Cosmology

Part A (problems to be handed in)

- **1.** Plot the Hubble law, travel time, comoving, luminosity, and angular diameter distances (in Gpc) as a function of redshift for a flat Λ CDM model with $\Omega_{m,0}$ =0.3 and h=0.7. Is there anything peculiar for any of the distances? Explain its implications and also submit your code used for the calculation and plotting. (**6 points**)
- **2.** The surface brightness of an astronomical object is defined as its observed flux divided by its observed angular scale, i.e. $\Sigma \sim F_{\rm obs}/(\theta_{\rm obs})^2$. What is the redshift evolution of $\Sigma(z)$ for a class of objects that are both standard candle and ruler? (6 points)
- **3.** Plot the redshift evolution of the mass of various " $v\sigma$ halos", i.e. $M_{v\sigma}(z)$, where v is defined via

$$\nu = \frac{\delta_c}{D(z) \ \sigma(M_{\nu\sigma})}$$

Here D(a=1/(1+z)) is the growth factor that can be approximated as

$$D(a) = \frac{5a}{2}\Omega_m(a)\left[\Omega_m^{4/7}(a) - \Omega_{\Lambda}(a) + \left(1 + \frac{\Omega_m(a)}{2}\right)\left(1 + \frac{\Omega_{\Lambda}(a)}{70}\right)\right]^{-1}$$

and

$$\sigma^{2}(M) = \frac{1}{2\pi^{2}} \int_{0}^{\infty} P_{0}(k) \, \widehat{W}^{2}(kR) k^{2} dk$$

where M and R are related in a way as given in the lecture notes. Please use a scale-free cosmology characterized by $P_0(k)=A$ k^n , $\Omega_{\rm m,0}=1.0$, and $\Omega_{\Lambda,0}=0$. Vary both ν and n in a reasonable range.

hints: During the calculation it makes sense to define a 'typical collapsing mass' $M_* = \sigma_0^{\frac{6}{n+3}} \frac{4\pi \langle \rho \rangle}{3}$ which you can safely assume to be $M_*=10^{13} \mathrm{M}_{\odot}$, irrespective of n.

Note that σ_0 captures everything that is constant, even though still depends on n (but see previous hint!) As explained in class, for each redshift z you need to find $M_{\text{vo}}(z)$ for which it helps to first find an analytical expression for $\sigma^2(M) = \frac{1}{2\pi^2} \int_0^\infty P_0(k) \ \widehat{W}^2(kR) k^2 dk$ (6 points)

- **4.** You are given some preliminary data from a GW observation:
- i) The spectral noise density of the detector is approximately Sn(f)~ 0.00938426*(f/1Hz)^{-20} sec,
- ii) The maximum frequency of observations is fmax~200Hz,
- iii) The signal-to-noise ratio of the observation was S/N~8,
- iv) The frequencies of the GW for the last 0.1secs of the observation before the merger were (time in secs, freq. in Hz):

{{0.1, 81.8089}, {0.09, 85.1059}, {0.08, 88.9492}, {0.07, 93.5166}, {0.06, 99.0818}, {0.05, 106.093}, {0.04, 115.353}, {0.03, 128.493}, {0.02, 149.594}, {0.01, 193.999}}

Then:

- 1. Assuming circular orbits (averaged over the inclination), find the chirp mass and distance (in Mpc) of the system.
- 2. Finally, assuming the inclination angle was $\pi/3$, plot the reconstructed strains as a function of time for the last 0.1secs before the merger. (7 points)

Part B (problems to be discussed in class)

- 1) Explain the Saha equation
- 2) Derive the relation between (adiabatic) matter and temperature perturbations
- 3) Derive the scaling relations:

radiation domination: $\delta_m \sim \ln(a)$ matter domination: $\delta_m \sim a$ Λ domination: $\delta_m \sim 1/a^2$

- 4) Explain the (idea of) the Press-Schechter mass function
- 5) Explain the dependence of the CMB peaks on the parameters Ω_m , Ω_b , Ω_k
- 6) Calculate the sound horizon at recombination for Ω_m =0.3 and Ω_m =1. Discuss what you found.
- 7) Explain the behavior of the matter power spectrum P(k)