II. Friedmann-Robertson-Wal Ger models
2.1. Friedmann Equations: Comoving coordinates and redshift

The Friedman equation describes the background, not the formation of galaxies or other obsemable structures.
2.1.1. Robertson - Walker - Metric

Introduction
Friedmann was the first one to recast Einsteins equations into a form that allows a solution for a Universe that is either expanding or collapsing, but to do so he did not use the most general homogeneous and isotropic metric. This metric was derived ten years later by Robertson and Walker (1935).
Derivation
The starting point is the principle of relativity: the equations describing the laws of physics have the same form irrespective of the coordinate system. This is fulfilled by Einstein equations:

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}-1 g_{\mu \nu}=8 \pi 6 T_{\mu \nu}
$$

which require a metric. This metric must be homogeneous and isotropic in space (cosmological principle) \Rightarrow Robertson -Walker metric.
Let us start with a general metric:

$$
\begin{aligned}
d \delta^{2} & =g_{\mu \nu} d x^{\mu} d x^{2}, \text { with } \\
L & \longrightarrow \text { distance between two points }
\end{aligned}\left\{\begin{array}{l}
x^{\mu}=\left(c t, x^{i}\right) \equiv \text { vector (coordinates) } \\
g_{\mu 11}=\text { metric tensor describes spa }
\end{array}\right.
$$

\longrightarrow distance between two points $L g_{\mu 山 s}=$ metric tensor, describes space

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & \gamma_{11} & \gamma_{12} & \gamma_{13} \\
0 & \gamma_{21} & \gamma_{22} & \gamma_{23} \\
0 & \gamma_{31} & \gamma_{32} & \gamma_{33}
\end{array}\right)
$$

$\gamma_{i j}$ should describe a homogeneous and isotropic 3D space,

Note

$$
g_{i t}=0
$$

If time depended on space, measurements of time could distinguish ore place from another (not homogeneous or isotropic) ie. maximal symmetry for the $4 D$ hypersurface described by x^{i}.
Metric of 1D curved space
1D space \equiv hypersufface in 2D (maximally symmetric in 20)
$\longrightarrow d l^{2} \Rightarrow 1 D$ distance on 2D hypersurface

$$
R^{2} \Rightarrow 2 D \text { hypersurface }
$$

We can get rid of the second dimension (e.g. y) as we live on 1D space (e.g. only x).
Taking the derivative of the second equation:

$$
\left.\begin{array}{l}
R^{2}=x^{2}+y^{2} \longrightarrow 0=x d x+y d y \longrightarrow d y=\frac{-x d x}{y} \\
L \text { re-arranging terms } \longrightarrow y^{2}=R^{2}-x^{2}
\end{array}\right\}
$$

$$
d e^{2}=d x^{2}+\frac{x^{2} d x^{2}}{R^{2}-x^{2}}
$$

Distance in curved 10 space
NOTE: We recover Euclidean distance when $R \rightarrow \infty \quad\left(d l^{2}=d x^{2}\right)$
Metric in 3D curved space (4D maximally symmetric hypersufface).
The calculation is similar to the 10 case.
We have three possible cases for homogeneous and isotropic metrics:

1. Spherical 3D space

$$
\begin{aligned}
& d l^{2}=d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}+d z^{2} \\
& R^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+z^{2}
\end{aligned}
$$

Positive Curvature
2. Hyperbolic 3D space:

$$
d l^{2}=d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}+d z^{2}
$$

$$
-R^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+z^{2}
$$

Negative Curvature
3. Euclidean 3D space:

$$
d l^{2}=d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}
$$

Flat Curvature

3D space
Euclidean \rightarrow trivial
Spherical \rightarrow inherited from LD symmetry
Hyperbolic \rightarrow Sec 13.2 in Weinberg's "Gravitation \& Cosmology"

Note
Homogeneity: de is invariant under translations

$$
x_{i} \longrightarrow x_{i}+D
$$

Isotropy: $d l$ is invariant under rotations $x_{i} \longrightarrow \mathbb{R}_{i}^{k} x_{k}$

Differenciating in the expression for $R^{2}: \quad 0=x_{1} d x_{1}+x_{2} d x_{2}+x_{3} d x_{3}+z d z$ and using it to obtain an expression for z, one gets to the line element:

$$
d l^{2}=d x_{1}{ }^{2}+d x_{2}{ }^{2}+d x_{3}{ }^{2}+\frac{\left(x_{1} d x_{1}+x_{2} d x_{2}+x_{3} d x_{3}\right)^{2}}{R^{2}-\left(x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}\right)} \quad \text { (Spherical 3D case) }
$$

$$
\begin{aligned}
& \text { And changing to spherical coordinates: } \\
& \vec{r}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
r \sin \theta \cos \varphi \\
r \sin \theta \sin \varphi \\
r \cos \theta
\end{array}\right) \rightarrow d x_{t}^{2}+d x_{2}^{2}+d x_{3}^{2}=g_{r} d r^{2}+g_{\theta} d \theta^{2}+g_{e} d \varphi^{2} \quad\left\{\begin{array}{l}
g_{r}=\left|\frac{\partial \pi}{\partial r}\right|=1 \\
g_{\theta}=\left|\frac{\partial \vec{r}}{\partial \theta}\right|=r \\
g_{\varphi}=\left|\frac{\partial r}{\partial p}\right|=r \sin \theta
\end{array}\right.
\end{aligned}
$$

To take R as a prefactor, we introduce new rescaled (comoving) coordinates

$$
r=R x
$$

$d Q^{2}=R^{2}\left(d x^{2}\left[\frac{1}{1-x^{2}}\right]+x^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right) \quad$ spherical $3 D$ case
For the hyperbolic and Euclidean cases we just take into account the change of sign in (or disappearance of) R. This allows us to rewritte the metric as:

$$
\begin{aligned}
& d l^{2}=R^{2}\left(\frac{d x^{2}}{1-k x^{2}}+x^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right) \quad \text { with } \begin{cases}k=+1 & \text { spherical } \\
k=0 & \text { Euclidean } \\
k=-1 & \text { Hyperbolic }\end{cases} \\
& \left.\begin{array}{l}
\gamma_{i j}=\left(\begin{array}{ccc}
\frac{R^{2}}{1-k x^{2}} & 0 & 0 \\
0 & R^{2} x^{2} & 0 \\
0 & 0 & R^{2} x^{2} \sin ^{2} \theta
\end{array}\right) \xrightarrow[\text { time components }]{\text { taking into account the }} \rightarrow g_{\mu \mu}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & \frac{R^{2}}{1-k x^{2}} & 0 \\
0 & 0 & R^{2} x^{2} \\
0 & 0 & 0 \\
\text { Which gives us the Robertson - Walker metric: }
\end{array} R^{2} R^{2} x^{2} \sin ^{2} \theta\right.
\end{array}\right) \\
& \text { Which gives us the Robertson-Walker metric: } \\
& \left(d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\omega}\right)
\end{aligned}
$$

$$
d s^{2}=-(c d t)^{2}+R^{2}\left[\frac{d x^{2}}{1-k x^{2}}+x^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right]
$$

Robertson-Walker metric
Notes

- Curvature of $3 D$ space: $Q=6 \frac{\mathrm{~K}}{R^{2}}$

Curvature of space-time: $R=6 \frac{\ddot{R}}{R}+6\left(\frac{\dot{R}}{R}\right)^{2}+6\left(\frac{K}{R^{2}}\right)$

- Any nontrivial goo component can be absorbed by re-defining time: $\quad d t^{\prime}=\sqrt{g_{00}} d t$
- The inclusion of $g_{0 i}$ or $g_{i o}$ components would break isotropy
2.1.2. Geodesics

General case.
We can built the geodesic equation from the position 4 -vector and the metric of space-time. $x^{\mu}=\left(c t, x^{i}\right)$
$d s^{2}=g_{\mu_{2}} d x^{\mu} d x^{\nu}$ with $g_{\mu \nu} \equiv$ Robertson Walker metric
In absence of external force, the geodesic equation is:

$$
\begin{aligned}
& \frac{d^{2} x^{\mu}}{d s^{2}}=-\Gamma_{\Delta \lambda}^{\mu} \frac{d x^{\nu}}{d s} \frac{d x^{\lambda}}{d s} \\
& \text { with } \Gamma_{\nu \lambda}^{\mu}=\frac{1}{2} g^{\mu k}\left[\frac{\partial g_{k \nu}}{\partial x^{\lambda}}+\frac{\partial g_{k \lambda}}{\partial x^{\nu}}-\frac{\partial g_{\mu \lambda}}{\partial x^{k}}\right]
\end{aligned}
$$

And in terms of the proper velocity:

$$
0=\frac{d u \mu}{d s}+\Gamma_{\mu}^{\mu} u^{\omega} u^{\lambda} \quad \text { with } \quad u=\frac{d x^{\mu}}{d s}
$$

Particularization to Robortson-Walker metric.
First, we calculate the Christoffel symbols:

$$
\Gamma_{i j}^{0}=\frac{\dot{R}}{R} \gamma_{i j} \quad \Gamma_{0 j}^{i}=\dot{R}^{2} R^{2} \delta_{i j} \quad \Gamma_{j k}^{i}=\frac{1}{2} \gamma^{u e}\left(\frac{\partial \gamma_{k e}}{\partial x^{j}}+\frac{\partial \gamma_{j e}}{\partial x^{k}}-\frac{\partial \gamma_{j k}}{\partial x^{2}}\right)
$$

All other components are zero
In FRW metric: $\mu=0, \Gamma_{i j}^{0}=\frac{\dot{R}}{R} \gamma_{i j}$
Thus, we can write the geodesic equation as:
Physical SD velocity

$$
\begin{aligned}
& 0=\frac{d u^{0}}{d s}+\Gamma_{\nu \lambda}^{0} u^{\omega} u^{\lambda}=\frac{d u^{0}}{d \delta}+\Gamma_{i j}^{0} u^{i} u^{j}=\frac{d u^{0}}{d \delta}+\frac{\dot{R}}{R} \gamma_{i j} u^{i} u^{j}=\frac{d u^{0}}{d \delta}+\frac{\dot{R}}{R}|u|^{2} \\
& \Rightarrow 0=\frac{d u^{0}}{d \delta}+\frac{\dot{R}}{R}|u|^{2}
\end{aligned}
$$

We can do an additional change of variables to write $\frac{d u^{\circ}}{d s}$ in terms of t :

$$
\begin{align*}
u^{\circ} & =-c \frac{d t}{d s}, \quad u^{i}=\frac{d x^{i}}{d s} \\
\frac{d u^{0}}{d s} & =\frac{d u^{0}}{d t} \frac{d t}{d s} \xlongequal{d s}=-\frac{d u^{0}}{d t} \frac{u^{0}}{c}(1) \tag{1}\\
& -c^{2}=u_{\nu} u^{\omega} \Rightarrow \quad u^{0} d u^{0}=-|u| d|u| \quad(1) \\
\frac{d u^{\circ}}{d s} & =\frac{d u^{0}}{d t} \frac{d t}{d s} \stackrel{\left(1 u^{0}\right.}{d t} \frac{u^{0}}{c}=-\frac{u^{0} d u^{\circ}}{c d t}=\frac{|u| d|u|}{c d t}=\frac{|u|}{c}|\dot{u}|
\end{align*}
$$

We obtain the geodesic equation:

$$
0=\frac{|u|}{c}|\dot{u}|+\frac{\dot{R}}{R}|u|^{2}
$$

From it, we can read that $\frac{|\dot{u}|}{|u|} \alpha-\frac{\dot{R}}{R}$. With one more change of variables we find:

$$
\frac{|\dot{u}|}{u} \alpha-\frac{\dot{R}}{R} \xrightarrow{\frac{d|u|}{d t}=\frac{d|u|}{d R} \dot{R}} \frac{1}{|u|} \frac{d|u|}{d R} \dot{R} \alpha-\frac{\dot{R}}{R} \longrightarrow \frac{d|u|}{|u|} \alpha-\frac{d R}{R} \longrightarrow|u| \alpha \frac{1}{R}
$$

Thus, the momentum of particles scales like $1 / R$ magnitude of physical SD velocity

$$
|p| \propto \frac{1}{R}
$$

2.1.3. Comoving coordinates and redshift. Expanding Universe.

Expanding Universe
Cosmological expansion and redshift.
Let us look again at the Robertson- Walker metric.

$$
d s^{2}=-(c d t)^{2}+R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}+x^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right]
$$

Note that $R(t)$ can be an arbitrary function of time. Using $R(t)$, we had defined the commoving coordinates as:

$$
\vec{r}(t)=R(t) \vec{x}
$$

\longrightarrow Comoving coordinate

We want to find if there is any connection
 between $R(t)$ and observables.

Since all lengths scale like $R(t)$, this will also affect to waves. We can define redshift as:

$$
z=\frac{d_{0}-\lambda_{E}}{d_{E}} \quad\left\{\begin{array}{l}
\lambda_{0} \equiv \text { observed wavelength } \\
\lambda_{E} \equiv \text { emitted wavelength }
\end{array}\right.
$$

If we are able to find a relation between $R(t)$ and $z_{\text {, }}$, we would have a connection between $R(t)$ and an observable. This relation is given by:
$\left.\begin{array}{l}\text { - De Broglie relation: } P=h / \lambda \\ \text { - FRW geodesics: } \\ P \propto \frac{1}{R}\end{array}\right\} \quad \frac{\lambda_{0}}{R_{0}}=\frac{\lambda_{E}}{R_{E}}$
Expansion factor and redshift.

Working with our definition of redshift and the relation between $R(t)$ and the wavelength, we can write:

$$
\Rightarrow \frac{R_{E}}{R_{0}}=\frac{\lambda_{E}}{\lambda_{0}}=\frac{1}{\lambda_{0} / \lambda_{E}}=\frac{1}{\frac{\lambda_{0}}{\lambda_{E}}-1+1}=\frac{1}{z+1} \quad \frac{R\left(t_{E}\right)}{R\left(t_{0}\right)}=\frac{1}{1+z}
$$

Note
This relation is very important because it does not depend on cosmology
And defining the scale factor $a(t)$ as the normalization of $R(t)$ by $R\left(t_{0}\right)$

$$
\left(a\left(t_{0}\right)=1\right):
$$

$$
a(t)=\frac{R(t)}{R\left(t_{0}\right)}=\frac{1}{1+z}, \quad a(t)=\text { cosmic expansion factor }
$$ calculable

z observable, $a(t)$ related to cosmology (need to learn how to calculate it)
2.2. Perfect fluids: equation of state and adiabatic expansion
2.2.1. Derivation of Friedmann Equations

Friedmann equations and general relativity.
As we have already seen, Einstein's equations govern the behaviour of spacetime:

\rightarrow described by the energy - stress tensor $T_{\mu \nu}$.
\longrightarrow described by the Ricci tensor $R_{\mu \nu}$ and the Ricci scalar R.

$$
R_{\mu \nu}=f\left(g_{\mu \nu}\right) \quad R=h\left(R_{\mu \nu}\right)
$$

Assuming isotropy/nomogeneity for space (Robertson Walker metric) and that matter is a perfect fluid:

$$
T_{\mu \nu}=-p g_{\mu}+\left(\rho c^{2}+p\right) u^{\mu} u^{\nu}
$$

one can obtain the Friedmann equations.

$$
\begin{aligned}
& \left(\frac{\dot{R}}{R}\right)^{2}=\frac{8 \pi G}{3} \rho-\frac{K c^{2}}{R^{2}}+\frac{c^{2} \Lambda}{3} \\
& \frac{\ddot{R}}{R}=-\frac{4 \pi G}{3}\left(e+\frac{3 p}{c^{2}}\right)+\frac{c^{2} \Lambda}{3}
\end{aligned}
$$

(Both equations are conected via Energy conservation)

Friedmann equations
From this equations we can obtain $R(t)$ (or $a(t)$) and study its dependences.

Critical density
Assuming no curvature and 1 , we can define the critical density as:

$$
\rho \widehat{=} e_{\text {crit }}=\frac{3 H^{2}}{8 \pi G} \quad H=\frac{\dot{R}}{R}
$$

It will be used to normalise the Friedmann equation.
2.2.2. Equation of state

Equation of state of barotropic fluids
Solving the Friedmann Equations still requires an equation of state. We will restrict ourselves to barotropic fluids (i.e. linear relation between P and e):

$$
P=\omega(T) e c^{2}
$$

This expression is derived from the equation of state of an ideal gas:

$$
\begin{aligned}
& P=n k_{B} T=\frac{k_{B} T}{m_{P} c^{2}} \quad e_{m} c^{2}=\frac{k_{B} T}{m_{p} c^{2}} \frac{e^{c^{2}}}{\left(1+\frac{k_{B} T}{(\gamma-1) m_{p} c^{2}}\right)}=\omega(T) e c^{2} \\
& \begin{array}{c}
\downarrow \text { number density } \\
\text { assume main contribution } \\
\text { is coming prom protons }
\end{array}
\end{aligned} \quad\left\{\begin{array} { l }
{ n \equiv \text { number density } } \\
{ \text { need to include the thermal energy. } }
\end{array} \quad \left\{\begin{array}{l}
e_{m} \equiv \text { mass density } \\
e \equiv \text { energy density }
\end{array}\right.\right.
$$

Dem: Mass density \longrightarrow Energy density:

$$
\rho c^{2}=\rho_{m} c^{2}+\varepsilon=\rho_{m}+\frac{P}{(\gamma-1)}=\rho_{m} c^{2}+\frac{n k_{B} T}{(\gamma-1)}=\rho_{m} c^{2}+\frac{e_{m} c^{2} k_{B} T}{(\gamma-1) m_{p} c^{2}}=\rho_{m} c^{2}\left(1+\frac{k_{B} T}{(\gamma-1) m_{p} c^{2}}\right)
$$

$p=(\gamma-1) \varepsilon, \gamma=$ adiabatic coefficient, ε thermal energy

Barotropic fluids in cosmology
All the terms in Friedmann equations can be interpreted as densities, and so have an associated equation of state.

- radiation: $\omega=1 / 3 \quad$ (photons)
- collisionless matter: $\omega=0 \rightarrow$ absence of collissions cannot build up pressure
- Vacuum energy: $\omega=-1$
- Curvature: $\omega=-1 / 3$
2.2.3. Adiabatic expansion

Energy conservation and Friedmann equations.
Almost all solutions predict an expansion or collapse of the Universe. This expansion is adiabatic (not isothermal or an other process).
In an adiabatic expansion there is a balance between the change in temperature (or energy) and pressure work. In adiabatic processes, entropy is conserved.
From the combination of $1^{\text {st }}$ and $2^{\text {nd }}$ Friedmann equations (also from $T_{s,}^{\mu s}=0$) we can obtain energy conservation equation:

1. Friedmann equation

$$
\begin{aligned}
& \dot{R}^{2}=\frac{8 \pi G}{3} e R^{2}-K c^{2}+\frac{C^{2} \Lambda}{3} R^{2} \\
& 2 \dot{R} \ddot{R}=\frac{8 \pi G}{3}\left(\dot{e} R^{2}+2 e R \dot{R}\right)+2 R \dot{R} \frac{c^{2} \Lambda}{3} \\
& \ddot{R}=\frac{4 \pi \sigma}{3}\left(\dot{e} \frac{R^{2}}{\dot{R}}+2 e R\right)+R \frac{c^{2} \Lambda}{3} \\
& \frac{\ddot{R}}{R}=\frac{4 \pi G}{3}\left(\dot{R} \frac{R}{\dot{R}}+2 e\right)+\frac{c^{2} \Lambda}{3}
\end{aligned}
$$

Equating both expressions:

$$
\frac{4 \pi G}{3}\left(\dot{e} \frac{R}{\dot{R}}+2 e\right)+\frac{c^{2} \Lambda}{3}=-\frac{4 \pi G}{3}\left(e+\frac{3 p}{c^{2}}\right)+c^{2} \frac{\Lambda}{3}
$$

$$
\begin{aligned}
& \left(\dot{e} \frac{R}{\dot{R}}+2 e\right)=-\left(e+\frac{3 p}{c^{2}}\right) \\
& \dot{e} \frac{R}{\dot{R}}+2 e=-e-\frac{3 p}{c^{2}} \\
& 0=\dot{e}+3 \frac{\dot{R}}{R}\left(e+\frac{p}{c^{2}}\right) \\
& 0=\dot{e}+3 \frac{\dot{R}}{R}\left(e+\frac{p}{c^{2}}\right)
\end{aligned}
$$

Energy conservation
Adiabatic expansion and energy conservation.
Now it is interesting to look at the second law of thermodynamics:

$$
T d S=d u+p d v
$$

The change in entropy is given by the change in anergy and the pressure work. Let us take a look at the differentials:

- Volume element: $d V=d\left(R^{3}\right)$
scales like R^{3} since $r=R x$ (comoving coordinates) $\rightarrow V=R^{3} V_{c} \rightarrow d V=V_{c} d\left(R^{3}\right)$
- Energy: need to multiply energy density by the volume, which scales like R^{3}

$$
d U=d\left(V_{e c^{2}}\right)=d\left(R^{3} e c^{2}\right)
$$

Dividing by $d t$ the expression of the $2^{\text {nd }}$ law of thermodynamics we find:

$$
\frac{d U}{d t}+P \frac{d V}{d t}=\frac{d\left(R^{3} e^{c^{2}}\right)}{d t}+P \frac{d\left(R^{3}\right)}{d t}=3 R^{2} \dot{R} e c^{2}+R^{3} e c^{2}+3 p R^{2} \dot{R}=0
$$

From energy conservation equation:

$$
0=R^{3} \dot{\rho} c^{2}+3 \dot{R} R^{2} \rho c^{2}+3 \dot{R} R^{2} \rho
$$

$\longrightarrow T \frac{d S}{d t}=0 \quad \longrightarrow T d S=0$
During cosmic expansion entropy is conserved, and hence the expansion is adiabatic.

$$
d u+p d v=0
$$

Any change in energy must be compensated by pressure work: The volume is changing, so energy for the expansion must cone from somewhere. It cones from the change in energy of the contents of the Universe: the photons are redshifted.

Implication for barotropic fluids
Let us remember the equation of state for this fluids:

$$
p=\omega \rho c^{2}
$$

Using again $d U$ and $d V$, but substituting P by the equation of state:

$$
\left.\begin{array}{l}
d U=d\left(R^{3} \rho c^{2}\right) \\
d V=d\left(R^{3}\right)
\end{array}\right\} \quad d\left(R^{3} \rho c^{2}\right)=-\rho d\left(R^{3}\right)=-w \rho c^{2} d\left(R^{3}\right)
$$

This differential equations gives the relation between ρ and the scale factor. If we solve it,
we find:

$$
e R^{3(1+\omega)}=\text { cons } \quad e^{R^{\alpha}=\rho_{0} R_{0}^{\alpha}}
$$

Choose scaling $R_{0}^{\alpha}=1$

- radiation: $\omega=1 / 3 \longrightarrow \operatorname{er} \propto R^{-4}$
- collisionless matter: $\omega=0 \longrightarrow e_{m} \propto R^{-3}$
- Vacuum energy: $\omega=-1 \longrightarrow \rho_{1}=$ const
- Curvature : $\omega=-1 / 3 \longrightarrow e_{k} \propto R^{-2}$
2.2.4. Density parameters

Definition. Rewriting Friedmann equations

Note

- Matter density scales like $1 / R^{3}$ because it is mass/volumen
- The additional $1 / 2$ factor for radiation is due to de energy change produced by z

First Friedmann equation
The introduction of density parameters leads to the most memorable form for the Friedmann equations. We start with Friedmanns equation:

$$
\left(\frac{\dot{R}}{R}\right)^{2}=\frac{8 \pi G}{3} \rho-\frac{k c^{2}}{R^{2}}+\frac{c^{2} \Lambda}{3}
$$

where $e=\sum_{\omega} \rho_{\omega}(R(t)) \begin{cases}\text { Radiation: } & \omega=1 / 3 \longrightarrow \rho(R) \propto R^{-4} \\ \text { Collisionless matter: } \omega=0 \longrightarrow \rho(R) \propto R^{-3}\end{cases}$
We could also include Λ and k in the density term, but we will focus first on radiation and dark matter.
Since we know how energy densities scale, we can rewrite the Friedmann equation in terms of the present density content and R_{0}.

$$
\rightarrow\left(\frac{R}{R}\right)^{2}=\frac{8 \pi G}{3}\left[\rho_{m, 0}\left(\frac{R}{R_{0}}\right)^{-3}+e_{r, 0}\left(\frac{R}{R_{0}}\right)^{-4}\right]-\frac{K c^{2}}{R_{0}^{2}}\left(\frac{R}{R_{0}}\right)^{-2}+\frac{C^{2} \Lambda}{2}
$$

We can use the critical density to normalise the densities and eliminate the prefactor. We can define:

THE COSMOLOGICAL PARAMETERS

- Matter density: $\Omega_{m, 0}=\frac{8 \pi G}{3 H_{0}^{2}} \rho_{m, 0}=\frac{e_{m, 0}}{e_{c n i, 0}}$

REMINDER
Critical density:

$$
\rho_{\text {crit }}=\frac{3 H_{0}{ }^{2}}{8 \pi G}
$$

- Radiation density: $\Omega_{r, 0}=\frac{8 \pi G}{3 H_{0}{ }^{2}} e_{r, 0}=\frac{e_{\text {roo }}}{e_{\text {crim }}}$
- Vacuum energy: $\Omega_{1,0}=\frac{c^{2}}{3 H_{0}{ }^{2}} \Lambda$
- Curvature: $\Omega_{k, 0}=-\frac{C^{2}}{H_{0}^{2} R_{0}^{2}} k$
- Expansion rate: $H_{0}=\left(\frac{\dot{R}}{R}\right)_{0}$

Substituting this on the Friedmann equation and remembering that $\frac{R}{R_{0}}=\frac{1}{1+z}$:
$H^{2}=H_{0}^{2}\left[\Omega_{r, 0}(1+z)^{4}+\Omega_{m, 0}(1+z)^{3}+\Omega_{k, 0}(1+z)^{2}+\Omega_{1,0}\right] \longrightarrow$ Uses density parameters at present time

Note that these cosmological density parameters are the values measured todady. Calculating the Hubble parameter at today's time gives the Known cosmic sum rule:

$$
1=\Omega_{r, 0}+\Omega_{m, 0}+\Omega_{k, 0}+\Omega_{\lambda, 0}
$$

This holds at any time: $\quad 1=\Omega_{r}(z)+\Omega_{m}(z)+\Omega_{k}(z)+\Omega_{n}(z)$ (for decoupled matter and radiation.

Second Friedmann equation
, barotropic fluids

$$
\begin{aligned}
\frac{\ddot{R}}{R} & =-\frac{4 \pi G}{3}\left(\rho+\frac{3 p}{c^{2}}\right)+\frac{c^{2} \Lambda}{3}=-\frac{4 \pi G}{3}\left(\sum \rho_{i}+\frac{3 \sum \omega_{i} \rho_{i} c^{2}}{c^{2}}\right)+\frac{c^{2} \Lambda}{3}=-\frac{4 \pi G}{3}\left(\sum \rho_{i}+3 \sum \omega_{i} \rho_{i}\right)+\frac{c^{2} \Lambda}{3}= \\
& =-\frac{4 \pi G}{3} \sum\left(1+3 \omega_{i}\right) \rho_{i}+\frac{c^{2} \Lambda}{3}=-\frac{H^{2}}{2}\left(\sum\left(1+3 \omega_{i}\right) \Omega_{i}(z)\right)+H^{2} \Omega_{\Lambda}(z)=-\frac{H^{2}}{2}\left(\Omega_{m}(z)+2 \Omega_{r}(z)\right)+H^{2} \Omega_{\Lambda}(z)=
\end{aligned}
$$

Multiplying by $-\frac{1}{H^{2}}$:

$$
-\frac{\ddot{R} R}{\dot{R}^{2}}=\frac{1}{2} \Omega_{m}(z)+\Omega_{r}(z)-\Omega_{\Lambda}(z)
$$

$q=-\frac{\ddot{R} R}{\dot{R}^{2}}=\frac{1}{2} \Omega_{m}(z)+\Omega_{r}(z)-\Omega_{\Lambda}(z) \rightarrow$ Uses density parameters at redshift z
Deceleration parameter
$\Omega(z)$: evolution of density parameters
To calculate the evolution of the density parameters we just need to look at their definition, adding how each term evolves with redshift:
barotropic matter

$$
\Omega(z)=\frac{8 \pi 6}{3 H^{2}(z)} e(z)=\frac{8 \pi 6}{3 H^{2}(z)} \rho_{0}(1+z)^{3(1+\omega)}
$$

$$
\Omega(z)=\frac{8 \pi 6}{3 H^{2}(z)} e(z)=\frac{8 \pi 6}{3 H_{0}^{2}(z)} \frac{\rho_{0}(1+z)^{3(1+\omega)}}{\Omega_{r, 0}(1+z)^{4}+\Omega_{m, 0}(1+z)^{3}+\Omega_{k, 0}(1+z)^{2}+\Omega_{1,0}}
$$

$$
\Omega(z)=\frac{8 \pi 6}{3 H^{2}(z)} e(z)=\frac{\Omega_{0}(1+z)^{3(1+\omega)}}{\Omega_{r, 0}(1+z)^{4}+\Omega_{m, 0}(1+z)^{3}+\Omega_{k, 0}(1+z)^{2}+\Omega_{1,0}}
$$

REMINDER
Radiation: $\omega=1 / 3$
Matter: $\omega=0$
Vacuum energy: $\omega=-1$

Note:
$\Omega(z)=\frac{c^{2} \Lambda}{3 H^{2}(z)}=\frac{\Omega_{\Lambda}}{\Omega_{r, 0}(1+z)^{4}+\Omega_{m, 0}(1+z)^{3}+\Omega_{k, 0}(1+z)^{2}+\Omega_{1,0}}$; same result as for $\omega=-1$

Ignoring radiation (since it is not important in that redshift interval):

Λ CDM model:	
$\Omega_{m}(\mathrm{z}) \rightarrow 1$	
$\Omega_{\Lambda}(\mathrm{z}) \rightarrow 0$	

NOTE FOR LATER

$$
\begin{aligned}
& \frac{\Omega_{i}}{\Omega_{j}}=\frac{\Omega_{i, 0}}{\Omega_{j, 0}}(1+z)^{\left(n_{i}-n_{j}\right)} \\
& \text { with } n=3(1+\omega)
\end{aligned}
$$

There are actually only three independent density parameters, since:

$$
1=\Omega_{r, 0}+\Omega_{m, 0}+\Omega_{k, 0}+\Omega_{1,0} \text { for } z=0
$$

Interplay scale factor-redshift-time
If we know the values of the density parameters today, we can solve the Friedmann equation as a function of time, and we have a direct relation to something that we can observe (z). For standard cosmological models we have a unique mapping between a, t and z. Further, the constancy of the speed of light then also relates those to distance.
If calculations do not match observations, it is necessary to change the Ω_{s} used to solve the equation (iteratively).

$$
H^{2}=H_{0}^{2}\left[\Omega_{r, 0}(1+z)^{4}+\Omega_{m, 0}(1+z)^{3}+\Omega_{k, 0}(1+z)^{2}+\Omega_{1,0}\right]
$$

\Rightarrow solution is $a(t)$
\Rightarrow relation to redshift $a(t)=\frac{1}{1+z} \rightarrow$ observable.
2.3. Solutions of Friedmann equations for simple models
2.3.1. General trends

We will analyse the solution of Friedmann equations for different parameter values.

$$
\begin{aligned}
& \dot{R}^{2}=\frac{8 \pi G}{3} e R^{2}-k c^{2}+\frac{c^{2} \Lambda}{3} R^{2} \\
& \ddot{R}=-\frac{4 \pi G}{3} R\left(e+\frac{3 \rho}{c^{2}}\right)+\frac{c^{2} \Lambda}{3} R
\end{aligned}
$$

$\Lambda=0$, barotropic fluid $\left(P=\omega \rho c^{2}\right)$

$$
\dot{R}^{2} \propto R^{2-3(1+\omega)}-k c^{2} \quad \text { as } \rho \propto R^{-3(1+\omega)}
$$

$\ddot{R}<0$
as $\rho+\frac{3 p}{c^{2}}>0 \quad\left(p=\omega \rho c^{2}, \omega>0\right)$
Today:

$$
\left(\frac{\dot{R}}{R}\right)_{0}>0 \underset{R \neq 0}{ }\left(\dot{R}^{2}\right)_{0}>0
$$

$\dot{R}>0, \quad \ddot{R}<0$
$\rightarrow R(t)$ has been monotonically increasing $\exists t_{c}$ with $R\left(t_{c}\right)=0 \rightarrow$ singularity
Future
$\begin{aligned} &-K=0: \quad \dot{R}^{2} \propto R^{2-3(1+\omega)} \longrightarrow R \alpha t^{2 / 3(1+\omega)} \quad \Rightarrow \text { indefinite } \\ & \longrightarrow R^{3(1+\omega) / 2-1}=d t \\ &-K>0: \dot{R}^{2} \propto R^{2-3(1+\infty)}-|K| c^{2} \longrightarrow \exists \dot{R}\left(t_{s}\right)=0 \quad \Rightarrow \text { recollapse }\end{aligned}$
$\left.\begin{array}{l}\dot{R}(0)=+\infty \\ \dot{R}(\infty)=-|k| c^{2}\end{array}\right\}$ change of sign

- $K<0: \dot{R}^{2} \propto R^{2-3(1+\omega)}+|k| c^{2} \longrightarrow \dot{R}^{2}>0 \longrightarrow R(t) \uparrow \Rightarrow$ increased indefinite expansion

$$
\begin{aligned}
& \Lambda<0 \\
& \dot{R}^{2}=\frac{8 \pi G}{3} \rho R^{2}-K c^{2}-\frac{c^{2}|\Lambda|}{3} R^{2}=\frac{8 \pi G}{3} e_{m+1} R^{2}-k c^{2} \\
& \ddot{R}=-\frac{4 \pi G}{3} R\left(e+\frac{3 p}{c^{2}}\right)-\frac{c^{2}|\Lambda|}{3} R=-\frac{4 \pi G}{3} R\left(e+\frac{3 p}{c^{2}}+\frac{c^{2}|\Lambda|}{12 \pi G}\right)<0
\end{aligned}
$$

\longrightarrow Attractive force
$R(t)$ starts monotonically increasing and $\exists \dot{R}\left(t_{s}\right)=0$
Recollapse happens even earlier due to the "attractive force".

$$
\begin{aligned}
& \Lambda>0 \quad(\text { measured }) \\
& \dot{R}^{2}=\frac{8 \pi G}{3} \rho R^{2}-K c^{2}-\frac{c^{2}|\Lambda|}{3} R^{2}=\frac{8 \pi G}{3} e_{m+\Lambda} R^{2}-k c^{2} \\
& \ddot{R}=-\frac{4 \pi G}{3} R\left(\rho+\frac{3 p}{c^{2}}\right)-\frac{c^{2}|\Lambda|}{3} R=-\frac{4 \pi G}{3} R\left(\rho+\frac{3 p}{c^{2}}-\frac{c^{2} \mid \Lambda 1}{12 \pi G}\right)<0
\end{aligned}
$$

\longrightarrow repulsive force
Forever expanding Universe (accelerated)
Note: e drops, but 1 remains constant
2.3.2. Special solutions for flat and open world models.

We will use the expression of the $1^{\text {st }}$ Friedmann equation in terms of the density parameters.

$$
\left(\frac{\dot{R}}{R}\right)^{2}=H_{0}^{2}\left[\Omega_{r, 0}(1+z)^{4}+\Omega_{m, 0}(1+z)^{3}+\Omega_{k, 0}(1+z)^{2}+\Omega_{1,0}\right]
$$

These solutions will be valid to first order because we will only take into account one of the components. However, this is useful to analyse the scaling relations at the epoch in which each component dominates the expansion of the Universe.

Flat model with $\Omega_{m}=1$

$$
\begin{array}{ll}
\left(\frac{\dot{R}}{R}\right)^{2}=H_{0}^{2}\left(\frac{R_{0}}{R}\right)^{3} \quad \text { (Friedmann equation) } \\
\frac{\dot{R}}{R}=H_{0}\left(\frac{R_{0}}{R}\right)^{3 / 2} & \begin{array}{l}
\text { NOTE } \\
\text { This solution is important after } \\
\text { matter-radiation equality }
\end{array} \\
R^{3 / 2} \frac{\dot{R}}{R}=H_{0} R_{0}^{3 / 2} & \text { Matter domination } \\
R^{1 / 2} d R=H_{0} R_{0}^{3 / 2} d t \xrightarrow{\text { solving the differential equation }} \frac{R(t)}{R_{0}}=\left(\frac{t}{t_{0}}\right)^{2 / 3}, & \text { to }=\frac{2}{3 H_{0}}
\end{array}
$$

Flat model with $\Omega_{r}=1$

$$
\begin{array}{ll}
\left(\frac{\dot{R}}{R}\right)^{2}=H_{0}^{2}\left(\frac{R_{0}}{R}\right)^{4} \quad \text { (Friedmann equation) } & \begin{array}{l}
\text { NOTE } \\
\frac{\dot{R}}{R}=H_{0}\left(\frac{R_{0}}{R}\right)^{2} \\
R^{2} \frac{\dot{R}}{R}=H_{0} R_{0}^{2} \\
R d R=H_{0} R_{0}^{2} d t \xrightarrow{\text { This solution is important before }} \begin{array}{l}
\text { matter-radiation equality. }
\end{array} \\
\end{array} \quad \begin{array}{l}
\text { Radiation domination }
\end{array} \\
\end{array}
$$

Flat model with $\Omega_{n}=1$

$$
\begin{aligned}
& \left(\frac{\dot{R}}{R}\right)^{2}=H_{0}^{2} \\
& \frac{\dot{R}}{R}=H_{0} \\
& \frac{d R}{R}=H_{0} d t \rightarrow R(t)=e^{H_{0} t}
\end{aligned}
$$

inflationary Universe

General models with $\Omega_{m} \neq 0, \Omega_{1}=0 \quad \Omega_{r}=0$

$$
\begin{aligned}
& \left(\frac{\dot{R}}{R}\right)^{2}=H_{0}^{2}\left(\Omega_{m, 0}\left(\frac{R_{0}}{R}\right)^{3}+\Omega_{k, 0}\left(\frac{R_{0}}{R}\right)^{2}\right) \\
& \dot{R}^{2}=R^{2} H_{0}^{2}\left(\frac{R_{0}}{R}\right)^{2}\left(\Omega_{m, 0}\left(\frac{R_{0}}{R}\right)+\Omega_{k, 0}\right) \\
& \dot{R}=H_{0} R_{0} \sqrt{\Omega_{m 0}\left(\frac{R_{0}}{R}\right)+\left(1-\Omega_{m, 0}\right)} \longrightarrow\left[\begin{array}{ll}
\Omega_{m, 0}>1 \longrightarrow k<0 \\
R=a(1-\cos \theta) & a=\frac{\Omega_{m, 0}}{2\left(\Omega_{m, 0}-1\right)} \\
t=b(\theta-\cos \theta) & b=\frac{\Omega_{m, 0}}{2 H_{0}\left(\Omega_{m, 0}-1\right)^{3 / 2}} \\
\Omega_{m, 0}<1 & A=\frac{\Omega_{m, 0}}{2\left(1-\Omega_{m, 0}\right)} \\
R=A(\cosh \theta-1) \\
t=B(\sinh \theta-\theta) & B=\frac{\Omega_{m, 0}}{2 H_{0}\left(1-\Omega_{m, 0}\right)^{3 / 2}}
\end{array}\right. \\
& \dot{R}=H_{0} R_{0} \sqrt{\Omega_{m, 0}\left(\frac{R_{0}}{R}-1\right)+1} \quad \begin{array}{l}
\text { Need to construct } R(t) \text { using the parametric sol }
\end{array}
\end{aligned}
$$

The first solution $\left(\Omega_{m}>1\right)$ is important for structure formation.

Expansion (Hubble Flow)

We start with an overdensity $\delta>1$. The background is expanding. If δ is larger than a certain value (1.68), then the density inside the volume will decouple from the expansion of the Universe and, eventually, recollapse.
We can say that this region is "a Universe inside a Universe" with $\Omega_{m}>1$. Thus, we can use this solution to describe its evolution (his own $R(t)$).

Flat model with $\Omega_{m}+\Omega_{n}=1, \Omega_{r}=0$ (our Universe today)

$$
t(z)=\frac{2}{3 H_{0}} \frac{1}{\sqrt{\Omega_{\mu_{0} 0}}} \ln \left(\sqrt{\frac{\Omega_{\Lambda_{1} 0}}{\Omega_{m, 0}}\left(\frac{1}{1+z}\right)^{3}}+\sqrt{\frac{\Omega_{1,0}}{\Omega_{m 0}}\left(\frac{1}{1+z}\right)^{3}+1}\right)
$$

U_{p} to redshift 100 it is not necessary to take radiation into account (Now $\Omega_{r} \sim 10^{-6}$) can also calculate $R(z)$ from $t(z)$ finding $z(t)$ and then using $R=\frac{1}{1+z}$

General model $\Omega_{m} \neq 0, \Omega_{\Lambda} \neq 0, \Omega_{r} \neq 0$
There is no analytical solution for the general case.
It is necessary to integrate numerically.

2.3.3. Horizons

Definition
Wee always talk about $R(t)$, but it is not the size of the Universe, but the scale factor of the coordinates. There are multiple definitions for the edge of the Universe.
Cosmological horizon measure distances from which one could possibly retrieve iafurmation from the past or interact with in the future.
Distances.
We go back to our metric:

$$
d s^{2}=(c d t)^{2}-R^{2}\left[\frac{d x^{2}}{1-k x^{2}}+x^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right]
$$

Photons follow null geodesics:

$$
0=(c d t)^{2}-R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}+x^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right]
$$

We can define the distance as:

$$
\begin{aligned}
& d c=\rho\left(x_{E}\right)=\int_{0}^{x_{E}} \frac{d x}{\sqrt{1-k x^{2}}}=\int_{t_{E}}^{t_{0}} \frac{c}{\text { comoling }} \\
& d p=\frac{R(t)}{R_{0}} d c=\frac{R(t)}{R_{0}} \int_{t_{E}}^{t_{0}} \frac{c d t}{R(t)}
\end{aligned}
$$

$$
f\left(x_{E}\right)=\left\{\begin{array}{cc}
x_{E} & k=0 \\
\frac{1}{\sqrt{|k|}} \arcsin \left(\sqrt{|k|} x_{E}\right) & k=1 \\
\frac{1}{\sqrt{|k|}} \operatorname{arcsinh}\left(\sqrt{|k|} x_{E}\right) & k=-1
\end{array}\right.
$$

Proper distance
Past horizon:

$$
t_{0}=\text { today } \quad t_{E}=\text { past }
$$

Future horizon

$$
t_{E}=\text { today } \quad t_{0}=\infty
$$

Types of horizons
Particle horizon
Max distance that a particle can have travelled since decoupling:

$$
R_{p}(t)=R(t) \int_{t \text { dec }}^{t} \frac{c d t^{\prime}}{R\left(t^{\prime}\right)}
$$

"Particle horizon" (for some textbooks)
Max distance a photon can have travelled since Big Bang (there are events we have not seen yet).
Even horizon

Max distance a particle can travel from now onwards (there are events that we will never see)

$$
\operatorname{Re}(t)=R(t) \int_{t}^{\infty} \frac{c d t^{\prime}}{R\left(t^{\prime}\right)}
$$

Hubble radius
Distance at which recessional velocity equals speed of light

$$
R_{H}=\frac{C}{H} \quad \underset{\substack{\downarrow \\ \text { comoving }}}{R_{C H}}(t)=\frac{R_{0}}{R} \frac{c}{H}
$$

