Cosmology

Part A (problems to be handed in)

1. If you have an error of 0.1 magnitudes in the distance modulus, m-M, what will be the error in the distance, D. (7 points)

2. The surface brightness of an astronomical object is defined as its observed flux divided by its observed angular scale, i.e. $\Sigma \sim F_{obs}/(\theta_{obs})^2$. What is the redshift evolution of $\Sigma(z)$ for a class of objects that are both standard candle and ruler? (7 points)

3. Plot the redshift evolution of the mass of various " $v\sigma$ halos", i.e. $M_{v\sigma}(z)$, where v is defined via

$$\nu = \frac{\delta_c}{D(z) \,\sigma(M_{\nu\sigma})}$$

Here D(a=1/(1+z)) is the growth factor that can be approximated as

$$D(a) = \frac{5a}{2}\Omega_m(a) \left[\Omega_m^{4/7}(a) - \Omega_{\Lambda}(a) + \left(1 + \frac{\Omega_m(a)}{2}\right) \left(1 + \frac{\Omega_{\Lambda}(a)}{70}\right)\right]^{-1}$$

and

$$\sigma^2(M) = \frac{1}{2\pi^2} \int_0^\infty P_0(k) \,\widehat{W}^2(kR) k^2 dk$$

where M and R are related in a way as given in the lecture notes. Please use a scale-free cosmology characterized by $P_0(k)=A k^n$, $\Omega_{m,0}=1.0$, and $\Omega_{\Lambda,0}=0$. Vary both ν and n in a reasonable range.

hints: During the calculation it makes sense to define a 'typical collapsing mass' $M_* = \sigma_0^{\frac{6}{n+3}} \frac{4\pi \langle \rho \rangle}{3}$ which you can safely assume to be $M_*=10^{13} M_{\odot}$, irrespective of *n*.

Note that σ_0 captures everything that is constant, even though still depends on n (but see previous hint!) As explained in class, for each redshift z you need to find $M_{v\sigma}(z)$ for which it helps to first find an analytical expression for $\sigma^2(M) = \frac{1}{2\pi^2} \int_0^\infty P_0(k) \hat{W}^2(kR) k^2 dk$ (8 points)

4. You are given some preliminary data from a GW observation:

i) The spectral noise density of the detector is approximately Sn(f)~ 0.00938426*(f/1Hz)^{-20} sec,

ii) The maximum frequency of observations is fmax~200Hz,

iii) The signal-to-noise ratio of the observation was S/N~8,

iv) The frequencies of the GW for the last 0.1secs of the observation before the merger were (time in secs, freq. in Hz):

 $\label{eq:constant} $$ \{0.1, 81.8089\}, \{0.09, 85.1059\}, \{0.08, 88.9492\}, \{0.07, 93.5166\}, \{0.06, 99.0818\}, \{0.05, 106.093\}, \{0.04, 115.353\}, \{0.03, 128.493\}, \{0.02, 149.594\}, \{0.01, 193.999\} $$$

Then:

- 1. Assuming circular orbits (averaged over the inclination), find the chirp mass and distance (in Mpc) of the system.
- 2. Finally, assuming the inclination angle was $\pi/3$, plot the reconstructed strains as a function of time for the last 0.1secs before the merger. (8 points)

Cosmology

Part B (problems to be discussed in class)

1) Explain the Saha equation

- 2) Derive the relation between (adiabatic) matter and temperature perturbations
- 3) Derive the scaling relations:
 - radiation domination: $\delta_m \simeq \ln(a)$

matter domination: $\delta_m \sim a$

- Λ domination: $δ_m \simeq 1/a^2$
- 4) Explain the (idea of) the Press-Schechter mass function
- 5) Explain the dependence of the CMB peaks on the parameters Ω_m , Ω_b , Ω_k
- 6) Calculate the sound horizon at recombination for Ω_m =0.3 and Ω_m =1. Discuss what you found.

7) Explain the behavior of the matter power spectrum P(k)