropic fluids

RIL = - 4¥ (et 3¥) t = - 4¥ ( Zee- + 3

Zwjei
"

) t 51 = - 4¥ (Zeit szwiei ) t II =

← only considering radiation and matter

= - 41¥ Z( It 3.wi) Ci t = - HI (Z (it 3wi ) ri CZ)) t H're Cz) = - HI (Dm Cz) t 2Dr Cz)) t Hh, A)=

Multiplying by - Ip :

- Riff = I Dm Cz) +Dr CZ) -Ir Cz)

Cf = - FRIZ = I Dm (z) ter CZ) - In Cz) > Uses density parameters at redshift -2

Deceleration parameter

RCz) : evolution of density parameters
To calculate the evolution of the density parameters we just need to look at their definition,

adding how each term evolves with redshift :



I
barotropic matter

D (z) = 811 ecz, =
811-6

ZHYZ) zppgz,
fo ( I tzjscttw

)

/
I . Friedmann equation

REMINDER
fo ( I + zg3Gtw

)

D. (z) = ¥ Radiation : w = 113
3H4z,

CCZ) =

8156

3. H2oCz) Dr, o (It Z)
"
t Dm, o ( ttZ)

3
t Dk

,o
( tt Z )" +Tho

matter : w = 0

Co > Do Vacuum energy : W = -I

D (Z) = 8tTG
ecz,
[ Docs + zjscttw

)

314427 Dr
, o (It Z)

"
+ Dm, o ( ttZ)

3
t Dk

,o
( tt Z )2 the,o

NOTE :

D Cz) =
Et ^^

; same result as for w= - I
3H2CZ)

=

Dr
, o (It Z)

"
t Dm, o ( ttZ)

3
t Dk

,o
( tt Z)2tRr

, o

Ignoring radiation (since it is not important in that redshift interval ) :

NOTE FOR LATER

Ri
=

Rio

Rj p
,;o

( I + z)
(ni - nj)

with A =3(Itu)

There are actually only three independent density parameters , since :

I = Dr
,o
t Rm

, o
t Diao + Duo for 2- = 0

Interplay scale factor - redshift - time
If we know the values of the density parameters today , we can solve the Friedmann equation
as a function of time , and we have a direct relation to something that we can observe as

.

For standard cosmological models we have a unique mapping between a, t and Z .

Further
,

the constancy of the speed of light then also relates those to distance .

If calculations do not match observations, it is necessary to change the Ds used to

solve the equation (iteratively) .

H2 = to [Dr,o ( t t-274 term,o (1+2-73 t die,o (Ith' t Dr, o]
⇒ solution is act)

⇒ relation to redshift alt)=L > observable
.

I TZ



2.3
. Solutions of Friedmann equations for simple models

2.3. I
.

General trends

we will analyse the solution of Friedmann equations for different parameter values .

IT = 81¥ e R2
- ka t R2

Di
= - titfer (e +3¥) t r

1=0
,
baroTropic fluid (p = wed)

pi22 R2
- 3Gt w)

- Kaz as @ & R
-""w)

NOTE

2- 3Gtw) soELO as et 3¥ so (p -
- wee , w > o)

Today :

(E)
o

> O

pyo

s (Rogo > O

pi > o
,
Dino

→ Rft) has been monotonically increasing

Ftc with Rltc) = O - singularity
Future

• k = O : R°2 & R2
- 3C' '-w'

s RL t
"
""w'

⇒ indefinite expansion .

↳ R3CttwH2
- I

= dt
a KO

K-- O

• k > o : Dia R2
- 34+1 Ine s F Picts ) = O ⇒ recollapse

• today
k> O

Pico ) = to

Rca ) = - 1k , a } change of sign . ,

• k s O : 122 a R2
-"'tht Ik lez s pi > o s Rft) 9 ⇒ increased indefinite expansion

A LO

R2 = 81¥ @ R2 - Ka - 0431 R2 = 8¥ Emm R2 - Koz

is = - 4¥ rfe + II) -
"Y '
r -- - 4¥ r (et'T +931¥ ) so

↳ Attractive force
Rft) starts monotonically increasing and 3- Blts ) -- O

Recollapse happens even earlier due to the "attractive force " .



A > O (measured)

R2 = 81¥ @ R2 - Ka - 0431 R2 = 8¥ Emm R2 - Koz

is = - 4¥ r (e + II) -
"Y '
r -- - 4¥ r (et'T - 97ft ) so

↳ repulsive force
Forever expanding Universe ( accelerated)

NOTE : e drops, both remains constant

2.3.2
. Special solutions for flat and open world models

.

We will use the expression of the 1st Friedmann equation in terms of the density parameters .

(Pip)
"

= Ho
'

[Dro (t t Z )
"
t Dm

, o (tt z )
'
tDk

, o ( ttZ)
'

thro]

These solutions will be valid to first order because we will only take into account one of
the components .

However
,
this is useful to analyse the scaling relations at the epoch in

which each component dominates the expansion of the Universe
.

Flat model with Dm =L

( RL )
2

= Hf (Roz)
3 ( Friedmann equation )

NOTE

312 This solution is important after
Piz = Ho ( RRI ) matter - radiation equality

R
312 R

.

I
= Ho Rok

Malter domination

Rik DR = Ho Rosh at solving the differential equation
, Rp = (¥)

213
to = 2-

I 3 Ho

Flat model with Dr =L

(Az )
'

= Ho
' (Roz)

"
( Friedmann equation ) NOTE

This solution is important before

R÷= Ho (Roz)
"

matter - radiation equality .

R2 Piz = Ho Ro? Radiation domination

Rdr = Ho Ro
- at solving the differential equation Rpfot) = (t )

"'
to =I

> I 2 Ho



Flat model with Dn =L

(Az )
"

= HE

Roz = Ho

DRI = Hodt s Rft) = e
Hot

inflationary Universe

General models with Dm ¥0 , Dr =0 Dr = O

fan )
'
-

- Ho
'

(rm.ofroajtrr.io#5)

pie = R2 Ho' (FI )
'

(Dm.. (Roz ) thro )
-

Amo > I > K LO

Dm
, o

ti = Ho Ro Amo (RS ) t ( t -Dono) R = act - cos Q )
a =

arm,o
- s)

t = b (on - cos Q ) b =
Imo

2HoCrm,o - 1)3k

R° = Ho Ro Amo (RE - I) t I > Imo Lt

R = A (cosh Q - 1) A =
Imo

2(t - Rm, o )

Need to construct Rct) using the parametric Sol . t = B (sinha - O) B =
Amo

-

2Ho (f - Dm
,o ) 312

The first solution (Dm > I ) is important for structure formation .

We start with an overdensity 8 > I
.

The background is expanding . If
8 is larger than a certain value

- (1.68)
,

then the density inside the
decouple

volume will decouple from the expansion

of the Universe and
, eventually , reallapse .

We can say that this region is
"
a Universe inside a Universe

" with Dm SL
.
Thus
,
we

can use this solution to describe its evolution (his own Rct)) .

Flat model with Rm t An =L
, Dr = O (our Universe today)

tch =
2-I en ( I÷

.
( s! z )

'

t Ff÷(e¥
'

tis )3Ho Dao

Up to redshift too it is not necessary to take radiation into account (wow Rr n 106)

can also calculate RCZ) from tch finding act) and then using R = Is
+z



General model Dm to , Dn ¥0 , Dr ¥0

There is no analytical solution for the general case .

It is necessary to integrate numerically .

2
.

3.3
. Horizons

Definition
We always talk about Rtt), but it is not the size of the Universe

,
but the scalefactor of

the coordinates
.
There are multiple definitions for the edge of the Universe .

Cosmological horizon measure distances from which one could possibly retrieve information
from the past or interact with in the future .

Distances
.

We
go back

to our metric :

do = (cdt)
'
- R2 [ y ?"µz tx (dot + sin' Edie))

Photons follow null geodesics :

O = (Cdt)
Z
- R2 (t)[III, -1×2402 + Sirode 2))

we can define the distance as :

XE K -- O

de = f (XE ) = Jo
"

dy!
µ,

= Jato cpdtt, f(XE) = ⇐ arcs in Crim XE) K =L

c.moving ↳fan, {÷,
are,,µq, *, µ . ,

dp = Rft do = RL? I! III,
proper distance

Past horizon :

to = today TE = past

Future horizon

te = today to =

Types of horizons
Particle horizon

Max distance that a particle can have travelled since decoupling :
Rp (t) = Rct ) ) t cat'

tdec Rtt')



"Particle horizon
"

(for some textbooks)

Max distance a photon can have travelled since
-

lightcone

Big Bang ( there are events we have not
a

c

seen yet) .

Even horizon

Max distance a particle can travel from
now onwards ( there are events that we

will never see )

Rect) = Rct) J! Cdt
' ••

Rct's

Hubble radius

Distance at which recessional velocity equals speed of light
RH =

c- Rcti (t) = Roz E
H d

comoving


