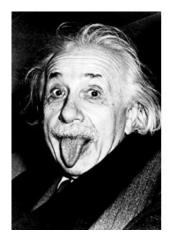
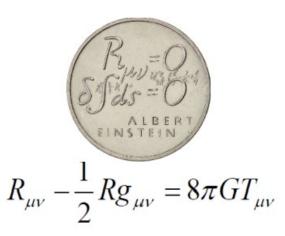
# **Open Problems in Cosmology II**









#### Savvas Nesseris

IFT/UAM-CSIC, Madrid, Spain



# Main points of the lecture

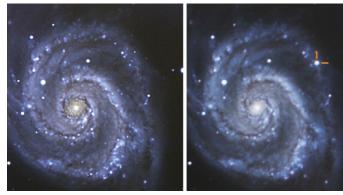
- Why we need Dark Energy (history+observations)
- Lemaitre-Tolman-Bondi (LTB) void models
- Scalar field and ideal fluid models
- Modified gravity and extra dimensions
- Effective fluid approach
- Conclusions

# Main points of the lecture

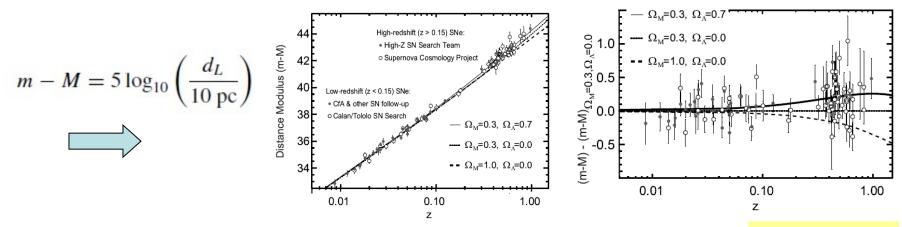
- Why we need Dark Energy (history+observations)
- Lemaitre-Tolman-Bondi (LTB) void models
- Scalar field and ideal fluid models
- Modified gravity and extra dimensions
- Effective fluid approach
- Conclusions

#### 1) Type Ia supernovae





NASA



1211.2590, P. Astier

SnIa strongly support accelerated expansion (Riess et al 1998)

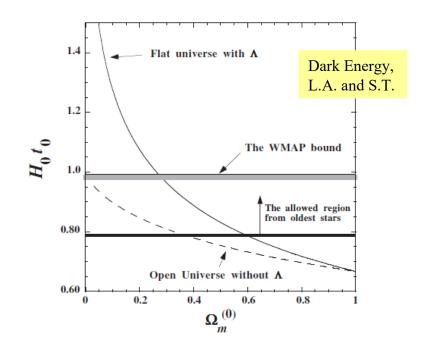


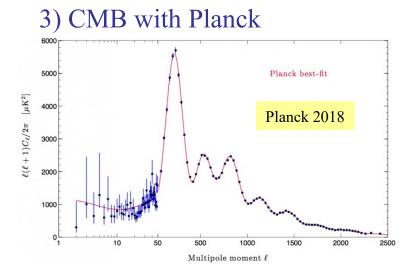


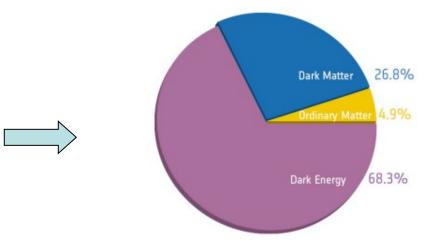
2) Age of the Universe

$$t_0 = H_0^{-1} \int_0^\infty \frac{\mathrm{d}z}{E(z)\,(1+z)}$$

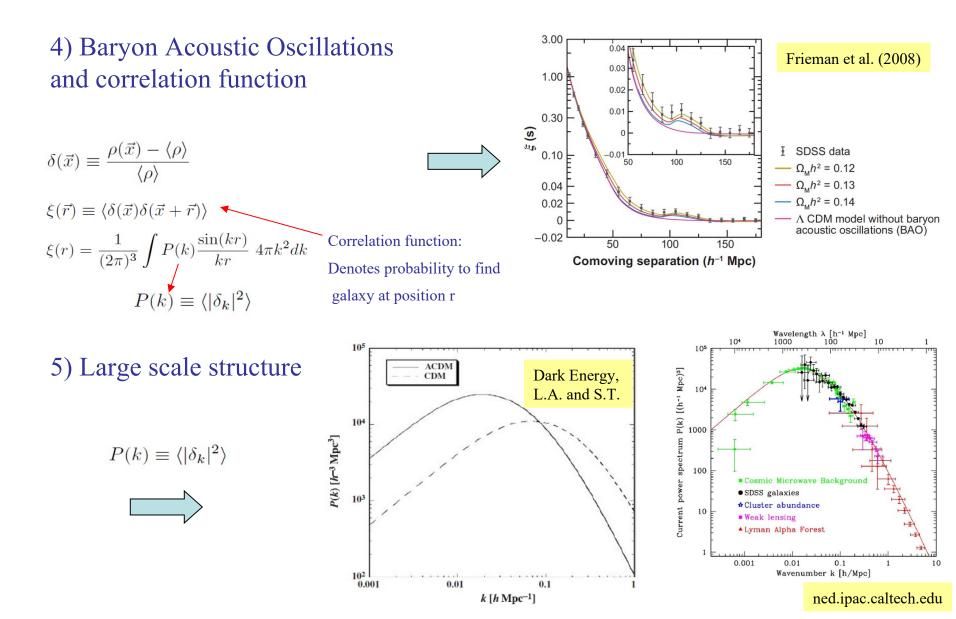




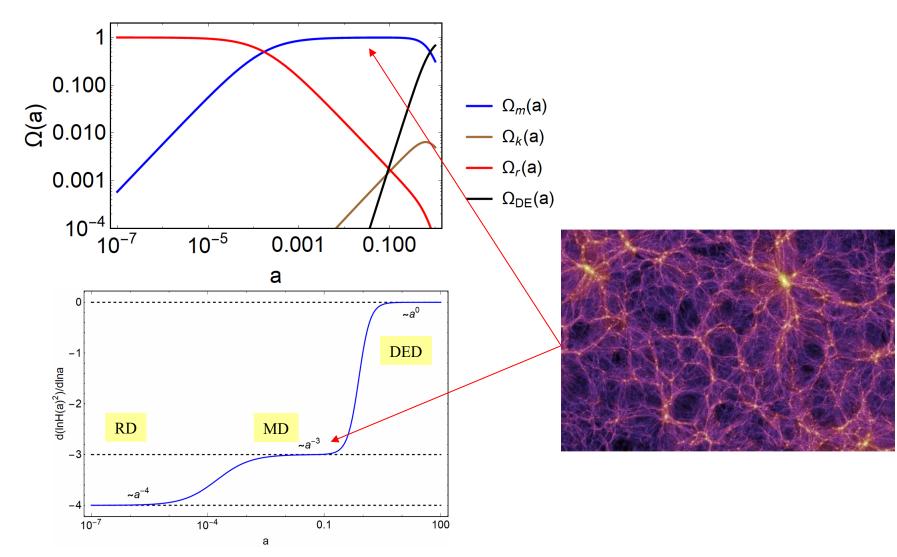




|  | Parameter                                             | TT+lowE<br>68% limits | TE+lowE<br>68% limits  | EE+lowE<br>68% limits           | TT,TE,EE+lowE<br>68% limits  | TT,TE,EE+lowE+lensing<br>68% limits | TT,TE,EE+lowE+lensing+BAO<br>68% limits |
|--|-------------------------------------------------------|-----------------------|------------------------|---------------------------------|------------------------------|-------------------------------------|-----------------------------------------|
|  | $\Omega_{\rm b}h^2$                                   | $0.02212 \pm 0.00022$ | $0.02249 \pm 0.00025$  | $0.0240 \pm 0.0012$             | $0.02236 \pm 0.00015$        | 0.02237 ± 0.00015                   | $0.02242 \pm 0.00014$                   |
|  | $\Omega_c h^2$                                        | $0.1206 \pm 0.0021$   | $0.1177 \pm 0.0020$    | $0.1158 \pm 0.0046$             | $0.1202 \pm 0.0014$          | $0.1200 \pm 0.0012$                 | $0.11933 \pm 0.00091$                   |
|  | 100 <sub>θмс</sub>                                    | $1.04077 \pm 0.00047$ | $1.04139 \pm 0.00049$  | $1.03999 \pm 0.00089$           | $1.04090 \pm 0.00031$        | $1.04092 \pm 0.00031$               | $1.04101 \pm 0.00029$                   |
|  | τ                                                     | $0.0522 \pm 0.0080$   | $0.0496 \pm 0.0085$    | $0.0527 \pm 0.0090$             | $0.0544^{+0.0070}_{-0.0081}$ | $0.0544 \pm 0.0073$                 | $0.0561 \pm 0.0071$                     |
|  | $\ln(10^{10}A_{\rm s})$                               | $3.040 \pm 0.016$     | 3.018+0.020            | $3.052 \pm 0.022$               | $3.045 \pm 0.016$            | $3.044 \pm 0.014$                   | $3.047 \pm 0.014$                       |
|  | <i>n</i> <sub>s</sub>                                 | $0.9626 \pm 0.0057$   | $0.967 \pm 0.011$      | $0.980 \pm 0.015$               | $0.9649 \pm 0.0044$          | $0.9649 \pm 0.0042$                 | $0.9665 \pm 0.0038$                     |
|  | $H_0 [\mathrm{km  s^{-1}  Mpc^{-1}}]$                 | $66.88 \pm 0.92$      | $68.44 \pm 0.91$       | 69.9 ± 2.7                      | $67.27 \pm 0.60$             | $67.36 \pm 0.54$                    | $67.66 \pm 0.42$                        |
|  | $\Omega_{\Lambda} \ldots \ldots \ldots \ldots \ldots$ | $0.679 \pm 0.013$     | $0.699 \pm 0.012$      | $0.711^{+0.033}_{-0.026}$       | $0.6834 \pm 0.0084$          | $0.6847 \pm 0.0073$                 | $0.6889 \pm 0.0056$                     |
|  | $\Omega_m \ldots \ldots \ldots \ldots$                | $0.321 \pm 0.013$     | $0.301 \pm 0.012$      | $0.289^{+0.026}_{-0.033}$       | $0.3166 \pm 0.0084$          | $0.3153 \pm 0.0073$                 | $0.3111 \pm 0.0056$                     |
|  | $\Omega_m \hbar^2$                                    | $0.1434 \pm 0.0020$   | $0.1408 \pm 0.0019$    | $0.1404^{+0.0034}_{-0.0039}$    | $0.1432 \pm 0.0013$          | $0.1430 \pm 0.0011$                 | $0.14240 \pm 0.00087$                   |
|  | $\Omega_{\rm m} h^3$                                  | $0.09589 \pm 0.00046$ | $0.09635 \pm 0.00051$  | $0.0981^{+0.0016}_{-0.0018}$    | $0.09633 \pm 0.00029$        | $0.09633 \pm 0.00030$               | $0.09635 \pm 0.00030$                   |
|  | <i>σ</i> <sub>8</sub>                                 | $0.8118 \pm 0.0089$   | $0.793 \pm 0.011$      | $0.796 \pm 0.018$               | $0.8120 \pm 0.0073$          | $0.8111 \pm 0.0060$                 | $0.8102 \pm 0.0060$                     |
|  | $S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5} ~~.$  | $0.840 \pm 0.024$     | $0.794 \pm 0.024$      | $0.781^{+0.052}_{-0.060}$       | $0.834 \pm 0.016$            | $0.832 \pm 0.013$                   | $0.825 \pm 0.011$                       |
|  | $\sigma_8\Omega_m^{0.25}$                             | $0.611 \pm 0.012$     | $0.587 \pm 0.012$      | $0.583 \pm 0.027$               | $0.6090 \pm 0.0081$          | $0.6078 \pm 0.0064$                 | $0.6051 \pm 0.0058$                     |
|  | Z <sub>R2</sub>                                       | $7.50\pm0.82$         | $7.11^{+0.91}_{-0.75}$ | $7.10^{+0.87}_{-0.73}$          | 7.68 ± 0.79                  | $7.67 \pm 0.73$                     | $7.82 \pm 0.71$                         |
|  | $10^9 A_{\rm s}$                                      | $2.092 \pm 0.034$     | $2.045 \pm 0.041$      | $2.116 \pm 0.047$               | $2.101^{+0.031}_{-0.034}$    | $2.100 \pm 0.030$                   | $2.105 \pm 0.030$                       |
|  | $10^9 A_{\rm s} e^{-2\tau}$                           | $1.884 \pm 0.014$     | $1.851 \pm 0.018$      | $1.904 \pm 0.024$               | $1.884 \pm 0.012$            | $1.883 \pm 0.011$                   | $1.881 \pm 0.010$                       |
|  | Age [Gyr]                                             | $13.830 \pm 0.037$    | $13.761 \pm 0.038$     | 13.64 <sup>+0.16</sup><br>-0.14 | $13.800 \pm 0.024$           | 13.797 ± 0.023                      | $13.787 \pm 0.020$                      |

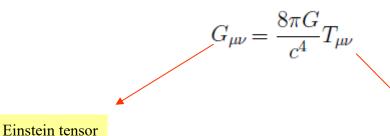


5) Transitions from Radiation to Matter to DE are necessary for structure formation



#### **The Standard Cosmological model**

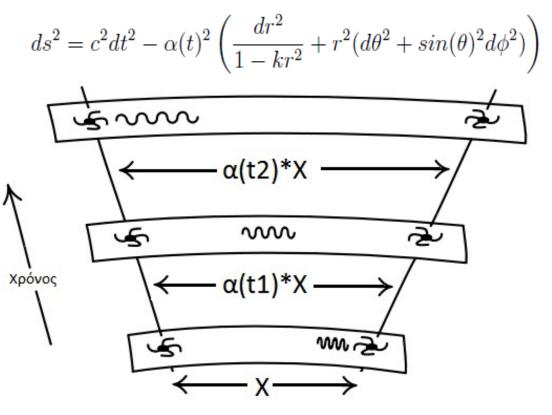
Einstein equations in pure GR:



 $T^{\mu}_{\nu} = Pg^{\mu}_{\nu} + (\rho + P)U^{\mu}U_{\nu}$ 

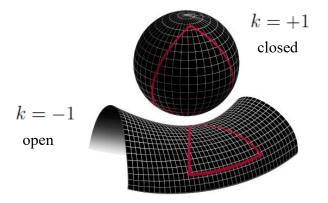
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric:

Scale factor  $\alpha(t)$ :



### **The Standard Cosmological model**

The curvature:



#### Friedmann equations (1924):

$$H^{2}(\alpha) = \left(\frac{\dot{\alpha}}{\alpha}\right)^{2} = \frac{8\pi G}{3}\rho(\alpha) - \frac{k}{\alpha^{2}}$$
$$\frac{\ddot{\alpha}}{\alpha} = -\frac{4\pi G}{3}\left(\rho(\alpha) + P(\alpha)\right)$$

#### Continuity equations:

$$\nabla_{\nu}T^{\mu\nu} = 0 \quad \Longrightarrow \quad \dot{\rho} + 3H(\rho + P) = 0$$

(via Bianchi identities)

### **The Standard Cosmological model**

Hubble (1929): The Universe is expanding

Redshift of distant galaxies

Riess et al. (1998): ...and it's also accelerating!

Type Ia supernovae

2<sup>nd</sup> Friedmann equation: 
$$\frac{\ddot{\alpha}}{\alpha} = -\frac{4\pi G}{3} \left(\rho(\alpha) + 3P(\alpha)\right) \implies P < -\frac{\rho}{3}$$

$$P = w \rho - \begin{bmatrix} w = 0 & \text{Non-relativistic matter} & P << \rho \\ w = \frac{1}{3} & \text{Relativistic matter} \\ \text{(photons etc)} & P = \frac{1}{3}\rho \end{bmatrix}$$

The known forms of matter cannot explain the accelerated expansion of the Universe... We need Dark Energy!

### The cosmological constant $\Lambda$

Pure GR: 
$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} R + S_m \qquad \Longrightarrow \qquad G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

Modify either LHS or RHS!

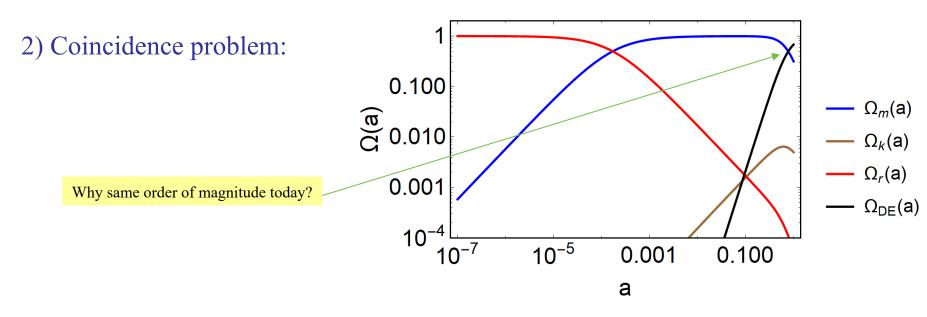
GR with a cosmological constant (mod. LHS):

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left( R - 2\Lambda \right) + S_m \implies G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$
  
Cosmological Constant

Works (see previous lectures) but has problems:

1) Fine-tuning problem:  $\Lambda \approx H_0^2 = (2.1332h \times 10^{-42} \text{ GeV})^2 \qquad p_\Lambda \approx \frac{\Lambda m_{pl}^2}{8\pi} \approx 10^{-47} \text{ GeV}^4 \approx 10^{-123} m_{pl}^4$   $\rho_{\text{vac}} = \int_0^{k_{\text{max}}} \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{1}{2} \sqrt{k^2 + m^2} = \int_0^{k_{\text{max}}} \frac{4\pi k^2 \mathrm{d} k}{(2\pi)^3} \frac{1}{2} \sqrt{k^2 + m^2} \approx \frac{k_{\text{max}}^4}{16\pi^2} \simeq 10^{74} \text{ GeV}^4$ 

### The cosmological constant $\Lambda$



3) Other theoretical issues:

i) In SUSY the vacuum energy is 0.

$$Q_s |\text{boson}\rangle = |\text{fermion}\rangle$$
  
 $Q_s |\text{fermion}\rangle = |\text{boson}\rangle$ 
 $\sum_{\text{all } Q_s} \{Q_s, Q_s^{\dagger}\} = cE$ 
 $E|0\rangle = 0$ 

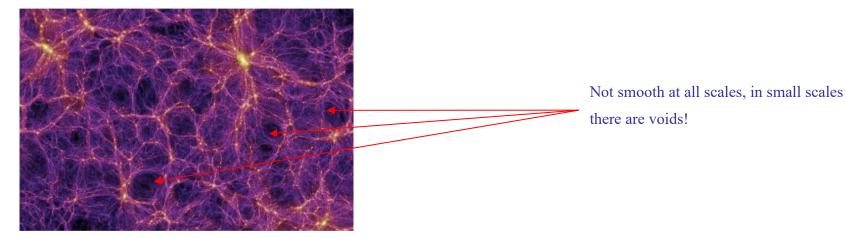
ii) Anthropic arguments  $-10^{-123}m_{\rm pl}^4 \lesssim \rho_{\Lambda} \lesssim 3 \times 10^{-121}m_{\rm pl}^4$ 

iii) Other astrophysical issues (see previous lecture)

# Main points of the lecture

- Why we need Dark Energy (history+observations)
- Lemaitre-Tolman-Bondi (LTB) void models
- Scalar field and ideal fluid models
- Modified gravity and extra dimensions
- Effective fluid approach
- Conclusions

#### 1) FRW metric is homogeneous/isotropic at large distances



#### 2) LTB metric allows for a void:

0802.1523

$$\label{eq:ds2} \begin{split} ds^2 &= -dt^2 + X^2(r,t)\,dr^2 + A^2(r,t)\,d\Omega^2 \\ d\Omega^2 &= d\theta^2 + \sin^2\theta d\phi^2 \end{split}$$

3) Two Hubble parameters! Transverse and longitudinal:

$$H_T(r,t) \equiv \frac{\dot{A}(r,t)}{A(r,t)}$$
$$H_L(r,t) \equiv \frac{\dot{A}'(r,t)}{A'(r,t)}$$

#### 4) Transverse Hubble parameter similar to $\Lambda$ CDM:

$$H^{2}(r,t) = H^{2}_{0}(r) \left[ \Omega_{M}(r) \left( \frac{A_{0}(r)}{A(r,t)} \right)^{3} + (1 - \Omega_{M}(r)) \left( \frac{A_{0}(r)}{A(r,t)} \right)^{2} \right]$$

We require profiles for density and H0!

5) Parametric solution

$$H_{0}(r)t_{\rm BB}(r) = \frac{1}{\sqrt{\Omega_{K}(r)}} \sqrt{1 + \frac{\Omega_{M}(r)}{\Omega_{K}(r)}} - \frac{\Omega_{M}(r)}{\sqrt{\Omega_{K}^{3}(r)}} \sinh^{-1} \sqrt{\frac{\Omega_{K}(r)}{\Omega_{M}(r)}}$$
  

$$A(r, t) = \frac{\Omega_{M}(r)}{2[1 - \Omega_{M}(r)]} [\cosh(\eta) - 1] A_{0}(r)$$
  

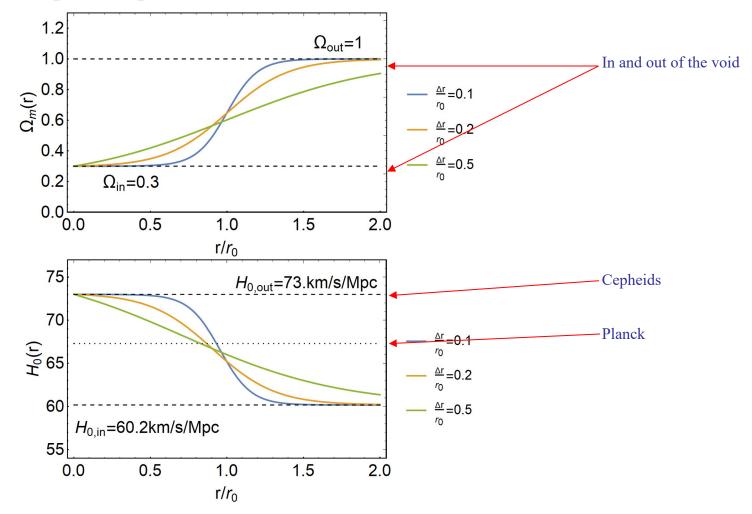
$$H_{0}(r)t = \frac{\Omega_{M}(r)}{2[1 - \Omega_{M}(r)]^{3/2}} [\sinh(\eta) - \eta]$$
  
Big Bang not happening simultaneously everywhere!

#### 6) Possible profiles for matter, H<sub>0</sub> that describe a void of size r<sub>0</sub>:

$$\Omega_{M}(r) = \Omega_{\text{out}} + \left(\Omega_{\text{in}} - \Omega_{\text{out}}\right) \left(\frac{1 - \tanh[(r - r_{0})/2\Delta r]}{1 + \tanh[r_{0}/2\Delta r]}\right)$$

$$H_{0}(r) = H_{0} \left[\frac{1}{\Omega_{K}(r)} - \frac{\Omega_{M}(r)}{\sqrt{\Omega_{K}^{3}(r)}} \sinh^{-1}\sqrt{\frac{\Omega_{K}(r)}{\Omega_{M}(r)}}\right] = H_{0} \sum_{n=0}^{\infty} \frac{2[\Omega_{K}(r)]^{n}}{(2n+1)(2n+3)}$$
Demand Big Bang happening simultaneously everywhere

7) Most profiles are problematic, require fine-tuning and/or weird primordial power spectra to fit CMB.



# Main points of the lecture

- Why we need Dark Energy (history+observations)
- Lemaitre-Tolman-Bondi (LTB) void models
- Scalar field and ideal fluid models
- Modified gravity and extra dimensions
- Effective fluid approach
- Conclusions



1) Simplest thing we can add to GR Lagrangian (on RHS!) is a scalar field

i) Scalar fields (bosons with spin 0) have been observed (Higgs)!

ii) Already used in inflation (also an accelerating phase)

iii) Dynamics well understood

#### 2) Energy momentum tensor:

$$T^{(\phi)}_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}\mathcal{L}_{\phi})}{\delta g^{\mu\nu}} = \partial_{\mu}\phi\partial_{\nu}\phi - g_{\mu\nu} \left[\frac{1}{2}g^{\alpha\beta}\partial_{\alpha}\phi\partial_{\beta}\phi + V(\phi)\right]$$



3) Effective density and pressure and equation of state w:

$$P_{\phi} = \frac{1}{3} T_i^{i(\phi)} = \frac{1}{2} \dot{\phi}^2 - V(\phi)$$

$$w_{\phi} \equiv \frac{P_{\phi}}{\rho_{\phi}} = \frac{\dot{\phi}^2 - 2V(\phi)}{\dot{\phi}^2 + 2V(\phi)}$$

$$\rho_{\phi} = -T_0^{0(\phi)} = \frac{1}{2} \dot{\phi}^2 + V(\phi)$$

4) In quintessence, w(z) cannot cross -1! Use continuity equation:

$$\dot{\rho}_{\phi} + 3H(\rho_{\phi} + P_{\phi}) = 0 \qquad \qquad \dot{\rho} = -3\frac{\dot{a}}{a}(\rho + p(\rho))$$

Nesseris et al, astro-ph/0610092

when 
$$w \to -1 \implies p(\rho) \to -\rho \implies \dot{\rho} \to 0$$
 and  $\lim_{w \to -1} \frac{d^n \rho(t)}{dt^n} = 0$ 

So w(z) goes asymptotically to w  $\rightarrow -1_+!$ 



5) Equations of motion:

$$\begin{aligned} H^{2} &= \frac{\kappa^{2}}{3} \begin{bmatrix} \frac{1}{2} \dot{\phi}^{2} + V(\phi) + \rho_{M} \end{bmatrix}, & \ddot{\phi} + 3H\dot{\phi} + V_{,\phi} = 0 \\ V_{,\phi} &\equiv dV/d\phi \\ \dot{H} &= -\frac{\kappa^{2}}{2} \left( \dot{\phi}^{2} + \rho_{M} + P_{M} \right), & \text{and} & \dot{\rho}_{\phi} + 3H(\rho_{\phi} + P_{\phi}) = 0 \end{aligned}$$

6) Example models (all high energy physics inspired):

FreezingThawing
$$V(\phi) = M^{4+n}\phi^{-n}$$
  $(n > 0)$ , $V(\phi) = V_0 + M^{4-n}\phi^n$   $(n > 0)$ , $V(\phi) = M^{4+n}\phi^{-n}\exp(\alpha\phi^2/m_{\rm pl}^2)$ . $V(\phi) = M^4\cos^2(\phi/f)$ .



#### 7) Autonomous systems and critical points

arXiv:hep-th/0603057

 $\dot{x} = f(x, y, t)$  $\dot{y} = g(x, y, t)$  Critical points when  $(f, g)|_{(x_c, y_c)} = 0$ 

#### 8) Stability when

$$\begin{array}{c} x = x_c + \delta x \\ y = y_c + \delta y \end{array} \longrightarrow \quad \frac{\mathrm{d}}{\mathrm{d}N} \left( \begin{array}{c} \delta x \\ \delta y \end{array} \right) = \mathcal{M} \left( \begin{array}{c} \delta x \\ \delta y \end{array} \right), \quad \mathcal{M} = \left( \begin{array}{c} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{array} \right)_{(x = x_c, y = y_c)}$$

$$\delta x = C_1 e^{\mu_1 N} + C_2 e^{\mu_2 N}$$
  
$$\delta y = C_3 e^{\mu_1 N} + C_4 e^{\mu_2 N}$$



#### 9) Solutions

$$\delta x = C_1 e^{\mu_1 N} + C_2 e^{\mu_2 N}$$
  

$$\delta y = C_3 e^{\mu_1 N} + C_4 e^{\mu_2 N},$$

(i) Stable node:  $\mu_1 < 0$  and  $\mu_2 < 0$ . arXiv:hep-th/0603057

(ii) Unstable node:  $\mu_1 > 0$  and  $\mu_2 > 0$ .

(iii) Saddle point:  $\mu_1 < 0$  and  $\mu_2 > 0$  (or  $\mu_1 > 0$  and  $\mu_2 < 0$ ).

(iv) Stable spiral: The determinant of the matrix  $\mathcal{M}$  is negative and the real parts of  $\mu_1$  and  $\mu_2$  are negative.

10) For quintessence

 $x \equiv \frac{\kappa \dot{\phi}}{\sqrt{6}H}, \quad y \equiv \frac{\kappa \sqrt{V}}{\sqrt{3}H},$ 

 $\lambda \equiv -\frac{V_{,\phi}}{\kappa V}\,, \quad \Gamma \equiv \frac{VV_{,\phi\phi}}{V_{,\phi}^2}\,,$ 

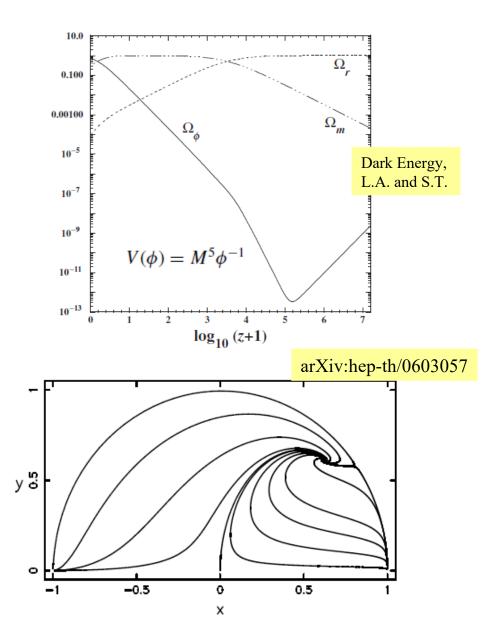


11) Other variables:

$$\begin{split} \epsilon x^2 + y^2 + \frac{\kappa^2 \rho_m}{3H^2} &= 1 \\ w_\phi &\equiv \frac{p_\phi}{\rho_\phi} = \frac{\epsilon x^2 - y^2}{\epsilon x^2 + y^2} \,, \\ \Omega_\phi &\equiv \frac{\kappa^2 \rho_\phi}{3H^2} = \epsilon x^2 + y^2 \,. \end{split}$$

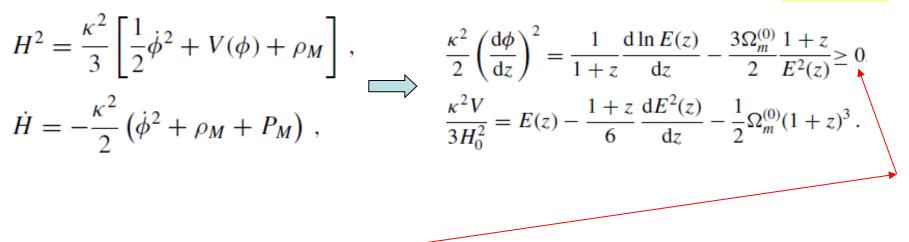
12) Phase space

$$\begin{split} x &\equiv \frac{\kappa \dot{\phi}}{\sqrt{6}H} \,, \quad y \equiv \frac{\kappa \sqrt{V}}{\sqrt{3}H} \,, \\ \lambda &\equiv -\frac{V_{,\phi}}{\kappa V} \,, \quad \Gamma \equiv \frac{VV_{,\phi\phi}}{V_{,\phi}^2} \,, \end{split}$$





13) Potential reconstruction ( $E(z)=H(z)/H_0$ ):



Dark Energy, L.A. and S.T.

14) Condition for reconstruction

 $\frac{\mathrm{d}H^2}{\mathrm{d}z} \ge 3\Omega_m^{(0)}H_0^2(1+z)^2 \qquad \Longrightarrow \qquad \rho_\phi + P_\phi \ge 0 \quad (\text{weak energy condition})$ 



Dark Energy, L.A. and S.T.

,

1) K-essence (most general action for minimally coupled scalar field)

$$X \equiv -(1/2)(\nabla \phi)^2 \qquad \Longrightarrow \qquad S = \int d^4 x \sqrt{-g} \, p(\phi, X)$$
$$\implies \qquad S_E = \int d^4 x \sqrt{-g} \left[ \frac{1}{2} R + K(\phi) X + L(\phi) X^2 + \cdots \right]$$

2) Equation of state:

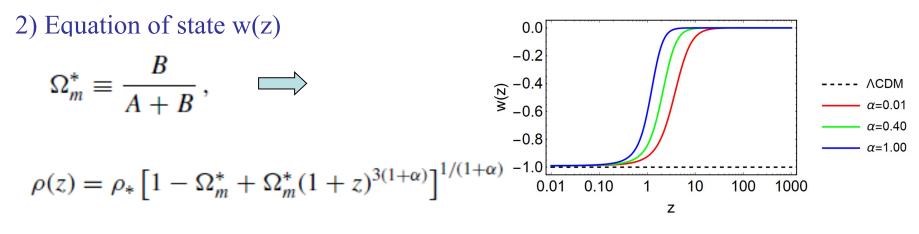
$$T^{(\phi)}_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}P)}{\delta g^{\mu\nu}} = P_{,X} \partial_{\mu} \phi \partial_{\nu} \phi + g_{\mu\nu}P \qquad \Longrightarrow \qquad \begin{array}{c} P_{\phi} = P_{,X} \partial_{\mu} \phi \partial_{\nu} \phi + g_{\mu\nu}P \qquad \Longrightarrow \qquad P_{\phi} = 2XP_{,X} - P \qquad \Longrightarrow \qquad \end{array}$$

$$w_{\phi} = \frac{P_{\phi}}{\rho_{\phi}} = \frac{P}{2XP_{,X} - P}$$
 Can cross w=-1

**Chaplygin gas** 

1) Barotropic fluids (Chaplygin gas)

Dark Energy, L.A. and S.T.



$$w(z) = -\left[1 + \frac{\Omega_m^*}{1 - \Omega_m^*} (1 + z)^{3(1 + \alpha)}\right]^{-1}$$

w(z=0) $\rightarrow$  -1 mimics DE at late times! w(z>>0) $\rightarrow$  0 mimics DM at early times!

# Main points of the lecture

- Why we need Dark Energy (history+observations)
- Lemaitre-Tolman-Bondi (LTB) void models
- Scalar field and ideal fluid models
- Modified gravity and extra dimensions
- Effective fluid approach
- Conclusions

### **Modified gravity**

1) Simplest thing we can add to GR Lagrangian (on LHS!) is  $R \rightarrow f(R)$ 

i) Just a scalar degree of freedom

ii) Has been used in inflation (Starobinsky model!)

iii) Dynamics well understood, but rich phenomenology

iv) High energy physics inspired

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} R + S_m \qquad \implies S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} f(R) + S_m$$

2) Simplest example of f(R) is ΛCDM!

GR is just a special case, not unique theory!



3) High energy physics inspired. New terms appear when trying to renormalize GR at one-loop order:

$$R \Rightarrow R + \alpha \left[ \frac{1}{180} R_{\alpha\beta\gamma\delta} R^{\alpha\beta\gamma\delta} - \frac{1}{180} R_{\mu\nu} R^{\mu\nu} - \frac{1}{6} \left( \frac{1}{5} - \xi \right) \Box R + \frac{1}{2} \left( \frac{1}{6} - \xi \right)^2 R^2 + \cdots \right]$$
  
Birrell & Davis 1986,  
Sec 6.2, pg 159  
$$=? \qquad f(R)!$$

4) Most general (pure) modified gravity theory is of the form:

$$R = g_{\mu\nu}R^{\mu\nu}$$

$$P = R_{\mu\nu}R^{\mu\nu}$$

$$Q = R_{\alpha\beta\gamma\delta}R^{\alpha\beta\gamma\delta}$$

$$\Box = g^{\mu\nu}\nabla_{\mu}\nabla_{\nu} \longleftarrow D'Alambertian in curved space$$

$$G = Q - 4P + R^2 \longrightarrow$$
Gauss-Bonnet term (topological invariant in 4D)



1) f(R) equations of motion (vary action with respect to metric):

$$S = \frac{1}{16\pi G} \int \mathrm{d}^4 x \sqrt{-g} f(R) + S_m$$

 $\tilde{g}_{\mu\nu} = g_{\mu\nu} + \delta g_{\mu\nu} \hookrightarrow \tilde{g}^{\mu\nu} = g^{\mu\nu} - \delta g^{\mu\nu}$ 

$$\begin{split} \delta\Gamma^{\lambda}_{\mu\nu} &= \frac{1}{2}g^{\lambda a} \left( \nabla_{\mu}\delta g_{a\nu} + \nabla_{\nu}\delta g_{a\mu} - \nabla_{a}\delta g_{\mu\nu} \right) \\ \delta R^{\nu}_{k\lambda a} &= \nabla_{\lambda}\delta\Gamma^{\nu}_{ka} - \nabla_{a}\delta\Gamma^{\nu}_{k\lambda} \\ \delta R_{\mu\nu} &= \frac{1}{2} \left( -\Box \delta g_{\mu\nu} + \nabla_{a}\nabla_{\mu}\delta g^{a}_{\nu} + \nabla_{a}\nabla_{\nu}\delta g^{a}_{\mu} - \nabla_{\mu}\nabla_{\nu}\delta g^{a}_{a} \right) \\ \delta\sqrt{-g} &= -\frac{1}{2}\sqrt{-g}g_{ab}\delta g^{ab} \\ \delta R &= \delta(g^{\mu\nu}R_{\mu\nu}) = \delta g^{\mu\nu}R_{\mu\nu} + g_{\mu\nu}\Box\delta g^{\mu\nu} - \nabla_{\mu}\nabla_{\nu}\delta g^{\mu\nu} \end{split}$$

$$FG_{\mu\nu} - \frac{1}{2}(f(R) - R F)g_{\mu\nu} + (g_{\mu\nu}\Box - \nabla_{\mu}\nabla_{\nu})F = \kappa T^{(m)}_{\mu\nu}$$
2) Conservation equation:  

$$S = \int d^{4}x \sqrt{-g}\mathcal{L} \Rightarrow$$

$$\delta S = \int d^{4}x \sqrt{-g} \left[\frac{\sqrt{-g}\mathcal{L}}{\delta g^{\mu\nu}} \frac{1}{\sqrt{-g}}\right] \delta g^{\mu\nu}$$

$$= \int d^{4}x \sqrt{-g}S_{\mu\nu} \delta g^{\mu\nu}$$

$$S = \int d^{4}x \sqrt{-g} S_{\mu\nu} \delta g^{\mu\nu}$$

$$S = \int d^{4}x \sqrt{-g} \left[\frac{\sqrt{-g}\mathcal{L}}{\delta g^{\mu\nu}} \frac{1}{\sqrt{-g}}\right] \delta g^{\mu\nu}$$

$$= \int d^{4}x \sqrt{-g} S_{\mu\nu} \delta g^{\mu\nu}$$

$$S = \int d^{4}x \sqrt{-g} S_{\mu\nu} \delta g^{\mu\nu}$$

$$S = \int d^{4}x \sqrt{-g} S_{\mu\nu} \delta g^{\mu\nu}$$

$$S = \int d^{4}x \sqrt{-g} V^{\nu} \nabla^{\mu} S_{\mu\nu} + \nabla^{\mu} S_{\nu\mu}$$

$$S = \int d^{4}x \sqrt{-g} S_{\mu\nu} \delta g^{\mu\nu}$$

$$S = \int d^{4}x \sqrt{-g} V^{\nu} \nabla^{\mu} S_{\mu\nu} = 0$$



3) f(R) Friedman equations for FRW and acceleration!

$$ds^{2} = c^{2}dt^{2} - \alpha(t)^{2} \left( \frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin(\theta)^{2}d\phi^{2}) \right)$$

$$3FH^{2} = \rho_{\rm m} + \rho_{\rm rad} + \frac{1}{2}(FR - f) - 3H\dot{F}$$

$$-2F\dot{H} = \rho_{\rm m} + \frac{4}{3}\rho_{\rm rad} + \ddot{F} - H\dot{F}$$
Properly chosen, can give acceleration!

4) Autonomous systems

$$x_{1} = -\frac{F'}{F},$$

$$x_{2} = -\frac{f}{6FH^{2}},$$

$$x_{3} = \frac{R}{6H^{2}} = \frac{H'}{H} + 2,$$

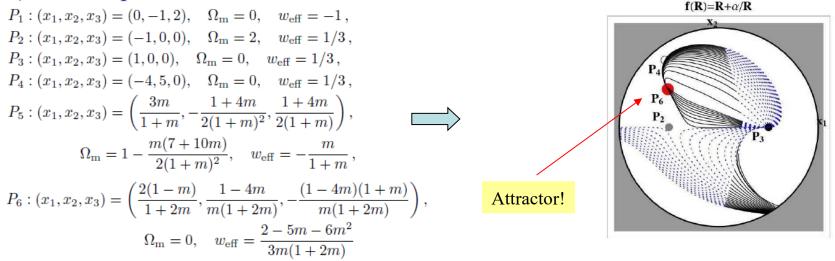
$$x_{4} = \frac{\rho_{\text{rad}}}{3FH^{2}} = \Omega_{r}.$$

$$' = \frac{d}{d\ln\alpha} = \frac{d}{dN} = \frac{1}{H}\frac{d}{dt}$$

$$\begin{aligned} x_1' &= -1 - x_3 - 3x_2 + x_1^2 + x_4 \\ x_2' &= \frac{x_1 x_3}{m} - x_2(2x_3 - x_1 - 4) \\ x_3' &= -\frac{x_1 x_3}{m} - 2x_3(x_3 - 2) \\ x_4' &= -2x_3 x_4 + x_1 x_4 \\ m &\equiv \frac{F' R}{f'} = \frac{f_{,RR} R}{f_{,R}} \end{aligned}$$



#### 5) Critical points



6) Viable models (Hu+Sawicki, Starobinski) are perturbations around ΛCDM!

$$\begin{split} f(R) &= R - m^2 \frac{c_1 (R/m^2)^n}{1 + c_2 (R/m^2)^n}, \\ &= R - \frac{m^2 c_1}{c_2} + \frac{m^2 c_1/c_2}{1 + c_2 (R/m^2)^n} \\ &= R - 2\Lambda \left(1 - \frac{1}{1 + (R/(b \ \Lambda)^n)}\right)^{\bullet} \\ &= R - \frac{2\Lambda}{1 + \left(\frac{b\Lambda}{R}\right)^n}, \end{split}$$

$$f(R) = R - 2\Lambda \left(1 - \frac{1}{\left(1 + \left(\frac{R}{b\Lambda}\right)^2\right)^n}\right),$$

$$\lim_{b \to 0} f(R) = R - 2\Lambda,$$
$$\lim_{b \to \infty} f(R) = R.$$



7) Effective fluids: take modifications from LHS to RHS  $\rightarrow$  Dark Energy fluid!

$$FG_{\mu\nu} - \frac{1}{2}(f(R) - R \ F)g_{\mu\nu} + (g_{\mu\nu}\Box - \nabla_{\mu}\nabla_{\nu})\ F = \kappa\ T^{(m)}_{\mu\nu} \implies G_{\mu\nu} = \kappa\left(T^{(m)}_{\mu\nu} + T^{(DE)}_{\mu\nu}\right)$$

$$\kappa T^{(DE)}_{\mu\nu} = (1-F)G_{\mu\nu} + \frac{1}{2}(f(R) - R F)g_{\mu\nu} - (g_{\mu\nu}\Box - \nabla_{\mu}\nabla_{\nu})F \qquad \nabla^{\mu}T^{(DE)}_{\mu\nu} = 0$$

8) Perturbations and Geff: f(R) modifies Newton's constant!

More properly: perturb FRW, find Poisson equation:

$$ds^{2} = a(\tau)^{2} \left[ -(1 + 2\Psi(\vec{x}, \tau))d\tau^{2} + (1 - 2\Phi(\vec{x}, \tau))d\vec{x}^{2} \right]$$

$$\Psi = -4\pi G_N \frac{a^2}{k^2} \frac{G_{eff}}{G_N} \bar{\rho}_m \delta_m,$$
  
$$G_{eff}/G_N = \frac{1}{F} \frac{1 + 4\frac{k^2}{a^2} \frac{F_{,R}}{F}}{1 + 3\frac{k^2}{a^2} \frac{F_{,R}}{F}},$$



9) Conformal transformation (Jordan $\rightarrow$ Einstein frame): f(R) is just a scalar field!

$$\tilde{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}, \qquad \Longrightarrow \qquad R = \Omega^2 (\tilde{R} + 6\tilde{\Box}\omega - 6\tilde{g}^{\mu\nu}\partial_{\mu}\omega\partial_{\nu}\omega) \qquad \Longrightarrow \\ \omega \equiv \ln \Omega$$

$$S = \int \mathrm{d}^4 x \sqrt{-\tilde{g}} \left[ \frac{1}{2\kappa^2} F \Omega^{-2} (\tilde{R} + 6\tilde{\Box}\omega - 6\tilde{g}^{\mu\nu}\partial_{\mu}\omega\partial_{\nu}\omega) - \Omega^{-4}U \right] + \int \mathrm{d}^4 x \mathcal{L}_M (\Omega^{-2}\,\tilde{g}_{\mu\nu}, \Psi_M)$$
$$\Omega^2 = F \qquad U = \frac{FR - f}{2\kappa^2}$$

Redefine "field":

$$\begin{split} \kappa\phi &\equiv \sqrt{3/2} \ln F \\ S_E &= \int \mathrm{d}^4 x \sqrt{-\tilde{g}} \left[ \frac{1}{2\kappa^2} \tilde{R} - \frac{1}{2} \tilde{g}^{\mu\nu}_{\phantom{\mu\nu}} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right] + \int \mathrm{d}^4 x \mathcal{L}_M(F^{-1}(\phi) \tilde{g}_{\mu\nu}, \Psi_M) \\ \\ \text{Potential} \\ \text{Quintessence!!!} \\ V(\phi) &= \frac{U}{F^2} = \frac{FR - f}{2\kappa^2 F^2} \\ \end{split}$$
 Non-minimal coupling

# **Ostrogradsky's theorem on higher derivatives**

Ostrogradsky's theorem and higher order derivatives:

- i) GR has 2<sup>nd</sup> order derivatives.
- ii) Modified gravity theories in general have >2<sup>nd</sup> order!
- iii) Theories with more than 2<sup>nd</sup> order derivs are unstable (exceptions apply...)
- iv) These theories may also suffer from ghosts!

v) Modifying GR is tough :(

Example:

$$L = L(x, \dot{x}) \implies \frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = 0 \implies H(X, P) \equiv P\dot{x} - L,$$
  
$$\ddot{x} = \mathcal{F}(x, \dot{x}) \implies H(X, P) = P\dot{x} - L,$$
  
$$= PV(X, P) - L(X, V(X, P))$$

Quadratic in  $P \rightarrow$  bounded from below.

1506.02210

# **Modified gravity and ghosts**

Ghosts+propagators in MoG:

$$S = \int d^4x \sqrt{-g} f(R, P, Q)$$

$$P \equiv R_{ab} R^{ab}$$

$$Q \equiv R_{abcd} R^{abcd}$$

$$F \equiv \frac{\partial f}{\partial R}, \quad f_P \equiv \frac{\partial f}{\partial P}, \quad f_Q \equiv \frac{\partial f}{\partial Q}$$
  

$$FG_{\mu\nu} = \frac{1}{2}g_{\mu\nu} \left(f - R F\right) - \left(g_{\mu\nu}\Box - \nabla_{\mu}\nabla_{\nu}\right)F$$
  

$$-2 \left(f_P R^a_{\mu} R_{a\nu} + f_Q R_{abc\mu} R^{abc}_{\ \nu}\right)$$
  

$$-g_{\mu\nu} \nabla_a \nabla_b (f_P R^{ab}) - \Box (f_P R_{\mu\nu})$$
  

$$+2\nabla_a \nabla_b \left(f_P R^a_{\ (\mu} \delta^b_{\ \nu)} + 2f_Q R^a_{\ (\mu\nu)}^b\right)$$

Fourth order derivatives... Problem!!!

Linearize and find propagator G(k):

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

$$h_{\mu\nu} = \bar{h}_{\mu\nu} - \frac{\bar{h}}{2} \eta_{\mu\nu} + \eta_{\mu\nu} h_f$$

$$\square h_f = m_s^2 h_f$$

$$m_{spin2}^2 \equiv -\frac{F_0}{I_{P0} + 4I_{Q0}}$$

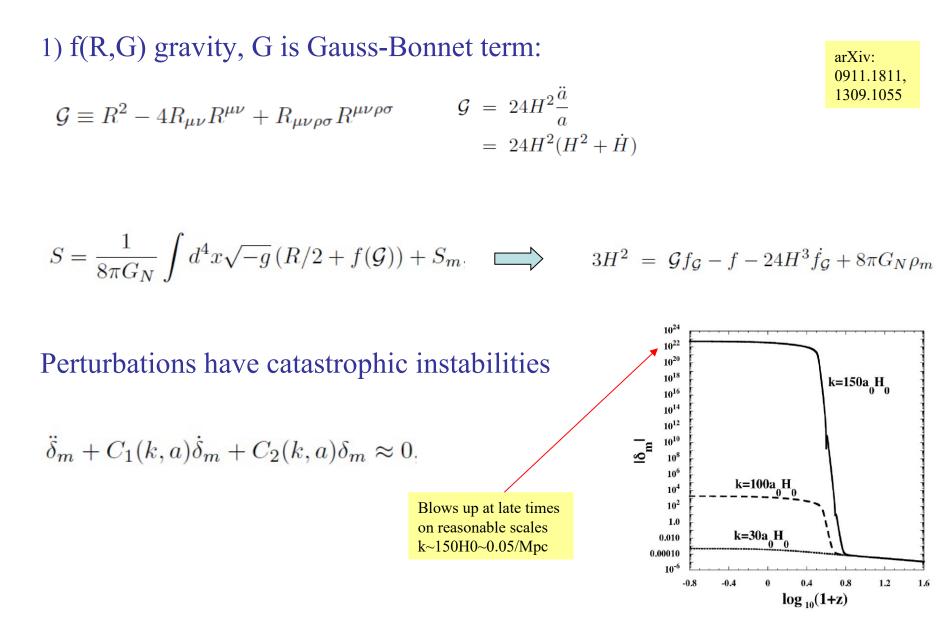
$$m_s^2 \equiv \frac{1}{3} \frac{F_0}{F_{R0} + \frac{2}{3}(f_{P0} + f_{Q0})}$$

$$M_{\mu\nu} = 0$$

$$\square h_f = m_s^2 h_f$$

$$M_{spin2} = -\frac{F_0}{I_{P0} + 4I_{Q0}}$$

$$M_{spin2} = \frac{1}{3} \frac{F_0}{F_{R0} + \frac{2}{3}(f_{P0} + f_{Q0})}$$



1) f(T) gravity, T is the torsion scalar (tetrad formalism):

$$T^{\lambda}_{\mu\nu} = \overset{\mathbf{w}^{\lambda}}{\Gamma_{\nu\mu}} - \overset{\mathbf{w}^{\lambda}}{\Gamma_{\mu\nu}} = e^{\lambda}_{A} (\partial_{\mu}e^{A}_{\nu} - \partial_{\nu}e^{A}_{\mu}),$$
  
$$g_{\mu\nu}(x) = \eta_{AB} e^{A}_{\mu}(x) e^{B}_{\nu}(x),$$
  
$$T \equiv \frac{1}{4} T^{\rho\mu\nu} T_{\rho\mu\nu} + \frac{1}{2} T^{\rho\mu\nu} T_{\nu\mu\rho} - T^{\ \rho}_{\rho\mu} T^{\nu\mu}_{\ \nu},$$

1803.09278

2) Lagrangian ~T is identical to GR! Use f(T):

$$I = \frac{1}{16\pi G} \int d^4 x e \left[ T + f(T) + L_m + L_r \right]$$
  

$$e^{-1} \partial_{\mu} (e e_A^{\rho} S_{\rho}^{\mu\nu}) [1 + f_T] + e_A^{\rho} S_{\rho}^{\mu\nu} \partial_{\mu} (T) f_{TT} - [1 + f_T] e_A^{\lambda} T^{\rho}{}_{\mu\lambda} S_{\rho}^{\nu\mu} + \frac{1}{4} e_A^{\nu} [T + f(T)] = 4\pi G e_A^{\rho} T_{\rho}^{\nu}$$
  

$$T = -6H^2$$
  

$$\dot{H}^2 = \frac{8\pi G}{3} (\rho_m + \rho_r) - \frac{f}{6} + \frac{T f_T}{3}$$
  

$$\dot{H} = -\frac{4\pi G (\rho_m + P_m + \rho_r + P_r)}{1 + f_T + 2T f_T T},$$
  
Can give acceleration!

3) DE equation of state and specific models:

$$w \equiv \frac{P_{DE}}{\rho_{DE}} = -\frac{f/T - f_T + 2Tf_{TT}}{\left[1 + f_T + 2Tf_{TT}\right]\left[f/T - 2f_T\right]} \quad \qquad \text{Can give crossing of w=-1!}$$

$$f(T) = \alpha (-T)^b$$
  

$$f(T) = \alpha T_0 (1 - e^{-p\sqrt{T/T_0}})$$
  

$$f(T) = \alpha T_0 (1 - e^{-pT/T_0})$$

4) Perturbations:

$$ds^{2} = a(\tau)^{2} \left[ -(1 + 2\Psi(\vec{x}, \tau))d\tau^{2} + (1 - 2\Phi(\vec{x}, \tau))d\vec{x}^{2} \right]$$

$$\implies \frac{G_{\text{eff}}(a)}{G_N} = \frac{1}{1+f_T} \qquad \qquad \text{Very close to 1 and no dependence on } k!$$

1)  $f(R,\phi,X)$ 

i) Generalization of non-minimally coupled scalar field

ii) Contains f(R), scalar-tensor, quintessence, K-essenceiii) Still viable after GWs

2) Background equations give rich phenomenology

$$w_{\rm DE} = -1 + \frac{2f_{,X}X + 2\ddot{F} - 4H\dot{F} - 4\dot{H}(F_0 - F)}{2f_{,X}X + FR - f - 6H\dot{F} + 6H^2(F_0 - F)}$$

3) Perturbations:

$$G_{\text{eff}} \simeq \frac{1}{8\pi F} \frac{f_{,X} + 4\left(f_{,X}\frac{k^2}{a^2}\frac{F_{,R}}{F} + \frac{F_{,\phi}^2}{F}\right)}{f_{,X} + 3\left(f_{,X}\frac{k^2}{a^2}\frac{F_{,R}}{F} + \frac{F_{,\phi}^2}{F}\right)}$$

Anisotropic stress, could be detected by Weak Lensing

$$\eta \equiv \frac{\Phi - \Psi}{\Psi} = \frac{2f_{,X}\frac{k^2}{a^2}\frac{F_{,R}}{F} + \frac{2F_{,\phi}^2}{F}}{f_{,X}\left(1 + \frac{2k^2}{a^2}\frac{F_{,R}}{F}\right) + \frac{2F_{,\phi}^2}{F}}$$

1

0705.1032

#### 1) Horndesky theory

- i) Most general case of non-minimally coupled scalar field
- ii) Has shift symmetry  $\phi{\rightarrow}\,\phi{+}c$
- iii) Contains  $f(R,\phi,X)$  plus more!
- iv)  $2^{nd}$  order equations only by construction  $\rightarrow$  no instabilities!
- v) Terms beyond  $f(R,\phi,X)$  excluded after GWs (see GW lecture)
- vi) Not motivated from High Energy Physics... :-(

$$\mathcal{L}_{5} = G_{5}(\phi, X) G_{\mu\nu}\phi^{;\mu\nu} - \frac{1}{6}G_{5X}(\phi, X) \left[ (\Box\phi)^{3} + 2\phi^{\nu}_{;\mu}\phi^{\alpha}_{;\nu}\phi^{\mu}_{;\alpha} - 3\phi_{;\mu\nu}\phi^{;\mu\nu}\Box\phi \right]$$

2) Horndesky sub-cases:

i) f(R): 
$$G_2 = -\frac{M_{pl}^2}{2} (Rf_{R} - f), \quad G_3 = G_5 = 0, \quad G_4 = \frac{1}{2} M_{pl} \phi, \quad \phi = M_{pl} f_{R}$$

ii) Brans-Dicke: 
$$G_2 = \frac{M_{pl}\omega_{BD}X}{\phi} - V(\phi), \quad G_3 = G_5 = 0, \quad G_4 = \frac{1}{2}M_{pl}\phi$$

iii) Covariant Galileon:  $G_2 = -c_2 X$ ,  $G_3 = \frac{c_3}{M^3} X$ ,  $G_4 = \frac{1}{2} M_{pl}^2 - \frac{c_4}{M^6} X^2$ ,  $G_5 = \frac{3c_5}{M^9} X^2$ 

iv) Kinetic Braiding:  $G_2 = G_2(X)$ ,  $G_3 = G_3(X)$ ,  $G_4 = \frac{1}{2}M_{pl}^2$ ,  $G_5 = 0$ 

1) Models with extra dimensions: Kaluza-Klein

i) Assume extra dimension y, which is compactified with cylindrical boundary conditions. Then 5D metric g<sub>MN</sub> satisfies

$$f(x,y) = f(x,y+2\pi r) \quad \Longrightarrow \quad \frac{\partial g_{MN}}{\partial y} = 0 \quad \checkmark \quad \text{Similar to U(1) symmetry!}$$

ii) Expand 5D metric in Fourier modes:

$$g_{MN}(x,y) = \sum_{n} g_{MN}^{(n)}(x)e^{iny/r} \qquad \Longrightarrow \qquad g_{MN}^{(0)} = \phi^{-1/3} \begin{pmatrix} g_{\mu\nu} + \phi A_{\mu}A\nu & \phi A_{\mu} \\ \phi A_{\nu} & \phi \end{pmatrix}$$

Very general decomposition)

iii) GR in 5D:

4D GR+Maxwell+scalar field!

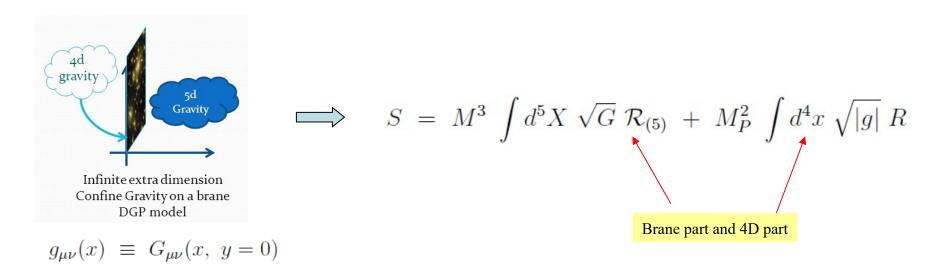
$$S = \frac{1}{16\pi G_N^5} \int d^4x dy \sqrt{-g^{(5)}} R^{(5)}$$
  
=  $\frac{1}{16\pi G_N^4} \int d^4x \sqrt{-g^{(4)}} \left( R + \frac{1}{4} \phi F_{\mu\nu} F^{\mu\nu} + \frac{1}{6\phi^2} \partial^\mu \phi \partial_\mu \phi \right)$   
 $G_N^{(4)} = \frac{G_N^{(5)}}{2\pi r}$ 

iv) Add extra scalar field:

$$S_{\Phi} = \int d^4 x dy \sqrt{-g^{(5)}} \left( g_{MN}^{(0)} \partial_M \Phi \partial_N \Phi \right)$$
  
$$= (2\pi r) \sum_n \int d^4 x \sqrt{-g^{(4)}} \left[ g^{\mu\nu} \left( \partial_\mu + \frac{in}{r} A_\mu \right) \Phi_n \left( \partial_\nu + \frac{in}{r} A_\nu \right) \Phi_n - \frac{n^2}{\phi r^2} \Phi_n^2 \right]$$
  
$$\longrightarrow \qquad Q_n = \frac{8\pi G_N^{(4)} n}{r} \sqrt{\frac{2}{\phi}} \qquad M_n = \frac{|n|}{r\sqrt{\phi}} \qquad \text{Qn-Mn... Problem!}$$

#### 2) Models with extra dimensions: DGP

hep-th/0005016



$$V(r) \simeq -\frac{1}{8\pi^2 M_P^2} \frac{1}{r} \left\{ \frac{r_0}{r} + \mathcal{O}\left(\frac{1}{r^2}\right) \right\}$$
  
Gravity is weaker at r>>r0

#### 3) Models with extra dimensions: Randal-Sundrum (2 branes!)

5D bulk  $g_{\mu\nu}^{vis}(x^{\mu}) \equiv G_{\mu\nu}(x^{\mu},\phi=\pi)$ 3-brane 3-brane  $g_{\mu\nu}^{hid}(x^{\mu}) \equiv G_{\mu\nu}(x^{\mu}, \phi = 0)$ Λ  $ds^2 = e^{-2kr_c\phi}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + r_c^2d\phi^2$ 1) Can solve hierarchy problem 2) Affects dynamics at large distances  $0 < \phi < \pi$  $S = S_{aravity} + S_{vis} + S_{hid}$  $S_{gravity} = \int d^4x \int_{-\pi}^{\pi} d\phi \sqrt{-G} \{-\Lambda + 2M^3R\}$  $S_{vis} = \int d^4x \sqrt{-g_{vis}} \{\mathcal{L}_{vis} - V_{vis}\}$  $S_{hid} = \int d^4x \sqrt{-g_{hid}} \{\mathcal{L}_{hid} - V_{hid}\}$ Visible (us) and invisible branes

hep-ph/9905221

# Main points of the lecture

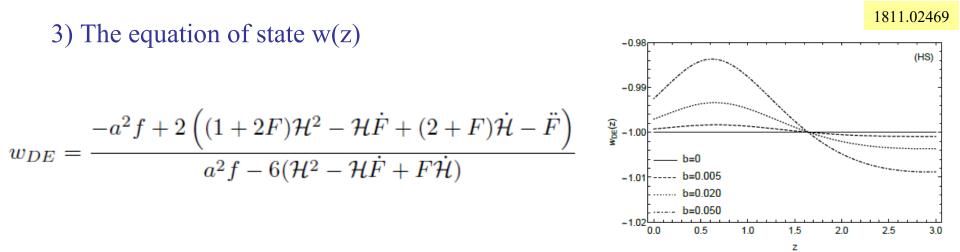
- Why we need Dark Energy (history+observations)
- Lemaitre-Tolman-Bondi (LTB) void models
- Scalar field and ideal fluid models
- Modified gravity and extra dimensions
- Effective fluid approach
- Conclusions

1) Re-write MoG theory as GR and an effective DE fluid. Eg for f(R):

$$G_{\mu\nu} = \kappa \left( T^{(m)}_{\mu\nu} + T^{(DE)}_{\mu\nu} \right) \qquad \implies \kappa T^{(DE)}_{\mu\nu} = (1 - F)G_{\mu\nu} + \frac{1}{2}(f(R) - R F)g_{\mu\nu} - (g_{\mu\nu}\Box - \nabla_{\mu}\nabla_{\nu}) F.$$
1) Makes it easier to include in codes
2) Gives connection with lab physics
$$\nabla^{\mu}T^{(DE)}_{\mu\nu} = 0.$$

$$\begin{array}{ll} T_{0}^{0} &=& -(\bar{\rho}+\delta\rho), \\ T_{i}^{0} &=& (\bar{\rho}+\bar{P})u_{i}, \\ T_{j}^{i} &=& (\bar{P}+\delta P)\delta_{j}^{i}+\Sigma_{j}^{i} \end{array}$$

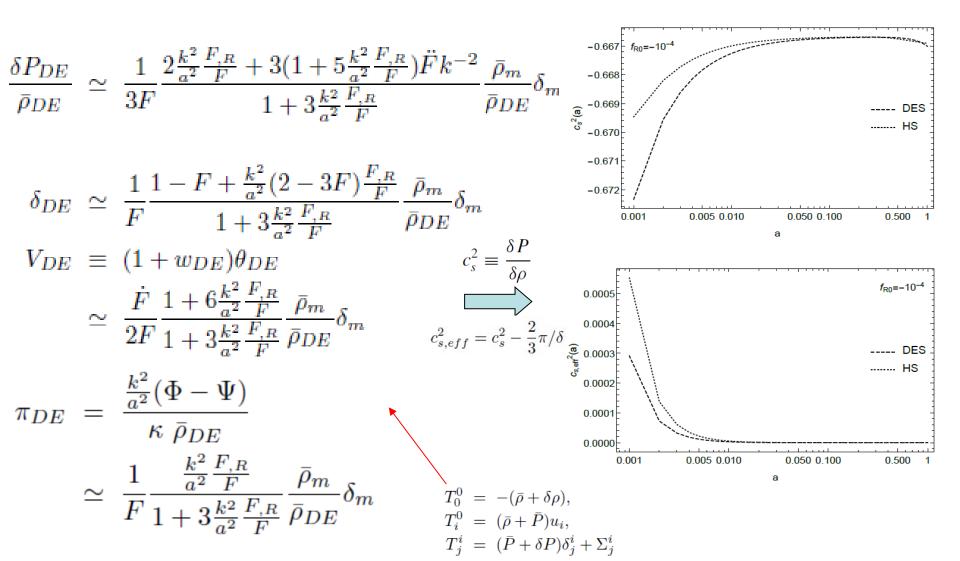
$$\begin{split} \kappa \bar{P}_{DE} &= \frac{f}{2} - \mathcal{H}^2/a^2 - 2F\mathcal{H}^2/a^2 + \mathcal{H}\dot{F}/a^2 \\ &- 2\dot{\mathcal{H}}/a^2 - F\dot{\mathcal{H}}/a^2 + \ddot{F}/a^2, \\ \kappa \bar{\rho}_{DE} &= -\frac{f}{2} + 3\mathcal{H}^2/a^2 - 3\mathcal{H}\dot{F}/a^2 + 3F\dot{\mathcal{H}}/a^2 \end{split} \qquad \begin{aligned} \mathcal{H}^2 &= \frac{\kappa}{3}a^2\left(\bar{\rho}_m + \bar{\rho}_{DE}\right), \\ \dot{\mathcal{H}} &= -\frac{\kappa}{6}a^2\left(\left(\bar{\rho}_m + 3\bar{P}_m\right) + \left(\bar{\rho}_{DE} + 3\bar{P}_{DE}\right)\right) \end{aligned}$$



#### 4) The effective fluid perturbations

$$\begin{split} \delta' &= 3(1+w)\Phi' - \frac{V}{a^2H} - \frac{3}{a}\left(\frac{\delta P}{\bar{\rho}} - w\delta\right), \qquad c_s^2 \equiv \frac{\delta P}{\delta\rho} \quad \ddot{\delta} + (\cdots)\dot{\delta} + (\cdots)\delta = \\ &- k^2\left((1+w)\Psi + c_s^2\delta - (1+w)\sigma\right) + \cdots \\ &- k^2\left((1+w)\Psi + c_s^2\delta - (1+w)\sigma\right) + \cdots \\ &= -k^2\left((1+w)\Psi + c_s^2\delta - \frac{2}{3}\pi\right) + \cdots , \\ &- \frac{2}{3}\frac{k^2}{a^2H}\pi, \end{split}$$
Because Advanced Cosmo class next semester!

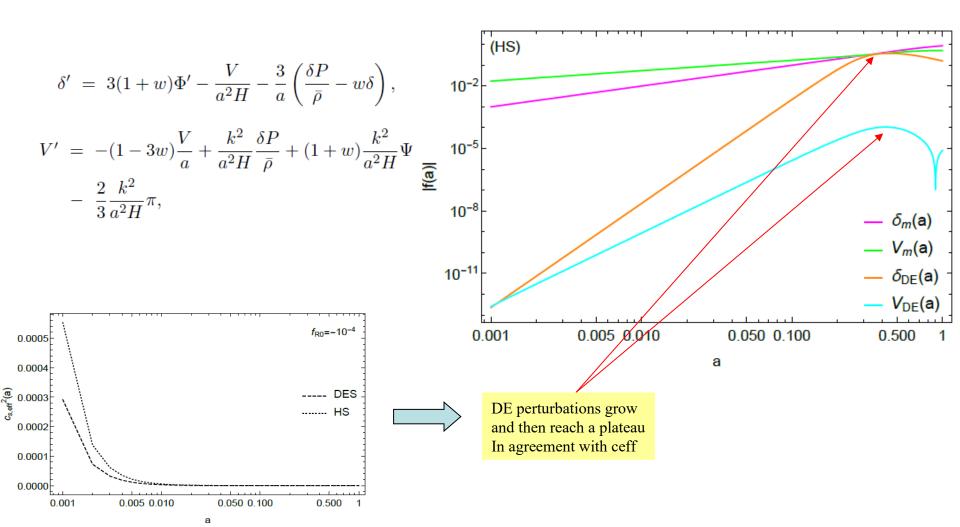
5) The effective pressure, density and velocity perturbations



1811.02469

1811.02469

#### 6) Solution of the perturbation equations is now very simple!





1) Dark energy is needed to explain accelerated expansion of the Universe

2) DE model zoo: Scalar fields, Modified Gravity, Extra dimensions

3) f(R) is simplest modification of GR that works (sort of)...

4) Effective fluid approach simplifies things a lot: write MoG as GR+DE!

5) Conclusions: Lots of work to do, many models to study!