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Planck Collaboration: Cosmological parameters
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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Planck 2015 data vs. Boltzmann solver results for LCDM
Planck Collaboration: Cosmological parameters
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is

8

Ade et al. (arXiv:1502.01598)

how to calculate theoretical model?

Boltzmann solver



Computational Cosmology Boltzmann solver

§ particle species…

E 2 =| !pc |2 +m2c4

number density

energy density

pressure

f ( !p)
g

:   phase space distribution function

:   statistical weight

n = g
(2π!)3

f ( "p)4π p2 dp∫

ρc2 = g
(2π!)3

E( "p) f ( "p)4π p2 dp∫

P = g
(2π!)3

| "p |2

3E
f ( "p)4π p2 dp∫

(cf. Thermal History lecture)

f ( !p) ≈ e− p2 /2m−µ( )/kBT
relativistic: non-relativistic:

§ …in kinetic equilibrium f ( !p) = 1
e(E−µ )/kBT ±1
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but how is f evolving in time?



Computational Cosmology Boltzmann solver

§ Boltzmann equation L̂[ fA ]= ĈA[ f ]

L̂
fA
ĈA

f

: Liouville operator
: phase-space distribution function of species A
: collision operator for species A
: phase-space distribution function of all species partaking in collisions



Computational Cosmology Boltzmann solver

§ Boltzmann equation

L̂ : Liouville operator

• in non-relativistic limit it is just the total time derivative:

• in the absence of collisions particles move on geodesics

• for homogeneous & isotropic FRW model f=f(p) and hence*

L̂nr =
∂
∂t
+
p
m
⋅∇x +

F
m
⋅∇ p

nA =
gA
2π 2 p2 fA (p)dp∫with

L̂[ fA ]= ĈA[ f ]

*derivation on page 33 of http://fiteoweb.unige.ch/~kunzm/lectures/cosmo_II_2005.pdf

L̂[ fA ]=
dnA
dt

+3HnA

http://fiteoweb.unige.ch/~kunzm/lectures/cosmo_II_2005.pdf


Computational Cosmology Boltzmann solver

§ Boltzmann equation

L̂ : Liouville operator

• in non-relativistic limit it is just the total time derivative:

• in the absence of collisions particles move on geodesics

• for homogeneous & isotropic FRW model f=f(p) and hence

L̂[ fA ]=
dnA
dt

+3HnA nA =
gA
2π 2 p2 fA (p)dp∫with

L̂[ fA ]= ĈA[ f ]

• integro-differential equation for f(p)
• ordinary differential equation for nA(t)

L̂nr =
∂
∂t
+
p
m
⋅∇x +

F
m
⋅∇ p



Computational Cosmology Boltzmann solver

§ Boltzmann equation

• change in number of particles A due to interactions* A+B ↔ C 

ĈA: collision operator for species A

CA = − σ ABvAB nAnB +β nC

L̂[ fA ]= ĈA[ f ]

*assuming there is only one other species B
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§ Boltzmann equation

• change in number of particles A due to interactions   A+B ↔ C 

ĈA: collision operator for species A

CA = − σ ABvAB nAnB +β nC

L̂[ fA ]= ĈA[ f ]

& creationparticle destruction



Computational Cosmology Boltzmann solver

§ Boltzmann equation

ĈA: collision operator for species A

CA = − σ ABvAB nAnB +β nC

L̂[ fA ]= ĈA[ f ]

= creationin equilibrium:      particle destruction ⇒ β =
nA
(eq)nB

(eq)

nC
(eq) σ ABvAB

• change in number of particles A due to interactions   A+B ↔ C 



Computational Cosmology Boltzmann solver

§ cosmological Boltzmann equation for species A interacting with species B:

dnA
dt

+3HnA = −nA
(eq)nB

(eq) σ ABvAB
nAnB

nA
(eq)nB

(eq) −
nC
nC
(eq)

"

#
$

%

&
'



Computational Cosmology Boltzmann solver

§ cosmological Boltzmann equation for species A interacting with species B:

§ particles in final state C are in equilibrium (i.e. nC=nC(eq)):

dnA
dt

+3HnA = −nA
(eq)nB

(eq) σ ABvAB
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(eq)
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dnA
dt

+3HnA = σ ABvAB nA
(eq)nB

(eq) − nAnB( )
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Computational Cosmology Boltzmann solver

§ cosmological Boltzmann equation for species A interacting with species B:

§ particles in final state C are in equilibrium:

dnA
dt

+3HnA = −nA
(eq)nB

(eq) σ ABvAB
nAnB

nA
(eq)nB

(eq) −
nC
nC
(eq)

"

#
$

%

&
'

dnA
dt

+3HnA = σ ABvAB nA
(eq)nB

(eq) − nAnB( )

ordinary differential equation for nA*

*we need to write down such an equation for each species…
(and will eventually only consider perturbations)



Computational Cosmology Boltzmann solver

§ set of equations for photons and baryons:*

!δb = −θb −
1
2
!h

!δγ = −
4
3
θγ −

2
3
!h

!θb = −
1

1+ R
aHθb − cs

2k2δb − k
2R 1

4
δγ −σγ

TCA#

$
%

&

'
(+ R !Θγb

TCA#

$
%

&

'
(

!θγ = −
1
R

aHθb + !θb − cs
2k2δb( )+ k2 14δγ −σγ

TCA#

$
%

&

'
(

*Blas, Lesgourges & Tram (arXiv:1104.2933), derivatives ’ with respects to conformal time

dg : photon perturbations (Fourier transform of DT/T)

db : baryon perturbations
qg = ∇•vg
qb = ∇•vb
R = 4rg /3rb
h: metric perturbations

Qgb = dg – db
Q’gb ≜ ‘baryon-photon slip’
sg: photon shear



Computational Cosmology Boltzmann solver

§ set of equations for photons and baryons and dark matter and massless neutrinos:

!Θ+ ikµΘ = − !Φ− ikµΨ− !τ Θ0 −Θ+µvb −
1
2
P2 (µ)Π

&

'(
)

*+

!ΘP + ikµΘP = − !τ ΘP +
1
2
1− P2 (µ)( )Π

&

'(
)

*+

!δ + ikv = -3 !Φ

!v+ !a
a
v = −ikΨ

!δb + ikvb = -3 !Φ

!vb+
!a
a
vb = −ikΨ +

3 !τ
4η

vb +3iΘ1[ ]

!ν + ikµν = − !Φ− ikµΨ

Q: photon perturbations (Fourier transform of DT/T)

n:  neutrino perturbations
d,  v: dark matter perturbations
db, vb: baryon perturbations
Y: metric perturbations
F: Newtonian perturbations
t: optical depth (                    )
µ: direction of photon propagation
h: conformal time
P(): Legendre polynomial

!τ = −neσ Ta

Π : Θ2 +ΘP2 +ΘP0



Computational Cosmology Boltzmann solver

!Θ+ ikµΘ = − !Φ− ikµΨ− !τ Θ0 −Θ+µvb −
1
2
P2 (µ)Π

&

'(
)

*+

!ΘP + ikµΘP = − !τ ΘP +
1
2
1− P2 (µ)( )Π

&

'(
)

*+

!δ + ikv = -3 !Φ

!v+ !a
a
v = −ikΨ

!δb + ikvb = -3 !Φ

!vb+
!a
a
vb = −ikΨ +

3 !τ
4η

vb +3iΘ1[ ]

!ν + ikµν = − !Φ− ikµΨ

Q: photon perturbations (Fourier transform of DT/T)

n:  neutrino perturbations
d,  v: dark matter perturbations
db, vb: baryon perturbations
Y: metric perturbations
F: Newtonian perturbations
t: optical depth (                    )
µ: direction of photon propagation
h: conformal time
P(): Legendre polynomial

!τ = −neσ Ta

Π : Θ2 +ΘP2 +ΘP0

standard (Runge-Kutta) solvers break down

as time-scales for interactions are

much shorter than cosmological expansion!

(“stiff” differential equations…)

§ set of equations for photons and baryons and dark matter and massless neutrinos:



Computational Cosmology Boltzmann solver

§ solving cosmological Boltzmann equations

• Peebles & Yu (1970): TCA method (Tight-Coupling-Approximation*)

prior to recombination photons, electrons, and nuclei rapidly scattered and
behaved almost like a single tightly-coupled photon-baryon plasma: vb=vg

• …all subsequent solvers are based upon it.

*see Cyr-Racine & Sigurdson (arXiv:1012.0569) for a validation of the TCA
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§ solving cosmological Boltzmann equations gives CMB fluctuationsPlanck Collaboration: Cosmological parameters
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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Computational Cosmology Boltzmann solver

§ solving cosmological Boltzmann equations gives CMB & matter fluctuations
Planck Collaboration: Cosmological parameters
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
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Computational Cosmology Boltzmann solver

§ transfer function T(k)

§ radiation domination:
T (k)∝1 k << keq
T (k)∝1/ k2 k >> keq

Figure 3.1: Transfer function of Eq. (3.59) in a Cold Dark Matter model,
which curves slowly from T ⇠ 1 on large scales, to T / 1/k2 on small scales.
The dashed line is T (k) / 1/k2, which corresponds to the small scale limit
k !1.
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§ transfer function T(k)

§ radiation domination:

§ matter domination:
δ∝ a

T (k)∝1 k << keq
T (k)∝1/ k2 k >> keq

T (k)∝1=>

P(k,a) = D2 (a)T 2 (k) P0 (k)
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§ transfer function T(k)

§ post-decoupling (CDM only): (Bond & Efstatiou 1984)

P(k,a) = D2 (a)T 2 (k) P0 (k)

T (k) = 1+ (ak)+ (bk)1.5 + (ck)2( )
ν( )

−1/ν

a = 6.4 (Wmh-2) Mpc
b = 3.0 (Wmh-2) Mpc
c = 1.7 (Wmh-2) Mpc
v = 1.13



Computational Cosmology Boltzmann solver

§ transfer function T(k)

§ post-decoupling (CDM+baryons): (Eisenstein & Hu 1998)
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FIG. 3.ÈFour examples of the Ðt compared to numerical results. The larger plots show the numerical result (solid lines) and the Ðt (dashed lines). The
smaller subplots show the residuals, deÐned as the di†erence between the two divided by a nonoscillatory envelope. Note that in the fully baryonic models,
the oscillations have alternating sign in the transfer function. Also shown is the zero-baryon case (dotted lines) ; note the strong suppression on scales below
the sound horizon due to the baryons.

resulting phase shift is unobservable in practice, but one can
see the deviations when comparing to numerical results (see
Fig. 3).

3. FITTING FORMULAE

As we have seen in analytic solutions exist for the° 2,
transfer function at both large and small scales. The tran-
sition between these extremes is deÐned by two scales, the
horizon at matter-radiation equality and the sound horizon
at the end of the drag epoch. The former sets the dynamics
of the expansion and perturbation growth ; the latter sets
the scale at which pressure support becomes important for
the baryons. Because the range of scales accessible by the
study of structure formation falls within this transition
regime, it is important to understand the full transfer func-
tion in detail. To that end, we present in this section a Ðtting
formula that approximates the full transfer function on all
scales.

We write the transfer function as the sum of two pieces,

T (k) \ )
b

)0
T
b
(k) ] )

c
)0

T
c
(k) , (16)

whose origins lie in the evolution before the drag epoch of
the baryons and cold dark matter, respectively. This separa-
tion is physically reasonable, as before the drag epoch the
two species were dynamically independent and after the
drag epoch their Ñuctuations are weighted by the fractional

density they contribute. This automatically includes in T
cthe e†ects of baryonic infall into CDM potential wells. Note

however that and are themselves not true transferT
b

T
cfunctions, as they do not reÑect the density perturbations of

the relevant species today. Rather, it is their density-
weighted average T (k) that is the transfer function for both
the baryons and the CDM.

3.1. Cold Dark Matter
The transfer function for cosmologies in which noninter-

acting cold dark matter dominates over baryons has been
studied by many authors, and accurate Ðtting formulae
already exist in this limit (e.g., & EfstathiouBond 1984 ;

et al. but see improvements in ourBardeen 1986 ; ° 4.2).
However the e†ect of baryons, though long known from
numerical calculations (e.g., & YuPeebles 1970 ; Holtzmann

have in the past either been included in Ðtting formu-1989),
lae in an ad hoc manner (see, e.g., & DoddsPeacock 1994 ;

or only in the small-scale limitSugiyama 1995) (HS96).
In the presence of baryons, the growth of CDM pertur-

bations is suppressed on scales below the sound horizon.
The change to the asymptotic form can be calculated and
has been shown in equations We introduce this(9)È(12).
suppression by interpolating between two solutions near
the sound horizon :

T
c
(k)\ fT30(k, 1, b

c
)] (1 [ f )T30(k, a

c
, b

c
) (17)
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f \ 1
1 ] (ks/5.4)4 , (18)

with

T30(k, a
c
, b

c
) \ ln (e] 1.8b

c
q)

ln (e] 1.8b
c
q) ] Cq2 , (19)

C\ 14.2
a
c

] 386
1 ] 69.9q1.08 . (20)

The variables q, and have been given in equationsa
c
, b

c
(10),

and respectively.(11), (12),

3.2. Baryons
In the case of cosmologies without cold dark matter, the

transfer function departs from unity below the sound
horizon to exhibit a series of declining peaks due to acoustic
oscillations. The small-scale exact solution of equation (13)
suggests that these may be written as the product of a
declining oscillatory term, a suppression due to the decay of
potentials between the equality and drag scales, and an
exponential Silk damping. We therefore write

T
b
\C T30(k ; 1, 1)

1 ] (ks/5.2)2] a
b

1 ] (b
b
/ks)3 e~(k@kSilk)1.4D j0(ks8 ) .

(21)

Here the spherical Bessel function x)/x is a piecej0(x) 4 (sin
that approaches unity above the sound horizon but oscil-
lates below it. The envelope in square brackets traces the
zero-baryon CDM case above the sound horizon and then
breaks to a constant multiplied by an exponential Silk
damping factor. We attach the Silk damping factor only to
the second term because such di†usion can only occur on
scales below the sound horizon, where only the second term
contributes signiÐcantly. This subtlety marginally improves
the Ðt. The sound horizon s, Silk scale and amplitudekSilk,suppression were given in equations anda

b
(6), (7), (14),

respectively ; we now discuss ands8 b
b
.

While the nodes of the baryonic transfer function asymp-
totically approach those of sin(ks) for ks ? 1, the Ðrst few
nodes fall at higher k than predicted by sin(ks).(ks [ 10)
This shift is due to the contribution of the baryon density
perturbation itself at the drag epoch and reÑects the fact
that at the sound horizon velocity overshoot is not the
dominant e†ect. This e†ect increases with because the)0 h2
time available for velocity overshoot (see decreaseseq. [14])
as and is only weakly dependent on the baryon(z

d
/zeq)1@2fraction. We have veriÐed this explanation of the node shift

by isolating the density and velocity contributions of the
baryons at the drag epoch from numerical evolution codes.

We address this shifting of the nodes phenomenologically
by introducing the quantity

s8 (k)\ s
[1] (bnode/ks)3]1@3 . (22)

For restoring the sinusoidal nodes.ks ? bnode, s8 ] s,
However, at moving the nodesks [ bnode, s8 B ks2/bnode \ s,
to higher k. We Ðnd

bnode \ 8.41()0 h2)0.435 , (23)

independent of the baryon fraction. Hence the e†ect gets
smaller at low as expected.)0

The amplitude speciÐes the small-scale asymptotica
bcontribution of the velocity portion of the acoustic oscil-

lation. Two e†ects modify this amplitude at large scales.
Above the sound horizon, velocity contributions to the
transfer function fall o†. Furthermore, the amplitude
declines if CDM dominates the energy density of the
photon-baryon system when the wavelength enters the
horizon. This occurs due to the absence of feedback in the
gravitational driving of the photon-baryon oscillator

° 3.1). The net result is a cuto† associated with the(HS96,
sound horizon that moves to smaller scales as )0 h2
increases and/or decreases. We describe this in)

b
/)0by turning on the velocity term at the charac-equation (21)

teristic scale whereb
b
s,

b
b
\ 0.5] )

b
)0

]A3 [ 2
)

b
)0

B
J(17.2)0 h2)2] 1 . (24)

3.3. Performance
For the parameter range and 0 π0.025 [ )0 h2 [ 0.25

the Ðtting formula works quite well. For fully)
b
/)0 π 1

baryonic models (i.e., the fractional residuals are)
c
\ 0)

nearly always under 10%. As the baryon fraction decreases,
the accuracy improves due to the increasing contribution of
the simpler CDM piece. Residuals smaller than 5% are
typical for Note that we quote the residuals as)

b
/)0\ 0.5.

the di†erence between the Ðt and the numerical results
divided by a nonoscillatory envelope that is deÐned by
replacing in by(sin ks8 )/ks8 equation (21) [1] (ks8 )4]~1@4.
This envelope matches the knee of the transfer function and
grazes all the subsequent maxima.

In we display four comparisons of the ÐttingFigure 3
formula relative to the numerical results. Also shown are
the residuals relative to our envelope. The reason for the
degradation in the Ðt at the shortest scales is that small
errors in the sound horizon (see the end of produce° 2.2)
signiÐcant errors in the phase of the oscillations, producing
order unity residuals. However, the Ðtting formula repro-
duces the correct amplitude and hence the Silk scale.

The most serious systematic error in the Ðtting formula
occurs for In the baryon sector of these cases,)0 h2 Z 0.25.
the drop between ks B 1 and the oscillations at ks Z 5
becomes quite precipitous. Our formula does not decline
this quickly, causing the amplitude of the Ðrst valley to be
signiÐcantly overestimated. Later peaks and valleys are
underestimated in an attempt to compensate. One can see
the beginnings of this trend in the example in)0\ )

b
\ 1

the problem gets more severe for higherFigure 3 ; )0 h2.
A less important systematic e†ect occurs for high baryon

fraction low-) models. Because of a(0.7\ )
b
/)0\ 0.9),

small shift in the CDM break scale that we have(eq. [18])
chosen not to model, the Ðrst valley is systematically under-
estimated by D10%È15% in amplitude. This problem does
not extend to lower baryon fractions.

4. PHENOMENOLOGY

There are a number of phenomenological trends as a
function of cosmological parameters. The two basic e†ects
that arise from the inclusion of baryons are the introduction
of oscillations and the suppression of power below the
sound horizon, with a corresponding sharpening of the
bend around the sound horizon. We discuss these two in
turn.

s = 2
3keq

6
Req

ln
1+ Rd + Rd + Req

1+ Req
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dominated universe versus a matter-dominated one due to
pressure support, the scale of the particle horizon at the
equality epoch zeq,

keq 4 (2)0 H02 zeq)1@2 \ 7.46 ] 10~2)0 h2#2.7~2 Mpc~1 ,

(3)

is imprinted on the matter transfer function ; in particular,
perturbations on smaller scales are suppressed in amplitude
in comparison to those on large scales. If the universe con-
sisted only of noninteracting matter and radiation, the
matter transfer function would depend on the ratio (k/keq)alone.

Complications arise due to interactions between the
species. Prior to the recombination of baryons and elec-
trons, the large density of free electrons couples the baryons
to the photons through Coulomb and Compton inter-
actions so that the three species move together as a single
Ñuid. This continues until, in the process of recombination,
the rate of Compton scattering between photons and elec-
trons becomes too low, freeing the baryons from the
photons. We thus deÐne the drag epoch as the time atz

dwhich the baryons are released from the Compton drag of
the photons in terms of a weighted integral over the
Thomson scattering rate (see eqs. [C8], [E2]). A Ðt toHS96,
the numerical recombination results is

z
d
\ 1291

()0 h2)0.251
1 ] 0.659()0 h2)0.828 [1] b1()b

h2)b2] ,

b1\ 0.313()0 h2)~0.419[1] 0.607()0 h2)0.674] ,

b2\ 0.238()0 h2)0.223 , (4)

where we have reduced by a factor of 0.96 from onz
d

HS96
phenomenological grounds. For this epoch)

b
h2 [ 0.03,

follows last scattering of the photons.
Prior to small-scale perturbations in the photon-z

d
,

baryon Ñuid propagate as acoustic waves. The sound speed
is (in units where the speed of light isc

s
\ 1/[3(1 ] R)]1@2

unity), where R is the ratio of the baryon to photon momen-

tum density,

R 4 3o
b
/4o

c

\ 31.5)
b
h2#2.7~4(z/103)~1 . (5)

We deÐne the sound horizon at the drag epoch as the co-
moving distance a wave can travel prior to redshift z

d

s \P
0

t(zd)
c
s
(1 ] z)dt

\ 2
3keq

S 6
Req

ln
J1 ] R

d
] JR

d
] Req

1 ] JReq
, (6)

where and are the values of R at theR
d
4 R(z

d
) Req 4 R(zeq)drag epoch and epoch of matter-radiation equality, respec-

tively. The sound horizon at the drag epoch (hereafter
simply the sound horizon) is larger than the equality
horizon in models but smaller than it is in(D1/keq) high-)0models ; it also decreases strongly with increasinglow-)0baryon fraction if (seeR

d
Z 1 Fig. 1).

On small scales, the coupling between the baryons and
the photons is not perfect, such that the two species are able
to di†use past one another The Silk damping(Silk 1968).
scale is well Ðtted by the approximation

kSilk\ 1.6()
b
h2)0.52()0 h2)0.73[1 ] (10.4)0 h2)~0.95]

Mpc~1 , (7)

which represents a ^20% phenomenological correction
from the value given in The Silk scale is generally aHS96.
smaller length scale than either s or Note that the1/keq.di†erence between the drag and last scattering epochs
implies that for the sound and Silk scales in the)

b
h2 [ 0.03

transfer function are larger than those in the CMB. We
show a comparison of these scales as a function of cosmo-
logical parameters in Figure 1.

2.2. Small-Scale Solutions
In the small-scale limit, one can solve the linear pertur-

bation equations analytically in the approximation that
baryons provide no gravitational source to the CDM

This approximation is appropriate below the sound(HS96).

FIG. 1.ÈComparison of the physical scales as functions of and the baryon fraction (a) The equality scale vs. the sound horizon :)0 h2 )
b
/)0. keq s/n

(unlabeled contours are at 0.1 increments). (b) The sound horizon vs. the Silk scale : (unlabeled contours are 2 and 3). The factors of n have beenkSilk s/n
included to facilitate comparison to the acoustic scale.
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(unlabeled contours are at 0.1 increments). (b) The sound horizon vs. the Silk scale : (unlabeled contours are 2 and 3). The factors of n have beenkSilk s/n
included to facilitate comparison to the acoustic scale.
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dominated universe versus a matter-dominated one due to
pressure support, the scale of the particle horizon at the
equality epoch zeq,
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(3)

is imprinted on the matter transfer function ; in particular,
perturbations on smaller scales are suppressed in amplitude
in comparison to those on large scales. If the universe con-
sisted only of noninteracting matter and radiation, the
matter transfer function would depend on the ratio (k/keq)alone.

Complications arise due to interactions between the
species. Prior to the recombination of baryons and elec-
trons, the large density of free electrons couples the baryons
to the photons through Coulomb and Compton inter-
actions so that the three species move together as a single
Ñuid. This continues until, in the process of recombination,
the rate of Compton scattering between photons and elec-
trons becomes too low, freeing the baryons from the
photons. We thus deÐne the drag epoch as the time atz

dwhich the baryons are released from the Compton drag of
the photons in terms of a weighted integral over the
Thomson scattering rate (see eqs. [C8], [E2]). A Ðt toHS96,
the numerical recombination results is
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We deÐne the sound horizon at the drag epoch as the co-
moving distance a wave can travel prior to redshift z

d

s \P
0

t(zd)
c
s
(1 ] z)dt

\ 2
3keq

S 6
Req

ln
J1 ] R

d
] JR

d
] Req

1 ] JReq
, (6)

where and are the values of R at theR
d
4 R(z

d
) Req 4 R(zeq)drag epoch and epoch of matter-radiation equality, respec-

tively. The sound horizon at the drag epoch (hereafter
simply the sound horizon) is larger than the equality
horizon in models but smaller than it is in(D1/keq) high-)0models ; it also decreases strongly with increasinglow-)0baryon fraction if (seeR
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Z 1 Fig. 1).

On small scales, the coupling between the baryons and
the photons is not perfect, such that the two species are able
to di†use past one another The Silk damping(Silk 1968).
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from the value given in The Silk scale is generally aHS96.
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implies that for the sound and Silk scales in the)
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transfer function are larger than those in the CMB. We
show a comparison of these scales as a function of cosmo-
logical parameters in Figure 1.
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The variables q, and have been given in equationsa
c
, b

c
(10),

and respectively.(11), (12),

3.2. Baryons
In the case of cosmologies without cold dark matter, the

transfer function departs from unity below the sound
horizon to exhibit a series of declining peaks due to acoustic
oscillations. The small-scale exact solution of equation (13)
suggests that these may be written as the product of a
declining oscillatory term, a suppression due to the decay of
potentials between the equality and drag scales, and an
exponential Silk damping. We therefore write
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b
/ks)3 e~(k@kSilk)1.4D j0(ks8 ) .

(21)

Here the spherical Bessel function x)/x is a piecej0(x) 4 (sin
that approaches unity above the sound horizon but oscil-
lates below it. The envelope in square brackets traces the
zero-baryon CDM case above the sound horizon and then
breaks to a constant multiplied by an exponential Silk
damping factor. We attach the Silk damping factor only to
the second term because such di†usion can only occur on
scales below the sound horizon, where only the second term
contributes signiÐcantly. This subtlety marginally improves
the Ðt. The sound horizon s, Silk scale and amplitudekSilk,suppression were given in equations anda

b
(6), (7), (14),

respectively ; we now discuss ands8 b
b
.

While the nodes of the baryonic transfer function asymp-
totically approach those of sin(ks) for ks ? 1, the Ðrst few
nodes fall at higher k than predicted by sin(ks).(ks [ 10)
This shift is due to the contribution of the baryon density
perturbation itself at the drag epoch and reÑects the fact
that at the sound horizon velocity overshoot is not the
dominant e†ect. This e†ect increases with because the)0 h2
time available for velocity overshoot (see decreaseseq. [14])
as and is only weakly dependent on the baryon(z

d
/zeq)1@2fraction. We have veriÐed this explanation of the node shift

by isolating the density and velocity contributions of the
baryons at the drag epoch from numerical evolution codes.

We address this shifting of the nodes phenomenologically
by introducing the quantity

s8 (k)\ s
[1] (bnode/ks)3]1@3 . (22)

For restoring the sinusoidal nodes.ks ? bnode, s8 ] s,
However, at moving the nodesks [ bnode, s8 B ks2/bnode \ s,
to higher k. We Ðnd

bnode \ 8.41()0 h2)0.435 , (23)

independent of the baryon fraction. Hence the e†ect gets
smaller at low as expected.)0

The amplitude speciÐes the small-scale asymptotica
bcontribution of the velocity portion of the acoustic oscil-

lation. Two e†ects modify this amplitude at large scales.
Above the sound horizon, velocity contributions to the
transfer function fall o†. Furthermore, the amplitude
declines if CDM dominates the energy density of the
photon-baryon system when the wavelength enters the
horizon. This occurs due to the absence of feedback in the
gravitational driving of the photon-baryon oscillator

° 3.1). The net result is a cuto† associated with the(HS96,
sound horizon that moves to smaller scales as )0 h2
increases and/or decreases. We describe this in)

b
/)0by turning on the velocity term at the charac-equation (21)

teristic scale whereb
b
s,

b
b
\ 0.5] )

b
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]A3 [ 2
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B
J(17.2)0 h2)2] 1 . (24)

3.3. Performance
For the parameter range and 0 π0.025 [ )0 h2 [ 0.25

the Ðtting formula works quite well. For fully)
b
/)0 π 1

baryonic models (i.e., the fractional residuals are)
c
\ 0)

nearly always under 10%. As the baryon fraction decreases,
the accuracy improves due to the increasing contribution of
the simpler CDM piece. Residuals smaller than 5% are
typical for Note that we quote the residuals as)

b
/)0\ 0.5.

the di†erence between the Ðt and the numerical results
divided by a nonoscillatory envelope that is deÐned by
replacing in by(sin ks8 )/ks8 equation (21) [1] (ks8 )4]~1@4.
This envelope matches the knee of the transfer function and
grazes all the subsequent maxima.

In we display four comparisons of the ÐttingFigure 3
formula relative to the numerical results. Also shown are
the residuals relative to our envelope. The reason for the
degradation in the Ðt at the shortest scales is that small
errors in the sound horizon (see the end of produce° 2.2)
signiÐcant errors in the phase of the oscillations, producing
order unity residuals. However, the Ðtting formula repro-
duces the correct amplitude and hence the Silk scale.

The most serious systematic error in the Ðtting formula
occurs for In the baryon sector of these cases,)0 h2 Z 0.25.
the drop between ks B 1 and the oscillations at ks Z 5
becomes quite precipitous. Our formula does not decline
this quickly, causing the amplitude of the Ðrst valley to be
signiÐcantly overestimated. Later peaks and valleys are
underestimated in an attempt to compensate. One can see
the beginnings of this trend in the example in)0\ )

b
\ 1

the problem gets more severe for higherFigure 3 ; )0 h2.
A less important systematic e†ect occurs for high baryon

fraction low-) models. Because of a(0.7\ )
b
/)0\ 0.9),

small shift in the CDM break scale that we have(eq. [18])
chosen not to model, the Ðrst valley is systematically under-
estimated by D10%È15% in amplitude. This problem does
not extend to lower baryon fractions.

4. PHENOMENOLOGY

There are a number of phenomenological trends as a
function of cosmological parameters. The two basic e†ects
that arise from the inclusion of baryons are the introduction
of oscillations and the suppression of power below the
sound horizon, with a corresponding sharpening of the
bend around the sound horizon. We discuss these two in
turn.

610 EISENSTEIN & HU Vol. 496

f \ 1
1 ] (ks/5.4)4 , (18)

with

T30(k, a
c
, b

c
) \ ln (e] 1.8b

c
q)

ln (e] 1.8b
c
q) ] Cq2 , (19)

C\ 14.2
a
c

] 386
1 ] 69.9q1.08 . (20)

The variables q, and have been given in equationsa
c
, b

c
(10),

and respectively.(11), (12),

3.2. Baryons
In the case of cosmologies without cold dark matter, the

transfer function departs from unity below the sound
horizon to exhibit a series of declining peaks due to acoustic
oscillations. The small-scale exact solution of equation (13)
suggests that these may be written as the product of a
declining oscillatory term, a suppression due to the decay of
potentials between the equality and drag scales, and an
exponential Silk damping. We therefore write

T
b
\C T30(k ; 1, 1)

1 ] (ks/5.2)2] a
b

1 ] (b
b
/ks)3 e~(k@kSilk)1.4D j0(ks8 ) .

(21)

Here the spherical Bessel function x)/x is a piecej0(x) 4 (sin
that approaches unity above the sound horizon but oscil-
lates below it. The envelope in square brackets traces the
zero-baryon CDM case above the sound horizon and then
breaks to a constant multiplied by an exponential Silk
damping factor. We attach the Silk damping factor only to
the second term because such di†usion can only occur on
scales below the sound horizon, where only the second term
contributes signiÐcantly. This subtlety marginally improves
the Ðt. The sound horizon s, Silk scale and amplitudekSilk,suppression were given in equations anda

b
(6), (7), (14),

respectively ; we now discuss ands8 b
b
.

While the nodes of the baryonic transfer function asymp-
totically approach those of sin(ks) for ks ? 1, the Ðrst few
nodes fall at higher k than predicted by sin(ks).(ks [ 10)
This shift is due to the contribution of the baryon density
perturbation itself at the drag epoch and reÑects the fact
that at the sound horizon velocity overshoot is not the
dominant e†ect. This e†ect increases with because the)0 h2
time available for velocity overshoot (see decreaseseq. [14])
as and is only weakly dependent on the baryon(z

d
/zeq)1@2fraction. We have veriÐed this explanation of the node shift

by isolating the density and velocity contributions of the
baryons at the drag epoch from numerical evolution codes.

We address this shifting of the nodes phenomenologically
by introducing the quantity

s8 (k)\ s
[1] (bnode/ks)3]1@3 . (22)

For restoring the sinusoidal nodes.ks ? bnode, s8 ] s,
However, at moving the nodesks [ bnode, s8 B ks2/bnode \ s,
to higher k. We Ðnd

bnode \ 8.41()0 h2)0.435 , (23)

independent of the baryon fraction. Hence the e†ect gets
smaller at low as expected.)0

The amplitude speciÐes the small-scale asymptotica
bcontribution of the velocity portion of the acoustic oscil-

lation. Two e†ects modify this amplitude at large scales.
Above the sound horizon, velocity contributions to the
transfer function fall o†. Furthermore, the amplitude
declines if CDM dominates the energy density of the
photon-baryon system when the wavelength enters the
horizon. This occurs due to the absence of feedback in the
gravitational driving of the photon-baryon oscillator

° 3.1). The net result is a cuto† associated with the(HS96,
sound horizon that moves to smaller scales as )0 h2
increases and/or decreases. We describe this in)

b
/)0by turning on the velocity term at the charac-equation (21)

teristic scale whereb
b
s,

b
b
\ 0.5] )

b
)0

]A3 [ 2
)

b
)0

B
J(17.2)0 h2)2] 1 . (24)

3.3. Performance
For the parameter range and 0 π0.025 [ )0 h2 [ 0.25

the Ðtting formula works quite well. For fully)
b
/)0 π 1

baryonic models (i.e., the fractional residuals are)
c
\ 0)

nearly always under 10%. As the baryon fraction decreases,
the accuracy improves due to the increasing contribution of
the simpler CDM piece. Residuals smaller than 5% are
typical for Note that we quote the residuals as)

b
/)0\ 0.5.

the di†erence between the Ðt and the numerical results
divided by a nonoscillatory envelope that is deÐned by
replacing in by(sin ks8 )/ks8 equation (21) [1] (ks8 )4]~1@4.
This envelope matches the knee of the transfer function and
grazes all the subsequent maxima.

In we display four comparisons of the ÐttingFigure 3
formula relative to the numerical results. Also shown are
the residuals relative to our envelope. The reason for the
degradation in the Ðt at the shortest scales is that small
errors in the sound horizon (see the end of produce° 2.2)
signiÐcant errors in the phase of the oscillations, producing
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small shift in the CDM break scale that we have(eq. [18])
chosen not to model, the Ðrst valley is systematically under-
estimated by D10%È15% in amplitude. This problem does
not extend to lower baryon fractions.

4. PHENOMENOLOGY

There are a number of phenomenological trends as a
function of cosmological parameters. The two basic e†ects
that arise from the inclusion of baryons are the introduction
of oscillations and the suppression of power below the
sound horizon, with a corresponding sharpening of the
bend around the sound horizon. We discuss these two in
turn.
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oscillations. The small-scale exact solution of equation (13)
suggests that these may be written as the product of a
declining oscillatory term, a suppression due to the decay of
potentials between the equality and drag scales, and an
exponential Silk damping. We therefore write

T
b
\C T30(k ; 1, 1)

1 ] (ks/5.2)2] a
b

1 ] (b
b
/ks)3 e~(k@kSilk)1.4D j0(ks8 ) .

(21)

Here the spherical Bessel function x)/x is a piecej0(x) 4 (sin
that approaches unity above the sound horizon but oscil-
lates below it. The envelope in square brackets traces the
zero-baryon CDM case above the sound horizon and then
breaks to a constant multiplied by an exponential Silk
damping factor. We attach the Silk damping factor only to
the second term because such di†usion can only occur on
scales below the sound horizon, where only the second term
contributes signiÐcantly. This subtlety marginally improves
the Ðt. The sound horizon s, Silk scale and amplitudekSilk,suppression were given in equations anda

b
(6), (7), (14),

respectively ; we now discuss ands8 b
b
.

While the nodes of the baryonic transfer function asymp-
totically approach those of sin(ks) for ks ? 1, the Ðrst few
nodes fall at higher k than predicted by sin(ks).(ks [ 10)
This shift is due to the contribution of the baryon density
perturbation itself at the drag epoch and reÑects the fact
that at the sound horizon velocity overshoot is not the
dominant e†ect. This e†ect increases with because the)0 h2
time available for velocity overshoot (see decreaseseq. [14])
as and is only weakly dependent on the baryon(z

d
/zeq)1@2fraction. We have veriÐed this explanation of the node shift

by isolating the density and velocity contributions of the
baryons at the drag epoch from numerical evolution codes.

We address this shifting of the nodes phenomenologically
by introducing the quantity

s8 (k)\ s
[1] (bnode/ks)3]1@3 . (22)

For restoring the sinusoidal nodes.ks ? bnode, s8 ] s,
However, at moving the nodesks [ bnode, s8 B ks2/bnode \ s,
to higher k. We Ðnd

bnode \ 8.41()0 h2)0.435 , (23)

independent of the baryon fraction. Hence the e†ect gets
smaller at low as expected.)0

The amplitude speciÐes the small-scale asymptotica
bcontribution of the velocity portion of the acoustic oscil-

lation. Two e†ects modify this amplitude at large scales.
Above the sound horizon, velocity contributions to the
transfer function fall o†. Furthermore, the amplitude
declines if CDM dominates the energy density of the
photon-baryon system when the wavelength enters the
horizon. This occurs due to the absence of feedback in the
gravitational driving of the photon-baryon oscillator

° 3.1). The net result is a cuto† associated with the(HS96,
sound horizon that moves to smaller scales as )0 h2
increases and/or decreases. We describe this in)

b
/)0by turning on the velocity term at the charac-equation (21)

teristic scale whereb
b
s,

b
b
\ 0.5] )

b
)0

]A3 [ 2
)

b
)0

B
J(17.2)0 h2)2] 1 . (24)

3.3. Performance
For the parameter range and 0 π0.025 [ )0 h2 [ 0.25

the Ðtting formula works quite well. For fully)
b
/)0 π 1

baryonic models (i.e., the fractional residuals are)
c
\ 0)

nearly always under 10%. As the baryon fraction decreases,
the accuracy improves due to the increasing contribution of
the simpler CDM piece. Residuals smaller than 5% are
typical for Note that we quote the residuals as)

b
/)0\ 0.5.

the di†erence between the Ðt and the numerical results
divided by a nonoscillatory envelope that is deÐned by
replacing in by(sin ks8 )/ks8 equation (21) [1] (ks8 )4]~1@4.
This envelope matches the knee of the transfer function and
grazes all the subsequent maxima.

In we display four comparisons of the ÐttingFigure 3
formula relative to the numerical results. Also shown are
the residuals relative to our envelope. The reason for the
degradation in the Ðt at the shortest scales is that small
errors in the sound horizon (see the end of produce° 2.2)
signiÐcant errors in the phase of the oscillations, producing
order unity residuals. However, the Ðtting formula repro-
duces the correct amplitude and hence the Silk scale.

The most serious systematic error in the Ðtting formula
occurs for In the baryon sector of these cases,)0 h2 Z 0.25.
the drop between ks B 1 and the oscillations at ks Z 5
becomes quite precipitous. Our formula does not decline
this quickly, causing the amplitude of the Ðrst valley to be
signiÐcantly overestimated. Later peaks and valleys are
underestimated in an attempt to compensate. One can see
the beginnings of this trend in the example in)0\ )

b
\ 1

the problem gets more severe for higherFigure 3 ; )0 h2.
A less important systematic e†ect occurs for high baryon

fraction low-) models. Because of a(0.7\ )
b
/)0\ 0.9),

small shift in the CDM break scale that we have(eq. [18])
chosen not to model, the Ðrst valley is systematically under-
estimated by D10%È15% in amplitude. This problem does
not extend to lower baryon fractions.

4. PHENOMENOLOGY

There are a number of phenomenological trends as a
function of cosmological parameters. The two basic e†ects
that arise from the inclusion of baryons are the introduction
of oscillations and the suppression of power below the
sound horizon, with a corresponding sharpening of the
bend around the sound horizon. We discuss these two in
turn.

Θ2.7 =
Tcmb
2.7
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horizon since baryon perturbations are pressure supported.
As we will use this solution in order to anchor the small-
scale end of our Ðtting formulae, we describe the solutions
further.

The transfer function is written as a sum of the baryon
and cold dark matter contributions at the drag epoch

T (k) \ )
b

)0
T
b
(k) ] )

c
)0

T
c
(k) . (8)

The CDM transfer function can be solved exactly in terms
of hypergeometric functions that are more conveniently
approximated by the following form:

T
c
] a

c

ln 1.8b
c
q

14.2q2 , (9)

q \A k
Mpc~1

B
#2.72 ()0 h2)~1 \ k

13.41keq
, (10)

where and are Ðtted bya
c

b
c

a
c
\ a1~)b@)0a2~()b@)0)3 ,

a1\ (46.9)0 h2)0.670[1 ] (32.1)0 h2)~0.532] ,

a2\ (12.0)0 h2)0.424[1 ] (45.0)0 h2)~0.582] , (11)

b
c
~1\ 1 ] b1[()c

/)0)b2 [ 1] ,

b1\ 0.944[1] (458)0 h2)~0.708]~1 ,

b2\ (0.395)0 h2)~0.0266 . (12)

As shows the familiar ln)
b
/)0 ] 0, a

c
, b

c
] 1. Equation (9)

(k)/k2 dependence of the small-scale CDM transfer function.
This occurs because outside the horizon, density pertur-
bations grow as k2 due to the product of potential and
velocity gradients that drive the growth ; inside the horizon
in the radiation-dominated epoch the growth is logarithmic.
The main e†ect of the baryons comes from the suppression
in growth rates between equality and the drag epoch. As

increases, the time between the two epochs increases ;)0 h2
thus the maximum suppression due to the baryons occurs in
the highest models. A plot of is shown in)0 h2 a

c
)

c
/)0Figure 2a.

In the small-scale limit, the baryons are trapped in acous-
tic oscillations until recombination permits them to slip
past the photons. While the density perturbation of this
oscillation contributes to the transfer function, the corre-

sponding velocity perturbation actually dominates in the
small-scale limit. When the oscillation is released at the
drag epoch, the baryons move kinematically according to
their velocity and generate a new density perturbation

& Zeldovich & Vishniac This(Sunyaev 1970 ; Press 1980).
so-called velocity overshoot means that the transfer func-
tion for ks ? 1 follows

T
b
] a

b

sin(ks)
ks

D(k) . (13)

Here D(k) represents the e†ects of Silk damping, which
occurs due to combination of di†usion of the photons with
respect to the baryons and Compton drag moving baryons
from overdensities to underdensities and hence destroying
the perturbation. That the dependence is sin(ks) rather than
cos(ks) is the result of the dominance of the velocity term
rather than the density term. A detailed treatment allows
one to calculate a

b
:

a
b
\ 2.07keq s(1] R

d
)~3@4GA1 ] zeq

1 ] z
d

B
, (14)

G(y) \ y
C[6J1 ] y ] (2 ] 3y) ln

AJ1 ] y ] 1

J1 ] y [ 1

BD
. (15)

The factor comes from the damping of oscil-(1] R
d
)~3@4

lations resulting from the adiabatic decrease in the sound
speed & Yu eq. [A17]). The factor(Peebles 1970 ; HS96,
involving G(y) (Py~1@2 for y ? 1) comes from the product
of the growth suppression between equality and the drag
epoch (Py~1) and the time available before the velocities
creating the perturbation decay due to the free expansion of
the universe (Py1@2). A plot of is shown ina

b
)

b
/)0 Figure

2b.
That the phase of the oscillations is ks & Yu(Peebles

can be seen simply from integrating the dispersion1970)
relation The change in phase for an acoustic waveu\ kc

s
.

is Integrating this from t B 0 to thed/ \ [k(1 ] z)]c
s
dt.

drag epoch (where the baryons are released and the oscil-
lations freeze out) yields ks, owing to the deÐnition in

A technical complication occurs forequation (6). k Z kSilk.The presence of strong damping slightly raises the redshift
at which the oscillations freeze out, making s a few percent
smaller (see Fig. 2). We have neglected this e†ectHS96
because it occurs at sufficiently small scales that the

FIG. 2.ÈSuppression factors for (a) the CDM and (b) the baryonic acoustic oscillations(a
c
)

c
/)0) (a

b
)

b
/)0)

610 EISENSTEIN & HU Vol. 496

f \ 1
1 ] (ks/5.4)4 , (18)

with
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The variables q, and have been given in equationsa
c
, b

c
(10),

and respectively.(11), (12),

3.2. Baryons
In the case of cosmologies without cold dark matter, the

transfer function departs from unity below the sound
horizon to exhibit a series of declining peaks due to acoustic
oscillations. The small-scale exact solution of equation (13)
suggests that these may be written as the product of a
declining oscillatory term, a suppression due to the decay of
potentials between the equality and drag scales, and an
exponential Silk damping. We therefore write

T
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\C T30(k ; 1, 1)

1 ] (ks/5.2)2] a
b
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b
/ks)3 e~(k@kSilk)1.4D j0(ks8 ) .

(21)

Here the spherical Bessel function x)/x is a piecej0(x) 4 (sin
that approaches unity above the sound horizon but oscil-
lates below it. The envelope in square brackets traces the
zero-baryon CDM case above the sound horizon and then
breaks to a constant multiplied by an exponential Silk
damping factor. We attach the Silk damping factor only to
the second term because such di†usion can only occur on
scales below the sound horizon, where only the second term
contributes signiÐcantly. This subtlety marginally improves
the Ðt. The sound horizon s, Silk scale and amplitudekSilk,suppression were given in equations anda

b
(6), (7), (14),

respectively ; we now discuss ands8 b
b
.

While the nodes of the baryonic transfer function asymp-
totically approach those of sin(ks) for ks ? 1, the Ðrst few
nodes fall at higher k than predicted by sin(ks).(ks [ 10)
This shift is due to the contribution of the baryon density
perturbation itself at the drag epoch and reÑects the fact
that at the sound horizon velocity overshoot is not the
dominant e†ect. This e†ect increases with because the)0 h2
time available for velocity overshoot (see decreaseseq. [14])
as and is only weakly dependent on the baryon(z

d
/zeq)1@2fraction. We have veriÐed this explanation of the node shift

by isolating the density and velocity contributions of the
baryons at the drag epoch from numerical evolution codes.

We address this shifting of the nodes phenomenologically
by introducing the quantity

s8 (k)\ s
[1] (bnode/ks)3]1@3 . (22)

For restoring the sinusoidal nodes.ks ? bnode, s8 ] s,
However, at moving the nodesks [ bnode, s8 B ks2/bnode \ s,
to higher k. We Ðnd

bnode \ 8.41()0 h2)0.435 , (23)

independent of the baryon fraction. Hence the e†ect gets
smaller at low as expected.)0

The amplitude speciÐes the small-scale asymptotica
bcontribution of the velocity portion of the acoustic oscil-

lation. Two e†ects modify this amplitude at large scales.
Above the sound horizon, velocity contributions to the
transfer function fall o†. Furthermore, the amplitude
declines if CDM dominates the energy density of the
photon-baryon system when the wavelength enters the
horizon. This occurs due to the absence of feedback in the
gravitational driving of the photon-baryon oscillator

° 3.1). The net result is a cuto† associated with the(HS96,
sound horizon that moves to smaller scales as )0 h2
increases and/or decreases. We describe this in)

b
/)0by turning on the velocity term at the charac-equation (21)

teristic scale whereb
b
s,
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3.3. Performance
For the parameter range and 0 π0.025 [ )0 h2 [ 0.25

the Ðtting formula works quite well. For fully)
b
/)0 π 1

baryonic models (i.e., the fractional residuals are)
c
\ 0)

nearly always under 10%. As the baryon fraction decreases,
the accuracy improves due to the increasing contribution of
the simpler CDM piece. Residuals smaller than 5% are
typical for Note that we quote the residuals as)

b
/)0\ 0.5.

the di†erence between the Ðt and the numerical results
divided by a nonoscillatory envelope that is deÐned by
replacing in by(sin ks8 )/ks8 equation (21) [1] (ks8 )4]~1@4.
This envelope matches the knee of the transfer function and
grazes all the subsequent maxima.

In we display four comparisons of the ÐttingFigure 3
formula relative to the numerical results. Also shown are
the residuals relative to our envelope. The reason for the
degradation in the Ðt at the shortest scales is that small
errors in the sound horizon (see the end of produce° 2.2)
signiÐcant errors in the phase of the oscillations, producing
order unity residuals. However, the Ðtting formula repro-
duces the correct amplitude and hence the Silk scale.

The most serious systematic error in the Ðtting formula
occurs for In the baryon sector of these cases,)0 h2 Z 0.25.
the drop between ks B 1 and the oscillations at ks Z 5
becomes quite precipitous. Our formula does not decline
this quickly, causing the amplitude of the Ðrst valley to be
signiÐcantly overestimated. Later peaks and valleys are
underestimated in an attempt to compensate. One can see
the beginnings of this trend in the example in)0\ )

b
\ 1

the problem gets more severe for higherFigure 3 ; )0 h2.
A less important systematic e†ect occurs for high baryon

fraction low-) models. Because of a(0.7\ )
b
/)0\ 0.9),

small shift in the CDM break scale that we have(eq. [18])
chosen not to model, the Ðrst valley is systematically under-
estimated by D10%È15% in amplitude. This problem does
not extend to lower baryon fractions.

4. PHENOMENOLOGY

There are a number of phenomenological trends as a
function of cosmological parameters. The two basic e†ects
that arise from the inclusion of baryons are the introduction
of oscillations and the suppression of power below the
sound horizon, with a corresponding sharpening of the
bend around the sound horizon. We discuss these two in
turn.
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horizon since baryon perturbations are pressure supported.
As we will use this solution in order to anchor the small-
scale end of our Ðtting formulae, we describe the solutions
further.

The transfer function is written as a sum of the baryon
and cold dark matter contributions at the drag epoch

T (k) \ )
b

)0
T
b
(k) ] )

c
)0

T
c
(k) . (8)

The CDM transfer function can be solved exactly in terms
of hypergeometric functions that are more conveniently
approximated by the following form:

T
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ln 1.8b
c
q

14.2q2 , (9)
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13.41keq
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where and are Ðtted bya
c

b
c

a
c
\ a1~)b@)0a2~()b@)0)3 ,

a1\ (46.9)0 h2)0.670[1 ] (32.1)0 h2)~0.532] ,

a2\ (12.0)0 h2)0.424[1 ] (45.0)0 h2)~0.582] , (11)

b
c
~1\ 1 ] b1[()c

/)0)b2 [ 1] ,

b1\ 0.944[1] (458)0 h2)~0.708]~1 ,

b2\ (0.395)0 h2)~0.0266 . (12)

As shows the familiar ln)
b
/)0 ] 0, a

c
, b

c
] 1. Equation (9)

(k)/k2 dependence of the small-scale CDM transfer function.
This occurs because outside the horizon, density pertur-
bations grow as k2 due to the product of potential and
velocity gradients that drive the growth ; inside the horizon
in the radiation-dominated epoch the growth is logarithmic.
The main e†ect of the baryons comes from the suppression
in growth rates between equality and the drag epoch. As

increases, the time between the two epochs increases ;)0 h2
thus the maximum suppression due to the baryons occurs in
the highest models. A plot of is shown in)0 h2 a

c
)

c
/)0Figure 2a.

In the small-scale limit, the baryons are trapped in acous-
tic oscillations until recombination permits them to slip
past the photons. While the density perturbation of this
oscillation contributes to the transfer function, the corre-

sponding velocity perturbation actually dominates in the
small-scale limit. When the oscillation is released at the
drag epoch, the baryons move kinematically according to
their velocity and generate a new density perturbation

& Zeldovich & Vishniac This(Sunyaev 1970 ; Press 1980).
so-called velocity overshoot means that the transfer func-
tion for ks ? 1 follows

T
b
] a

b

sin(ks)
ks

D(k) . (13)

Here D(k) represents the e†ects of Silk damping, which
occurs due to combination of di†usion of the photons with
respect to the baryons and Compton drag moving baryons
from overdensities to underdensities and hence destroying
the perturbation. That the dependence is sin(ks) rather than
cos(ks) is the result of the dominance of the velocity term
rather than the density term. A detailed treatment allows
one to calculate a

b
:

a
b
\ 2.07keq s(1] R

d
)~3@4GA1 ] zeq

1 ] z
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B
, (14)

G(y) \ y
C[6J1 ] y ] (2 ] 3y) ln
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The factor comes from the damping of oscil-(1] R
d
)~3@4

lations resulting from the adiabatic decrease in the sound
speed & Yu eq. [A17]). The factor(Peebles 1970 ; HS96,
involving G(y) (Py~1@2 for y ? 1) comes from the product
of the growth suppression between equality and the drag
epoch (Py~1) and the time available before the velocities
creating the perturbation decay due to the free expansion of
the universe (Py1@2). A plot of is shown ina

b
)

b
/)0 Figure

2b.
That the phase of the oscillations is ks & Yu(Peebles

can be seen simply from integrating the dispersion1970)
relation The change in phase for an acoustic waveu\ kc

s
.

is Integrating this from t B 0 to thed/ \ [k(1 ] z)]c
s
dt.

drag epoch (where the baryons are released and the oscil-
lations freeze out) yields ks, owing to the deÐnition in

A technical complication occurs forequation (6). k Z kSilk.The presence of strong damping slightly raises the redshift
at which the oscillations freeze out, making s a few percent
smaller (see Fig. 2). We have neglected this e†ectHS96
because it occurs at sufficiently small scales that the

FIG. 2.ÈSuppression factors for (a) the CDM and (b) the baryonic acoustic oscillations(a
c
)
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§ post-decoupling (CDM+baryons): (Eisenstein & Hu 1998)
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§ transfer function T(k)

P(k,a) = D2 (a)T 2 (k) P0 (k)
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FIG. 3.ÈFour examples of the Ðt compared to numerical results. The larger plots show the numerical result (solid lines) and the Ðt (dashed lines). The
smaller subplots show the residuals, deÐned as the di†erence between the two divided by a nonoscillatory envelope. Note that in the fully baryonic models,
the oscillations have alternating sign in the transfer function. Also shown is the zero-baryon case (dotted lines) ; note the strong suppression on scales below
the sound horizon due to the baryons.

resulting phase shift is unobservable in practice, but one can
see the deviations when comparing to numerical results (see
Fig. 3).

3. FITTING FORMULAE

As we have seen in analytic solutions exist for the° 2,
transfer function at both large and small scales. The tran-
sition between these extremes is deÐned by two scales, the
horizon at matter-radiation equality and the sound horizon
at the end of the drag epoch. The former sets the dynamics
of the expansion and perturbation growth ; the latter sets
the scale at which pressure support becomes important for
the baryons. Because the range of scales accessible by the
study of structure formation falls within this transition
regime, it is important to understand the full transfer func-
tion in detail. To that end, we present in this section a Ðtting
formula that approximates the full transfer function on all
scales.

We write the transfer function as the sum of two pieces,

T (k) \ )
b

)0
T
b
(k) ] )

c
)0

T
c
(k) , (16)

whose origins lie in the evolution before the drag epoch of
the baryons and cold dark matter, respectively. This separa-
tion is physically reasonable, as before the drag epoch the
two species were dynamically independent and after the
drag epoch their Ñuctuations are weighted by the fractional

density they contribute. This automatically includes in T
cthe e†ects of baryonic infall into CDM potential wells. Note

however that and are themselves not true transferT
b

T
cfunctions, as they do not reÑect the density perturbations of

the relevant species today. Rather, it is their density-
weighted average T (k) that is the transfer function for both
the baryons and the CDM.

3.1. Cold Dark Matter
The transfer function for cosmologies in which noninter-

acting cold dark matter dominates over baryons has been
studied by many authors, and accurate Ðtting formulae
already exist in this limit (e.g., & EfstathiouBond 1984 ;

et al. but see improvements in ourBardeen 1986 ; ° 4.2).
However the e†ect of baryons, though long known from
numerical calculations (e.g., & YuPeebles 1970 ; Holtzmann

have in the past either been included in Ðtting formu-1989),
lae in an ad hoc manner (see, e.g., & DoddsPeacock 1994 ;

or only in the small-scale limitSugiyama 1995) (HS96).
In the presence of baryons, the growth of CDM pertur-

bations is suppressed on scales below the sound horizon.
The change to the asymptotic form can be calculated and
has been shown in equations We introduce this(9)È(12).
suppression by interpolating between two solutions near
the sound horizon :

T
c
(k)\ fT30(k, 1, b

c
)] (1 [ f )T30(k, a

c
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) (17)



Computational Cosmology Boltzmann solver

§ 1995: COSMICS package

§ 1996: CMBFAST

§ 1999: RECFAST

CAMB

§ 2003: CMBEASY

§ 2010: CLASS

CosmoRec



Computational Cosmology Boltzmann solver

§ 1995: COSMICS package (Bertschinger)
• first ever public release of Boltzmann solver

• bundled with package to generate initial conditions for simulations

§ 1996: CMBFAST

§ 1999: RECFAST

CAMB

§ 2003: CMBEASY

§ 2010: CLASS

CosmoRec



Computational Cosmology Boltzmann solver

§ 1995: COSMICS package
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• convolution with Bessel functions

• much faster than COSMICS
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§ 1995: COSMICS package

§ 1996: CMBFAST

§ 1999: RECFAST (Seager, Sasselov & Scott) 

• solves recombination of H and He simultaneously giving

• ionised fractions as a function of redshift
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Computational Cosmology Boltzmann solver

§ 1995: COSMICS package

§ 1996: CMBFAST

§ 1999: RECFAST

CAMB

§ 2003: CMBEASY

§ 2010: CLASS (Lesgourges et al. http://www.class-code.net)
• highly modular code

• easy to install and use

• exactly following Bertschinger’s notation to avoid confusion

CosmoRec
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Figure 2: (Left) percentage difference between CAMB and CLASS lensing potential anisotropy
spectra Cφφ

l , with the precision settings explained in the text. (Right) percentage difference between
CAMB and CLASS lensed temperature anisotropy spectra (temperature TT and polarisation EE).

2.3 Matter power spectrum

In the standard cosmological scenario, the matter power spectrum can be accurately de-

scribed by linear theory up to about k ∼ 0.1hMpc−1. Hence, one could argue that precise

computations of the matter power spectrum P (k) for larger wavenumbers are useless. Nev-

ertheless, we want to push the comparison up to much higher values, because the small-scale

linear power spectrum is often used as an input for different methods estimating the non-

linear spectrum: fitting formulas like HALOFIT [11], codes generating initial conditions for

N-body simulations, algorithms computing renormalised perturbations, etc. In this paper

we focus on the matter power spectrum in the range 10−4hMpc−1 < k < 50hMpc−1.

The settings described in the previous subsections are sufficient in order to get accurate

predictions in the range from 10−4 to 1hMpc−1. Beyond that, it is necessary to increase the

number of Legendre multipoles for massless neutrino perturbations, lνmax, in order to follow

accurately neutrino free-streaming during radiation domination (when their backreaction

on metric perturbations cannot be neglected). In CLASS, lνmax can be kept not too large

thanks to the Ultra-relativistic Fluid Approximation (UFA) described in ref. [2]. The

precision parameter file pk_ref.pre released with CLASS has lνmax=150. Together with

other settings, this is found to be sufficient for P (k) to converge at the 10−5 level, up to

at least kmax = 50hMpc−1. We refer to CLASS runs with the accuracy file pk_ref.pre as

[CLASS:02].

We compared the resulting P (k) with that derived from CAMB with the following set-

tings, that we call [CAMB:06]:
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Figure 3: (Left) percentage difference between CAMB and CLASS matter power spectrum P (k),
with the precision settings explained in the text. (Right) same if we force CLASS to neglect the
impact of reionisation on the baryon sound speed, like CAMB does.

pk_ref.pre. We recall that the first one is sufficient for getting 0.01% accurate CTT
l ’s and

P (k)’s in the range 2 ≤ l ≤ 3000 and k ≤ 1hMpc−1 (for CEE
l the error is twice larger).

The second settings is only necessary for maintaining such an accuracy on the linear P (k)

till k ≤ 50hMpc−1.

Under many circumstances, a Boltzmann code user wants to be sure that the error

made on the Cl’s is smaller than some level (e.g., than the level of the new physical ef-

fect that he/she wants to study). For this purpose, we derived three settings achieving

respectively 0.1%, 0.2% or 0.3% accuracy on the Cl’s up to l = 3000: they are contained in

the precision files cl_permille.pre, cl_2permille.pre, cl_3permille.pre distributed

together with the code. For each of these settings, the precision on the matter power

spectrum for k ≤ 1hMpc−1 is even better than that on the Cl’s.

However, for parameter extraction and large Monte-Carlo runs, these settings are not

optimal: they do not minimise the computing time for a given data sensitivity. In principle,

for each new data set, one could derive optimal precision settings for CLASS. The way to

proceed is to compute some reference spectra using e.g. the cl_ref.pre file, and then to

degrade the precision while keeping the likelihood of the output spectra below a given level

(given instrumental noise and taking the fiducial spectra to be the reference ones).

Here, we illustrate this approach by using a simplified Planck likelihood. In the future,

it will be easy to derive e.g. “Planck+SDSS” or “Core+Euclid” precision files. This task is

made easier if one assumes that each accuracy parameter degrades the precision indepen-

dently of the others, i.e. that no complicated combinations of the accuracy parameters can

make the code faster for a fixed precision. Under this very plausible assumption, deriving

precision settings is trivial, even for somebody who is not expert in the code: one should

consider the accuracy parameters one after each other, loop over several values of these

parameters, compute the ∆χ2 relative to the reference spectrum, and take the largest pos-
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Figure 1 Power spectrum evolution for all ten runs as compared to the prediction by Peacock & Dodds (1996) (—) and the linear P(k) (· · ·),
respectively. The inset panel for z = 50 focuses on the fundamental mode kmin = 2π/B which shows a 1σ variance of approximately 20%.

The function σ 2
M(r) is readily calculated and can be com-

pared to an adequate estimator σ 2
M,est(r) when being

applied to the actual particle data. Our estimator distributes
a certain number of spheres with radius r at random in the
simulation volume and compares the number of particles
inside those spheres to the expected mean value

σ 2
M,est(r) =

1

〈Nr〉2

Ns
∑

i=1

(Ni(r) − 〈Nr〉)2

Ns − 1
. (7)

Ns is the total number of spheres with radius r and
〈Nr〉 = 〈ρ〉4πr3/3mp is the mean number of particles in
such a sphere.

3.2.1 Reliability of Estimator

In order to make sure our estimator works as expected we
started by applying it to particle distributions where simple
scaling laws for σ 2

M(r) can be calculated analytically. For
a purely Poissonian particle distribution one easily derives

σ 2
M,Poisson(r) ∝ r−3, (8)

and for a ‘shuffled’ lattice (e.g. Gabrielli, Joyce, & Sylos
Labini 2002)

σ 2
M,Lattice(r) ∝ r−4, (r % lattice spacing). (9)

Figure 2 Reliability check for our σ 2
M,est(r) estimator equa-

tion (7). The solid lines have the slopes of the analytical expectations
(refer to the text for further details). All amplitudes are arbitrary.

From Figure 2 we deduce that our estimator does
indeed work correctly: we created ten Poisson distribu-
tions of 1283 particles in a (128 h−1 Mpc)3 volume and
for each distribution we calculated σ 2

M,est(r) using 10 000
spheres (for each r value). The curve shown is the average
taken over the ten Poisson distributions. The error bars
are too small to be presented. The shuffled lattice distri-
bution was created as follows: we placed 1283 particles
on the nodes of a 1283 grid with spacing 1 h−1 Mpc, and
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can be used to derive a lower limit for the virial radius
Rvir,min via

Mvir =
4π

3
"virρbR

3
vir, (15)

where ρb is the background density and"vir = 340 for the
$CDM model under consideration.

The BDM code identifies local overdensity peaks by
smoothing the density field on a particular scale. The par-
ticle distribution was used to iteratively find potential halo
centres as the centres of mass of 20 000 spheres with
radius Rsphere ≈ Rvir,min ≈ 162 h−1 kpc centred about ran-
domly chosen particles. Once the iteration converged for
all spheres we repeated the procedure using successively
smaller sphere radii down to 70 h−1kpc, about three times
the force resolution. For each of these halo centres we
stepped out in radial bins until the density dropped below
ρbin <"virρb. This defined the outer radius Rvir of the
halo.6 We discarded all halos with less than 100 particles
within Rvir for the further analysis.7

4.2 Mass Function of Halos

The first quantity to investigate is the mass spectrum. We
calculated the cumulative mass function n(>M) for our
BDM halos and compared it to the analytical prediction
of Press & Schechter (1974, hereafter PS),

dn

dM
dM =

√

2

π

〈ρ〉

M

δc

σM

∣

∣

∣

∣

d ln σM

d ln M

∣

∣

∣

∣

exp

(

−
δ2
c

2σ 2
M

)

dM

M
,

(16)

where the variance σM is given by equation (6) and
δc = 1.68.

Figure 10 shows that the average mass function of all
ten runs is in good agreement with the PS prediction,
which has been noted already by several other authors
(Efstathiou et al. 1988; White, Efstathiou, & Frenk 1993;
Gross et al. 1998; Governato et al. 1999; Jenkins et al.
2001). This again is another indicator that the initial con-
ditions as well as the evolution by N -body simulation
are in fair agreement with theoretical predictions based
on the analytical power spectrum and its time evolution.
The discrepancy of the numerical n(>M) with the PS
prediction at the low and high mass end of the mass
function is also a well known fact (e.g. Governato et al.
1999) and not related to unreliable ICs or wrong N -body
modelling. Anyway, we are more interested in the scatter
stemming from the random nature of the initial condi-
tions. We are driven by the question of to what extent a
single cosmological simulation can be representative for

6If we want to identify halos-within-halos this method needs to be

adjusted to account for the fact that the actual density of a satellite galaxy

might not drop below "virρb .
7To crosscheck the completeness of our BDM halo catalogues we also

performed a FOF analysis which shows a nearly 100% agreement and

only an incompleteness in the BDM catalogues for halos less massive

than 100 particles.

Figure 10 Cumulative mass functions of BDM halos compared to
the Press–Schechter prediction (Press & Schechter 1974). The mass
functions are the average taken over all ten runs and the error bars
are 1σ errors.

the volume under investigation. We observe that the scat-
ter gradually increases from around 4% at the very low
mass end resolved to about 50% for the most massive
objects found in the simulation. According to the PS pre-
diction, the scatter due to cosmic variance should enter
via the amplitude A%k predominantly, not the phases θ%k
of the ICs, equation (4). The observed increase of scatter
with mass is then naturally explained also by the PS for-
mula, given that larger masses are more sensitive to larger
scales.

4.3 Halo–Halo Correlation Function

The calculation of the halo–halo two-point correlation
function is based on the estimator equation (11) again.
However, this time we applied it only to the 500 most
massive objects in the runs, which means fixing the
number density of halos to nhalo = 2 × 10−3(h−1 Mpc)−3.
This choice for nhalo restricts the masses of the
objects used from M ∼ 3 × 1014h−1M( down to
M ∼ 2 × 1012h−1M(. The result for the average taken
over the ten BDM catalogues at redshift z = 0 is shown
in Figure 11. The mean correlation function ξest(r) was
fitted to a power law,

ξ(r) = (r0/r)γ , (17)

over the range r ∈ [0.5, 20] h−1 Mpc with the parame-
ters r0 = 4.26 ± 0.44 h−1 Mpc and γ = 1.80 ± 0.17. The
1σ errors are of the order of 10% and indicate again only
a mild dependence of the halo-halo correlation function
on the variance introduced by the random nature of the
initial conditions. Even though the scatter for the funda-
mental mode is ≈ 20%, it does only marginally affect the
statistical clustering properties of dark matter halos in the
respective mass range.

4.4 Internal Properties of the Most Massive Halo

Even though we are only resolving approximately 2%
of the virial radius of the most massive particle group

resulting differences
in today’s halo mass function
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§ Lagrangian perturbation theory
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Figure 2. Fractional difference in the power spectrum P (k) regarding the
different schemes (ZA and lpt2) used to set up the ICs at redshift z = 0.

where !ri is the position in simulation i and !rj in simulation j,
and the second utilizes the so-called density cross-correlation
coefficient.

In Figure 3, we show for our set of comparisons (compare
Section 3.1) the position difference |∆r| (in units of the force
resolution, i.e., 2 h−1 kpc) for 1% of the particles randomly
selected from the total number of particles as a function of
density as measured at the position of the particle5 in the
reference model started at redshift zi = 50 (i.e., 050-lpt1 and
050-lpt2, respectively) and hence labeled δ050−lpt1 in the upper
panel and δref in the lower panel. The upper panel shows the
actual scatter plot for one particular comparison (i.e., 050-lpt1
vs. 150-lpt1) together with the median, while the lower panel
shows only the medians of ∆r in six logarithmically spaced
bins. Note that the whole particle set has been used to calculate
the medians and to avoid crowding in the figures we multiplied
the medians by 100, 1, and 0.01, respectively. The error bars
represent the 25th and 75th percentiles (slightly shifted for each
model along the x-axis for clarity).

We note the expected trend for |∆r| to increase with increasing
density contrast, i.e., the differences across models are more
pronounced in high-density regions. We now checked (though
not shown here) that the differences are never larger than the
virial radii of the halos these particles reside in. However, the
observed trend is expected: the origin of these deviations is
the dynamical instability of particle trajectories in the high-
density regions (e.g., Knebe et al. 2000; Valluri et al. 2007). As
is well known, the trajectories within virialized systems tend
to be chaotic and any small differences existing at any time
moment will tend to grow very fast with time. The divergence
can thus be expected to be more important in nonlinear regions
and this explains the trend of larger ∆r’s in denser regions.
The differences in the low-density regions are substantially
smaller, but still larger than the force resolution and hence
considered physical. However, when investigating underdense
regions 1 + δ < 1 we note that the median of |∆r| “saturates”
at approximately the level of 10× force resolution and hence
defines the level that marks the minimum expectation for the
position difference.

5 The density contrast δ = (ρ − ρ)/ρ has first been calculated by assigning
the mass of each particle to a regular grid of size 5123. Then the grid values
have been interpolated back to the particles’ positions.

Figure 3. Deviation (normalized to the force resolution) of particle coordinates
at z = 0. The upper panel presents a random sample of 1% of all particles
alongside the median ∆r in six bins in 1 + δref . The lower panel only shows the
medians multiplied by 100, 1, and 0.01, respectively, to avoid crowding.

We also observe that the medians do not show considerable
variations when changing the starting redshift. Further, the trend
for |∆r| to increase with δ—that appears to be independent of
zi—is also of comparable strength for lpt1 and lpt2.

However, when comparing lpt1 against lpt2 there appears
to be a drift toward smaller particle position differences (in
low-density regions) when moving to higher starting redshifts.
This is readily explained by the fact that at higher redshifts
the differences between lpt1 and lpt2 vanish. Nevertheless,
this trend is far less pronounced in high-density regions. We
conclude that the differences in P (k) as seen in Figure 2
therefore stem from rather low-density regions.

We also cross-compared an earlier started model to a later
started one at its actual starting redshift, e.g., a snapshot of run
150-lpt1 at redshift z = 50 to the ICs of simulation 050-lpt1.
We though chose not to show the results as all differences in
the positions |∆r| are smaller than the force resolution and we
hence consider them unphysical.

We like to caution the reader that this particular test of
investigating the spatial differences |∆r| does not provide us
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Figure 4. Ratio of the mass function at redshift z = 0 of gravitationally bound
objects for all eight models to the respective reference model started at z = 50.
The (Poissonian) error bars measure the 3σ variance.
(A color version of this figure is available in the online journal.)

Table 4
Best-Fit Parameters for the Spin Parameter Distributions

Run λ0 σ0

150-lpt1 0.040 0.509
100-lpt1 0.039 0.501
050-lpt1 0.040 0.507
025-lpt1 0.040 0.506
150-lpt2 0.039 0.524
100-lpt2 0.040 0.515
050-lpt2 0.040 0.513
025-lpt2 0.040 0.519

shape, spin parameter, and concentration presented in Figure 5:
there are hardly any noticeable differences in the distributions
when changing zi. This figure is accompanied by Table 4 for
which the spin parameter distributions have been fitted to a
lognormal function

P (λ) = 1

λ
√

2πσ 2
0

exp
(

− ln2(λ/λ0)
2σ 2

0

)
(9)

with the two best-fit parameters λ0 and σ0 listed in
Table 4. We again note that they are practically indistinguish-
able, irrespective of the model and the starting redshift zi. How-
ever, we note that the width of the distribution as measured by
σ0 appears to be marginally smaller in the lpt1 set.

Our results from this section indicate that the starting redshift
has practically no influence on today’s attributes of dark matter
halos — at least not for the properties analyzed here, namely the
mass, the spin parameter, the triaxiality, and the concentration
and for objects within the given mass range 1010–1013 h−1 M".
And the same holds for the order of the Lagrangian perturbation
theory, i.e., whether lpt1 or lpt2 is used to generate the ICs has
no effect on the particulars of halos at redshift z = 0.

4.2. Cross-Correlations

As the simulations were started with identical phases we
could use the particle IDs to establish a mapping between the

Figure 5. Probability distribution of the triaxiality parameter T (top), the spin
parameter λ (middle), and the concentration c (bottom) for all models.
(A color version of this figure is available in the online journal.)

two different simulations. This has been applied in Section 3.3
where we presented a direct comparison of individual particles
(e.g., the spatial difference |∆r|). But if we plan to do the same
for the halos, we require a more sophisticated technique to
uniquely cross-identify halos among different simulations. To
this extent we utilize a tool that comes with the AHF package
and is called MergerTree. Originally it serves the purpose
of identifying corresponding objects in the same simulation at
different redshifts (and hence the name MergerTree). But it can
also be applied to simulations of different models run with the
same initial phases for the ICs like in our case. The MergerTree
cross-correlation is done by linking objects that share the most

effect on halo mass function
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§ available codes

1990:
• COSMICS: http://web.mit.edu/edbert
• GRAFIC-2: http://web.mit.edu/edbert
• PMstartM http://astro.nmsu.edu/~aklypin/PM/pmcode

2000:
• N-genIC: http://www.h-its.org/tap-software-e/ngenic-code
• 2LPTic: http://cosmo.nyu.edu/roman/2LPT

2010:
• CICsASS: http://faculty.washington.edu/mcquinn/Init_Cond_Code.html
• Panphasia http://icc.dur.ac.uk/Panphasia.php
• MUSIC: https://www-n.oca.eu/ohahn/MUSIC
• ginnungagap: https://github.com/ginnungagapgroup/ginnungagap

http://web.mit.edu/edbert
http://web.mit.edu/edbert
http://astro.nmsu.edu/~aklypin/PM/pmcode
http://www.h-its.org/tap-software-e/ngenic-code
http://cosmo.nyu.edu/roman/2LPT
http://faculty.washington.edu/mcquinn/Init_Cond_Code.html
http://icc.dur.ac.uk/Panphasia.php
https://www-n.oca.eu/ohahn/MUSIC
https://github.com/ginnungagapgroup/ginnungagap
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The collision of our Milky Way with the Andromeda Galaxy!

(courtesy Arman Khalatyan)

do we really need supercomputers for this?
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Erik Holmberg

• replacing gravity by light (same 1/r2 law)

• formation of tidal features

N = 2x 37

3m

4m

1941

simulation codes
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∑

• gravity of N bodies

• the “brute force approach” scales like N2:

the summation over (N-1) particles has to be done for all N particles:

Þ number of floating point operations µ N(N-1) µ N2

even nowadays not a feasible approach!

è sophisticated techniques are required…

simulation codes
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year who what
1941 Erik Holmberg light bulbs

1963 Svere Aarseth NBODY

1981 George Efstathiou P3M

1983 Anatoly Klypin PM

1986 Barnes & Hut tree

1991 Hugh Couchman AP3M

1995 Suisalu & Saar AMR (Adaptive Mesh Refinement)

1997 Kravtsov ART

…

2000++ Springel GADGET

Springel Arepo

Hopkins GIZMO

simulation codes
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year who what
1941 Erik Holmberg light bulbs

1963 Svere Aarseth NBODY

1981 George Efstathiou P3M

1983 Anatoly Klypin PM

1986 Barnes & Hut tree

1991 Hugh Couchman AP3M

1995 Suisalu & Saar AMR (Adaptive Mesh Refinement)

1997 Kravtsov ART

…

2000++ Springel GADGET

Springel Arepo

Hopkins GIZMO

simulation codes

1988
still the one-and-only reference!
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• generating initial conditions

anisotropies in the matter field
(as calculated by Boltzmann solvers)

the universe in a computer
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1. primordial matter density field

your favourite simulation code

2. today’s matter density field

3. halo/galaxy catalogue

software telescopes

the universe in a computer

• analysing the outputs

nIFTy Cosmology:! numerical simulations for large surveys!

a workshop on the production of virtual skies !

June 30 – July 18, 2014!
Instituto de Fisica Teorica, Madrid!

SOC:!
Alexander Knebe !
Frazer Pearce!
Juan Garcia-Bellido!
Chris Power!
Richard Bower !

more information and registration at http://popia.ft.uam.es/nIFTyCosmology           sponsored by!

Haloes going MAD 

a workshop on finding haloes in cosmological simulations 
at 

La Cristalera de la Universidad Autonoma de Madrid 

Madrid, 24/05/2010 – 28/05/2010 

more information and registration at
http://popia.ft.uam.es/HaloesGoingMAD

SOC: 

Alexander Knebe 
Steffen Knollmann 

Gustavo Yepes 
Justin Read 

Subhaloes going Notts 

a workshop on finding subhaloes in cosmological simulations 
in 

Dovedale, Nottingham (UK) 

14/05/2012 – 18/05/2012 

more information and registration at
http://popia.ft.uam.es/SubhaloesGoingNotts

SOC: 

Frazer Pearce 
Alexander Knebe 

Julian Onions 
Stuart Muldrew 

Hanni Lux 
Steffen Knollmann 

SUSSING MERGER TREES 
a workshop on 

constructing merger trees 
for cosmological simulations 

in 
Midhurst, West Sussex (UK) 

08/07/2013 – 12/07/2013 

more information and registration at 
http://popia.ft.uam.es/SussingMergerTrees 

SOC: 
Peter Thomas 
Frazer Pearce 
Alexander Knebe 
Aurel Schneider 
Chaichalit Srisawat  

2010

2012

2013

2014
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your favourite simulation code

2. today’s matter density field

comparison to reality

the universe in a computer

• analysing the outputs: comparison

3. halo/galaxy catalogue

The Three Hundred project 2907

Figure 5. The baryonic fractions from the two hydrodynamical simulations within R500. Gas fractions are shown on the left-hand side panels, while stellar
fractions are shown on the right-hand side panels. As shown in the legend on the top-left-hand side panel, hydrodynamical simulations are shown with red
filled symbols (median value) with error bars (16th–84th percentile) for GADGET-MUSIC and blue stars with error bars for GADGET-X. Observational data points
from Gonzalez et al. (2013) and Zhang et al. (2011) are shown as black stars and magenta cross symbols, respectively, while the lime dotted line shows the
fitting result from Kravtsov, Vikhlinin & Meshcheryakov (2018) with the grey shaded scatter. The thick black horizon dashed lines on the left-hand side panels
indicate the cosmic baryon fraction (!b/!m). The vertical dashed lines in the upper row show the mass limit for the complete sample.

Figure 6. The stellar-to-halo mass relation for central galaxies in the com-
plete sample. As indicated in the legend, observational results are shown as
thick lines [Yang, Mo & van den Bosch (2009), grey dotted line, Behroozi
et al. (2013), dot-dashed black line and Moster, Naab & White (2013), green
dashed line] with the latest results from Rodrı́guez-Puebla et al. (2017)
shown as magenta stars with the light shaded area and Kravtsov et al. (2018)
as a solid purple line with the dark shaded region. Our hydrodynamical sim-
ulation and SAM results are shown in different symbols (median value) with
error bars (16th–84th percentile): GADGET-MUSIC with red solid circles and
dotted line; GADGET-X with blue solid squares and dashed line; GALACTICUS

with black filled triangles and dash-dotted line, SAG with lime triangles and
long dashed line and SAGE with maroon triangles and long-short dashed line.

This means that the quenching of star formation in these massive
clusters is still problematic for the models investigated here.

In order to check for the properties and influence of the ICL,
for example the fraction, the evolution and the connection to the
SHMR, we will perform a detailed investigation for both SAMs
and the hydrodynamical simulations through carefully separating
BCG from ICL, and present the results in a follow-up work (Cañas
et al. in preparation).

4.1.2 Stellar mass function for satellite galaxies

Though the satellite-galaxy stellar-mass function is not a scaling
relation, we briefly switch focus from central galaxies to satellite
galaxies and present the result in this subsection. We only use the
mass-complete sample for this investigation and limit our satellite
galaxies to objects within R200 as per the observational sample. We
show the stellar mass function – median averaged over all clusters
– in Fig. 7. As indicated in the legend, different style thin lines
represent different versions of the simulations and SAMs, while
observational results from Yang et al. (2018) at two different cluster
mass bins are highlighted as thick lines. Note that the complete
cluster sample is used here without further binning in halo mass,
because its mass limit is basically comparable with Yang’s most
massive mass bin. The lower mass bin from Yang’s catalogue is
presented here to aid the comparison. The horizontal extensions to
the red and blue curves are artefacts of the median values. Compared
to the observational results, GADGET-MUSIC has more massive satel-
lite galaxies with masses M∗ > 1011.5 h−1 M#. GADGET-X shows a
slightly reduced number of satellite galaxies towards the low-mass
end. GALACTICUS features the opposite trend. These deviations from
the actual observations can be understood as an overabundance
of massive satellite galaxies in GADGET-MUSIC due to the lack of
AGN feedback; too few low-mass satellite galaxies in GADGET-X

can be caused by either a resolution issue (note that galaxies of

MNRAS 480, 2898–2915 (2018)
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B = 100 Mpc/h
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N = 38403
B = 1000 Mpc/h

the universe in a computer

dark-matter only simulations!?
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• EAGLE full physics vs. MultiDark dark-matter only simulation

the universe in a computer

...and even still not capturing all systematics!
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• approximate methods vs. full simulations

the universe in a computer

1858 S. Avila et al.

We aim to decouple each of these steps from the others as far
as possible so that different algorithms may be used at each point.
The first two steps are relatively trivial, as they use pre-developed
prescriptions from the literature, and we discuss these, and basic
outlines of the last two steps, in this section.

3.1 Density field

The basic scaffolding of HALOGEN is an appropriate dark matter
density field realized at the desired redshift, sampled by N particles.
For simplicity, we choose to use second-order perturbation theory
(2LPT) (Moutarde et al. 1991; Bouchet et al. 1995) to produce this
field, which can be obtained with the public code 2LPTIC.

We show in Fig. 1, the density distribution of an N-body sim-
ulation (top panel) and a 2LPT representation (bottom panel) at
z = 0.5. Notably, the 2LPT distribution appears to be blurred in
comparison to the N-body simulation. This is due to the fact that
2LPTIC – as the name suggests – was originally designed only to
generate ICs (Scoccimarro 1998), since even second-order perturba-
tion theory breaks down at low redshift when overdensities become
highly non-linear. The small-scale difference in Fig. 1 can be ex-
plained by shell crossing, an effect in which particles following their
2LPT trajectories cross paths and continue rather than gravitationally

Figure 1. Here, we show the difference between performing an actual
N-body simulation (top) and using 2LPT (bottom) to generate a particle
distribution at z = 0.5, with the same ICs. The image shows a slice of the
density contrast δ distribution in a 1 h−1 Gpc3 box .

attracting each other in a fully non-linear manner (Sahni & Shan-
darin 1996; Neyrinck 2013). In order to compensate for shell-
crossing, Manera et al. (2013) advocates the use of a smoothing
kernel over the input power spectrum. We tested the effect of this
smoothing in HALOGEN but did not find any improvement in the final
catalogue.

Nevertheless, 2LPT provides a suitable approximation of the large-
scale distribution of matter, where perturbations have not yet entered
into the highly non-linear regime and this is sufficient for HALOGEN.
Note that HALOGEN is in principle agnostic about the method in
which this density field snapshot is produced. Other methods, for
instance the ‘Quick-PM’ (cf. the QPM method described by White
et al. 2014), COLA (Tassev et al. 2013) or 3LPT could equally be
employed by the user. A different choice of density field will yield
somewhat different results, especially at smaller scales. As long as
the chosen method reconstructs large scales correctly, the remaining
steps of HALOGEN should be unmodified.

Despite this, we have by default incorporated 2LPTIC as part of the
HALOGEN code (which bypasses the costly I/O of writing the snapshot
to disc), but also allow the user to provide an arbitrary snapshot with
a distribution of N particles in a cosmological volume. Our choice
for 2LPT was mainly driven by its low computational cost and success
in the distribution of matter at large scales. We use this approach
for all results in this paper.

3.2 The mass function

The HMF n(>M) measures the number density of haloes above a
given mass scale. It is required to generate mass-conditional clus-
tering, which in turn is a pre-requisite for extension to HOD-based
galaxy mock generation.

We produce a sampled mass function by the standard inverse-
Cumulative Distribution Function (CDF) method, utilizing an arbi-
trary input HMF.

The most accurate HMF for a given cosmology, over a range of
suitable scales, may be obtained from an N-body simulation via
a halo-finding algorithm – although there are notable variations
depending on the technique (Knebe et al. 2011). Since we require
a full N-body simulation for the tuning of HALOGEN, it would be
perfectly acceptable to use this simulation to generate the HMF.
However, in the hope of future improvements, we wish to avoid
using the full simulation as far as possible. Fortunately, there is a
wealth of literature concerning accurate predictions of the HMF for
widely varying cosmologies and redshifts using extended Press–
Schechter theory (Press & Schechter 1974; Bond et al. 1991).

The mass function may be calculated by any means, so long
as a discretized function of n(>M) is provided. For simplicity, we
decided to use the online HMF calculator HMFCALC3 (Murray, Power
& Robotham 2013) for obtaining the halo mass distribution in this
paper.

In the remainder of the paper, we use the fit of Watson et al. (2013)
for BIGMULTIDARK and that of Tinker et al. (2008) for GOLIAT which
both constitute reliable fits.

3.3 Spatial placement of haloes

The crucial step in the generation of approximate halo catalogues is
the commissioning of halo positions. In keeping with the philosophy
of modularity, the halo-placement step is decoupled from the rest.

3 http://hmf.icrar.org

MNRAS 450, 1856–1867 (2015)

 by guest on A
pril 30, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 Full N-body

z = 0.5



Computational Cosmology

1858 S. Avila et al.

We aim to decouple each of these steps from the others as far
as possible so that different algorithms may be used at each point.
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3.1 Density field
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density field realized at the desired redshift, sampled by N particles.
For simplicity, we choose to use second-order perturbation theory
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distribution at z = 0.5, with the same ICs. The image shows a slice of the
density contrast δ distribution in a 1 h−1 Gpc3 box .

attracting each other in a fully non-linear manner (Sahni & Shan-
darin 1996; Neyrinck 2013). In order to compensate for shell-
crossing, Manera et al. (2013) advocates the use of a smoothing
kernel over the input power spectrum. We tested the effect of this
smoothing in HALOGEN but did not find any improvement in the final
catalogue.

Nevertheless, 2LPT provides a suitable approximation of the large-
scale distribution of matter, where perturbations have not yet entered
into the highly non-linear regime and this is sufficient for HALOGEN.
Note that HALOGEN is in principle agnostic about the method in
which this density field snapshot is produced. Other methods, for
instance the ‘Quick-PM’ (cf. the QPM method described by White
et al. 2014), COLA (Tassev et al. 2013) or 3LPT could equally be
employed by the user. A different choice of density field will yield
somewhat different results, especially at smaller scales. As long as
the chosen method reconstructs large scales correctly, the remaining
steps of HALOGEN should be unmodified.

Despite this, we have by default incorporated 2LPTIC as part of the
HALOGEN code (which bypasses the costly I/O of writing the snapshot
to disc), but also allow the user to provide an arbitrary snapshot with
a distribution of N particles in a cosmological volume. Our choice
for 2LPT was mainly driven by its low computational cost and success
in the distribution of matter at large scales. We use this approach
for all results in this paper.

3.2 The mass function

The HMF n(>M) measures the number density of haloes above a
given mass scale. It is required to generate mass-conditional clus-
tering, which in turn is a pre-requisite for extension to HOD-based
galaxy mock generation.

We produce a sampled mass function by the standard inverse-
Cumulative Distribution Function (CDF) method, utilizing an arbi-
trary input HMF.

The most accurate HMF for a given cosmology, over a range of
suitable scales, may be obtained from an N-body simulation via
a halo-finding algorithm – although there are notable variations
depending on the technique (Knebe et al. 2011). Since we require
a full N-body simulation for the tuning of HALOGEN, it would be
perfectly acceptable to use this simulation to generate the HMF.
However, in the hope of future improvements, we wish to avoid
using the full simulation as far as possible. Fortunately, there is a
wealth of literature concerning accurate predictions of the HMF for
widely varying cosmologies and redshifts using extended Press–
Schechter theory (Press & Schechter 1974; Bond et al. 1991).

The mass function may be calculated by any means, so long
as a discretized function of n(>M) is provided. For simplicity, we
decided to use the online HMF calculator HMFCALC3 (Murray, Power
& Robotham 2013) for obtaining the halo mass distribution in this
paper.

In the remainder of the paper, we use the fit of Watson et al. (2013)
for BIGMULTIDARK and that of Tinker et al. (2008) for GOLIAT which
both constitute reliable fits.

3.3 Spatial placement of haloes

The crucial step in the generation of approximate halo catalogues is
the commissioning of halo positions. In keeping with the philosophy
of modularity, the halo-placement step is decoupled from the rest.
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We aim to decouple each of these steps from the others as far
as possible so that different algorithms may be used at each point.
The first two steps are relatively trivial, as they use pre-developed
prescriptions from the literature, and we discuss these, and basic
outlines of the last two steps, in this section.

3.1 Density field

The basic scaffolding of HALOGEN is an appropriate dark matter
density field realized at the desired redshift, sampled by N particles.
For simplicity, we choose to use second-order perturbation theory
(2LPT) (Moutarde et al. 1991; Bouchet et al. 1995) to produce this
field, which can be obtained with the public code 2LPTIC.

We show in Fig. 1, the density distribution of an N-body sim-
ulation (top panel) and a 2LPT representation (bottom panel) at
z = 0.5. Notably, the 2LPT distribution appears to be blurred in
comparison to the N-body simulation. This is due to the fact that
2LPTIC – as the name suggests – was originally designed only to
generate ICs (Scoccimarro 1998), since even second-order perturba-
tion theory breaks down at low redshift when overdensities become
highly non-linear. The small-scale difference in Fig. 1 can be ex-
plained by shell crossing, an effect in which particles following their
2LPT trajectories cross paths and continue rather than gravitationally

Figure 1. Here, we show the difference between performing an actual
N-body simulation (top) and using 2LPT (bottom) to generate a particle
distribution at z = 0.5, with the same ICs. The image shows a slice of the
density contrast δ distribution in a 1 h−1 Gpc3 box .

attracting each other in a fully non-linear manner (Sahni & Shan-
darin 1996; Neyrinck 2013). In order to compensate for shell-
crossing, Manera et al. (2013) advocates the use of a smoothing
kernel over the input power spectrum. We tested the effect of this
smoothing in HALOGEN but did not find any improvement in the final
catalogue.

Nevertheless, 2LPT provides a suitable approximation of the large-
scale distribution of matter, where perturbations have not yet entered
into the highly non-linear regime and this is sufficient for HALOGEN.
Note that HALOGEN is in principle agnostic about the method in
which this density field snapshot is produced. Other methods, for
instance the ‘Quick-PM’ (cf. the QPM method described by White
et al. 2014), COLA (Tassev et al. 2013) or 3LPT could equally be
employed by the user. A different choice of density field will yield
somewhat different results, especially at smaller scales. As long as
the chosen method reconstructs large scales correctly, the remaining
steps of HALOGEN should be unmodified.

Despite this, we have by default incorporated 2LPTIC as part of the
HALOGEN code (which bypasses the costly I/O of writing the snapshot
to disc), but also allow the user to provide an arbitrary snapshot with
a distribution of N particles in a cosmological volume. Our choice
for 2LPT was mainly driven by its low computational cost and success
in the distribution of matter at large scales. We use this approach
for all results in this paper.

3.2 The mass function

The HMF n(>M) measures the number density of haloes above a
given mass scale. It is required to generate mass-conditional clus-
tering, which in turn is a pre-requisite for extension to HOD-based
galaxy mock generation.

We produce a sampled mass function by the standard inverse-
Cumulative Distribution Function (CDF) method, utilizing an arbi-
trary input HMF.

The most accurate HMF for a given cosmology, over a range of
suitable scales, may be obtained from an N-body simulation via
a halo-finding algorithm – although there are notable variations
depending on the technique (Knebe et al. 2011). Since we require
a full N-body simulation for the tuning of HALOGEN, it would be
perfectly acceptable to use this simulation to generate the HMF.
However, in the hope of future improvements, we wish to avoid
using the full simulation as far as possible. Fortunately, there is a
wealth of literature concerning accurate predictions of the HMF for
widely varying cosmologies and redshifts using extended Press–
Schechter theory (Press & Schechter 1974; Bond et al. 1991).

The mass function may be calculated by any means, so long
as a discretized function of n(>M) is provided. For simplicity, we
decided to use the online HMF calculator HMFCALC3 (Murray, Power
& Robotham 2013) for obtaining the halo mass distribution in this
paper.

In the remainder of the paper, we use the fit of Watson et al. (2013)
for BIGMULTIDARK and that of Tinker et al. (2008) for GOLIAT which
both constitute reliable fits.

3.3 Spatial placement of haloes

The crucial step in the generation of approximate halo catalogues is
the commissioning of halo positions. In keeping with the philosophy
of modularity, the halo-placement step is decoupled from the rest.
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We aim to decouple each of these steps from the others as far
as possible so that different algorithms may be used at each point.
The first two steps are relatively trivial, as they use pre-developed
prescriptions from the literature, and we discuss these, and basic
outlines of the last two steps, in this section.

3.1 Density field

The basic scaffolding of HALOGEN is an appropriate dark matter
density field realized at the desired redshift, sampled by N particles.
For simplicity, we choose to use second-order perturbation theory
(2LPT) (Moutarde et al. 1991; Bouchet et al. 1995) to produce this
field, which can be obtained with the public code 2LPTIC.

We show in Fig. 1, the density distribution of an N-body sim-
ulation (top panel) and a 2LPT representation (bottom panel) at
z = 0.5. Notably, the 2LPT distribution appears to be blurred in
comparison to the N-body simulation. This is due to the fact that
2LPTIC – as the name suggests – was originally designed only to
generate ICs (Scoccimarro 1998), since even second-order perturba-
tion theory breaks down at low redshift when overdensities become
highly non-linear. The small-scale difference in Fig. 1 can be ex-
plained by shell crossing, an effect in which particles following their
2LPT trajectories cross paths and continue rather than gravitationally

Figure 1. Here, we show the difference between performing an actual
N-body simulation (top) and using 2LPT (bottom) to generate a particle
distribution at z = 0.5, with the same ICs. The image shows a slice of the
density contrast δ distribution in a 1 h−1 Gpc3 box .

attracting each other in a fully non-linear manner (Sahni & Shan-
darin 1996; Neyrinck 2013). In order to compensate for shell-
crossing, Manera et al. (2013) advocates the use of a smoothing
kernel over the input power spectrum. We tested the effect of this
smoothing in HALOGEN but did not find any improvement in the final
catalogue.

Nevertheless, 2LPT provides a suitable approximation of the large-
scale distribution of matter, where perturbations have not yet entered
into the highly non-linear regime and this is sufficient for HALOGEN.
Note that HALOGEN is in principle agnostic about the method in
which this density field snapshot is produced. Other methods, for
instance the ‘Quick-PM’ (cf. the QPM method described by White
et al. 2014), COLA (Tassev et al. 2013) or 3LPT could equally be
employed by the user. A different choice of density field will yield
somewhat different results, especially at smaller scales. As long as
the chosen method reconstructs large scales correctly, the remaining
steps of HALOGEN should be unmodified.

Despite this, we have by default incorporated 2LPTIC as part of the
HALOGEN code (which bypasses the costly I/O of writing the snapshot
to disc), but also allow the user to provide an arbitrary snapshot with
a distribution of N particles in a cosmological volume. Our choice
for 2LPT was mainly driven by its low computational cost and success
in the distribution of matter at large scales. We use this approach
for all results in this paper.

3.2 The mass function

The HMF n(>M) measures the number density of haloes above a
given mass scale. It is required to generate mass-conditional clus-
tering, which in turn is a pre-requisite for extension to HOD-based
galaxy mock generation.

We produce a sampled mass function by the standard inverse-
Cumulative Distribution Function (CDF) method, utilizing an arbi-
trary input HMF.

The most accurate HMF for a given cosmology, over a range of
suitable scales, may be obtained from an N-body simulation via
a halo-finding algorithm – although there are notable variations
depending on the technique (Knebe et al. 2011). Since we require
a full N-body simulation for the tuning of HALOGEN, it would be
perfectly acceptable to use this simulation to generate the HMF.
However, in the hope of future improvements, we wish to avoid
using the full simulation as far as possible. Fortunately, there is a
wealth of literature concerning accurate predictions of the HMF for
widely varying cosmologies and redshifts using extended Press–
Schechter theory (Press & Schechter 1974; Bond et al. 1991).

The mass function may be calculated by any means, so long
as a discretized function of n(>M) is provided. For simplicity, we
decided to use the online HMF calculator HMFCALC3 (Murray, Power
& Robotham 2013) for obtaining the halo mass distribution in this
paper.

In the remainder of the paper, we use the fit of Watson et al. (2013)
for BIGMULTIDARK and that of Tinker et al. (2008) for GOLIAT which
both constitute reliable fits.

3.3 Spatial placement of haloes

The crucial step in the generation of approximate halo catalogues is
the commissioning of halo positions. In keeping with the philosophy
of modularity, the halo-placement step is decoupled from the rest.
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We aim to decouple each of these steps from the others as far
as possible so that different algorithms may be used at each point.
The first two steps are relatively trivial, as they use pre-developed
prescriptions from the literature, and we discuss these, and basic
outlines of the last two steps, in this section.

3.1 Density field

The basic scaffolding of HALOGEN is an appropriate dark matter
density field realized at the desired redshift, sampled by N particles.
For simplicity, we choose to use second-order perturbation theory
(2LPT) (Moutarde et al. 1991; Bouchet et al. 1995) to produce this
field, which can be obtained with the public code 2LPTIC.

We show in Fig. 1, the density distribution of an N-body sim-
ulation (top panel) and a 2LPT representation (bottom panel) at
z = 0.5. Notably, the 2LPT distribution appears to be blurred in
comparison to the N-body simulation. This is due to the fact that
2LPTIC – as the name suggests – was originally designed only to
generate ICs (Scoccimarro 1998), since even second-order perturba-
tion theory breaks down at low redshift when overdensities become
highly non-linear. The small-scale difference in Fig. 1 can be ex-
plained by shell crossing, an effect in which particles following their
2LPT trajectories cross paths and continue rather than gravitationally

Figure 1. Here, we show the difference between performing an actual
N-body simulation (top) and using 2LPT (bottom) to generate a particle
distribution at z = 0.5, with the same ICs. The image shows a slice of the
density contrast δ distribution in a 1 h−1 Gpc3 box .

attracting each other in a fully non-linear manner (Sahni & Shan-
darin 1996; Neyrinck 2013). In order to compensate for shell-
crossing, Manera et al. (2013) advocates the use of a smoothing
kernel over the input power spectrum. We tested the effect of this
smoothing in HALOGEN but did not find any improvement in the final
catalogue.

Nevertheless, 2LPT provides a suitable approximation of the large-
scale distribution of matter, where perturbations have not yet entered
into the highly non-linear regime and this is sufficient for HALOGEN.
Note that HALOGEN is in principle agnostic about the method in
which this density field snapshot is produced. Other methods, for
instance the ‘Quick-PM’ (cf. the QPM method described by White
et al. 2014), COLA (Tassev et al. 2013) or 3LPT could equally be
employed by the user. A different choice of density field will yield
somewhat different results, especially at smaller scales. As long as
the chosen method reconstructs large scales correctly, the remaining
steps of HALOGEN should be unmodified.

Despite this, we have by default incorporated 2LPTIC as part of the
HALOGEN code (which bypasses the costly I/O of writing the snapshot
to disc), but also allow the user to provide an arbitrary snapshot with
a distribution of N particles in a cosmological volume. Our choice
for 2LPT was mainly driven by its low computational cost and success
in the distribution of matter at large scales. We use this approach
for all results in this paper.

3.2 The mass function

The HMF n(>M) measures the number density of haloes above a
given mass scale. It is required to generate mass-conditional clus-
tering, which in turn is a pre-requisite for extension to HOD-based
galaxy mock generation.

We produce a sampled mass function by the standard inverse-
Cumulative Distribution Function (CDF) method, utilizing an arbi-
trary input HMF.

The most accurate HMF for a given cosmology, over a range of
suitable scales, may be obtained from an N-body simulation via
a halo-finding algorithm – although there are notable variations
depending on the technique (Knebe et al. 2011). Since we require
a full N-body simulation for the tuning of HALOGEN, it would be
perfectly acceptable to use this simulation to generate the HMF.
However, in the hope of future improvements, we wish to avoid
using the full simulation as far as possible. Fortunately, there is a
wealth of literature concerning accurate predictions of the HMF for
widely varying cosmologies and redshifts using extended Press–
Schechter theory (Press & Schechter 1974; Bond et al. 1991).

The mass function may be calculated by any means, so long
as a discretized function of n(>M) is provided. For simplicity, we
decided to use the online HMF calculator HMFCALC3 (Murray, Power
& Robotham 2013) for obtaining the halo mass distribution in this
paper.

In the remainder of the paper, we use the fit of Watson et al. (2013)
for BIGMULTIDARK and that of Tinker et al. (2008) for GOLIAT which
both constitute reliable fits.

3.3 Spatial placement of haloes

The crucial step in the generation of approximate halo catalogues is
the commissioning of halo positions. In keeping with the philosophy
of modularity, the halo-placement step is decoupled from the rest.
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We aim to decouple each of these steps from the others as far
as possible so that different algorithms may be used at each point.
The first two steps are relatively trivial, as they use pre-developed
prescriptions from the literature, and we discuss these, and basic
outlines of the last two steps, in this section.

3.1 Density field

The basic scaffolding of HALOGEN is an appropriate dark matter
density field realized at the desired redshift, sampled by N particles.
For simplicity, we choose to use second-order perturbation theory
(2LPT) (Moutarde et al. 1991; Bouchet et al. 1995) to produce this
field, which can be obtained with the public code 2LPTIC.

We show in Fig. 1, the density distribution of an N-body sim-
ulation (top panel) and a 2LPT representation (bottom panel) at
z = 0.5. Notably, the 2LPT distribution appears to be blurred in
comparison to the N-body simulation. This is due to the fact that
2LPTIC – as the name suggests – was originally designed only to
generate ICs (Scoccimarro 1998), since even second-order perturba-
tion theory breaks down at low redshift when overdensities become
highly non-linear. The small-scale difference in Fig. 1 can be ex-
plained by shell crossing, an effect in which particles following their
2LPT trajectories cross paths and continue rather than gravitationally

Figure 1. Here, we show the difference between performing an actual
N-body simulation (top) and using 2LPT (bottom) to generate a particle
distribution at z = 0.5, with the same ICs. The image shows a slice of the
density contrast δ distribution in a 1 h−1 Gpc3 box .

attracting each other in a fully non-linear manner (Sahni & Shan-
darin 1996; Neyrinck 2013). In order to compensate for shell-
crossing, Manera et al. (2013) advocates the use of a smoothing
kernel over the input power spectrum. We tested the effect of this
smoothing in HALOGEN but did not find any improvement in the final
catalogue.

Nevertheless, 2LPT provides a suitable approximation of the large-
scale distribution of matter, where perturbations have not yet entered
into the highly non-linear regime and this is sufficient for HALOGEN.
Note that HALOGEN is in principle agnostic about the method in
which this density field snapshot is produced. Other methods, for
instance the ‘Quick-PM’ (cf. the QPM method described by White
et al. 2014), COLA (Tassev et al. 2013) or 3LPT could equally be
employed by the user. A different choice of density field will yield
somewhat different results, especially at smaller scales. As long as
the chosen method reconstructs large scales correctly, the remaining
steps of HALOGEN should be unmodified.

Despite this, we have by default incorporated 2LPTIC as part of the
HALOGEN code (which bypasses the costly I/O of writing the snapshot
to disc), but also allow the user to provide an arbitrary snapshot with
a distribution of N particles in a cosmological volume. Our choice
for 2LPT was mainly driven by its low computational cost and success
in the distribution of matter at large scales. We use this approach
for all results in this paper.

3.2 The mass function

The HMF n(>M) measures the number density of haloes above a
given mass scale. It is required to generate mass-conditional clus-
tering, which in turn is a pre-requisite for extension to HOD-based
galaxy mock generation.

We produce a sampled mass function by the standard inverse-
Cumulative Distribution Function (CDF) method, utilizing an arbi-
trary input HMF.

The most accurate HMF for a given cosmology, over a range of
suitable scales, may be obtained from an N-body simulation via
a halo-finding algorithm – although there are notable variations
depending on the technique (Knebe et al. 2011). Since we require
a full N-body simulation for the tuning of HALOGEN, it would be
perfectly acceptable to use this simulation to generate the HMF.
However, in the hope of future improvements, we wish to avoid
using the full simulation as far as possible. Fortunately, there is a
wealth of literature concerning accurate predictions of the HMF for
widely varying cosmologies and redshifts using extended Press–
Schechter theory (Press & Schechter 1974; Bond et al. 1991).

The mass function may be calculated by any means, so long
as a discretized function of n(>M) is provided. For simplicity, we
decided to use the online HMF calculator HMFCALC3 (Murray, Power
& Robotham 2013) for obtaining the halo mass distribution in this
paper.

In the remainder of the paper, we use the fit of Watson et al. (2013)
for BIGMULTIDARK and that of Tinker et al. (2008) for GOLIAT which
both constitute reliable fits.

3.3 Spatial placement of haloes

The crucial step in the generation of approximate halo catalogues is
the commissioning of halo positions. In keeping with the philosophy
of modularity, the halo-placement step is decoupled from the rest.
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We aim to decouple each of these steps from the others as far
as possible so that different algorithms may be used at each point.
The first two steps are relatively trivial, as they use pre-developed
prescriptions from the literature, and we discuss these, and basic
outlines of the last two steps, in this section.

3.1 Density field

The basic scaffolding of HALOGEN is an appropriate dark matter
density field realized at the desired redshift, sampled by N particles.
For simplicity, we choose to use second-order perturbation theory
(2LPT) (Moutarde et al. 1991; Bouchet et al. 1995) to produce this
field, which can be obtained with the public code 2LPTIC.

We show in Fig. 1, the density distribution of an N-body sim-
ulation (top panel) and a 2LPT representation (bottom panel) at
z = 0.5. Notably, the 2LPT distribution appears to be blurred in
comparison to the N-body simulation. This is due to the fact that
2LPTIC – as the name suggests – was originally designed only to
generate ICs (Scoccimarro 1998), since even second-order perturba-
tion theory breaks down at low redshift when overdensities become
highly non-linear. The small-scale difference in Fig. 1 can be ex-
plained by shell crossing, an effect in which particles following their
2LPT trajectories cross paths and continue rather than gravitationally

Figure 1. Here, we show the difference between performing an actual
N-body simulation (top) and using 2LPT (bottom) to generate a particle
distribution at z = 0.5, with the same ICs. The image shows a slice of the
density contrast δ distribution in a 1 h−1 Gpc3 box .

attracting each other in a fully non-linear manner (Sahni & Shan-
darin 1996; Neyrinck 2013). In order to compensate for shell-
crossing, Manera et al. (2013) advocates the use of a smoothing
kernel over the input power spectrum. We tested the effect of this
smoothing in HALOGEN but did not find any improvement in the final
catalogue.

Nevertheless, 2LPT provides a suitable approximation of the large-
scale distribution of matter, where perturbations have not yet entered
into the highly non-linear regime and this is sufficient for HALOGEN.
Note that HALOGEN is in principle agnostic about the method in
which this density field snapshot is produced. Other methods, for
instance the ‘Quick-PM’ (cf. the QPM method described by White
et al. 2014), COLA (Tassev et al. 2013) or 3LPT could equally be
employed by the user. A different choice of density field will yield
somewhat different results, especially at smaller scales. As long as
the chosen method reconstructs large scales correctly, the remaining
steps of HALOGEN should be unmodified.

Despite this, we have by default incorporated 2LPTIC as part of the
HALOGEN code (which bypasses the costly I/O of writing the snapshot
to disc), but also allow the user to provide an arbitrary snapshot with
a distribution of N particles in a cosmological volume. Our choice
for 2LPT was mainly driven by its low computational cost and success
in the distribution of matter at large scales. We use this approach
for all results in this paper.

3.2 The mass function

The HMF n(>M) measures the number density of haloes above a
given mass scale. It is required to generate mass-conditional clus-
tering, which in turn is a pre-requisite for extension to HOD-based
galaxy mock generation.

We produce a sampled mass function by the standard inverse-
Cumulative Distribution Function (CDF) method, utilizing an arbi-
trary input HMF.

The most accurate HMF for a given cosmology, over a range of
suitable scales, may be obtained from an N-body simulation via
a halo-finding algorithm – although there are notable variations
depending on the technique (Knebe et al. 2011). Since we require
a full N-body simulation for the tuning of HALOGEN, it would be
perfectly acceptable to use this simulation to generate the HMF.
However, in the hope of future improvements, we wish to avoid
using the full simulation as far as possible. Fortunately, there is a
wealth of literature concerning accurate predictions of the HMF for
widely varying cosmologies and redshifts using extended Press–
Schechter theory (Press & Schechter 1974; Bond et al. 1991).

The mass function may be calculated by any means, so long
as a discretized function of n(>M) is provided. For simplicity, we
decided to use the online HMF calculator HMFCALC3 (Murray, Power
& Robotham 2013) for obtaining the halo mass distribution in this
paper.

In the remainder of the paper, we use the fit of Watson et al. (2013)
for BIGMULTIDARK and that of Tinker et al. (2008) for GOLIAT which
both constitute reliable fits.

3.3 Spatial placement of haloes

The crucial step in the generation of approximate halo catalogues is
the commissioning of halo positions. In keeping with the philosophy
of modularity, the halo-placement step is decoupled from the rest.
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Any routine which takes a vector of halo masses and an array of
dark matter particle positions and returns a subset of those positions
as the halo locations is acceptable. However, we consider this step
to be at the heart of the HALOGEN method, as it is responsible of
generating the correct mass-dependent clustering.

To achieve an efficient placement that reconstitutes the target
two-point statistics, we recognize the validity of the clustering on
large scales from the broad-brush 2LPT field. We place haloes on
2LPT field particles, essentially using the estimated density field as
scaffolding on which to build an approximate halo field. We will
follow a series of steps in the construction of the method of spatial
placement to be presented in Section 4 below.

3.4 Assignment of velocities

The most obvious way to assign velocities to each halo would be
to use the velocity of the particle on which it is centred. However,
haloes are viralized systems whose velocities tend to be lower than
that of their constituent particles. This is potentially mitigated by
using the average velocity of all particles within a defined radius
of the artificially placed halo. However, this is not robust as there
are often very few particles inside the halo radius. Additionally, the
2LPT particle velocities will differ from their N-body counterparts
due to shell-crossing, especially on the small scales associated with
haloes.

Thus, we prefer to take a phenomenological approach, and as-
sume that a simple mapping via a factor fvel can be applied to the
collection of halo velocities to recover the results of the N-body
distribution

vhalo = fvel · vpart. (1)

This factor could a priori depend on the velocity (i.e. a non-linear
mapping) and the mass of the halo fvel(vpart, Mhalo). However, we
will show in Section 5.2 that a linear mapping is sufficient and
present a way to compute fvel(Mhalo).

4 HALO GEN

Though HALOGEN is a four-stage process, the most crucial aspect is
the assignment of halo positions, which this section describes in
some detail. The general concept is to specify a sample of particles
from an underlying density field as haloes.

The motivating philosophy of HALOGEN is to start from the sim-
plest idea and improve if necessary. In this vein, we present here
successive stages of evolution of the HALOGEN method, which we
hope will show satisfactorily that the method as it stands is op-
timal. Fig. 2 will serve as the showcase for the various stages of
HALOGEN. In it, we present the two-point correlation function (2PCF)
for each stage of development to verify that the method approaches
the GOLIAT reference catalogue as new characteristics are added.

Note that the 2PCF is computed with the publicly available par-
allel code CUTE4 (Alonso 2012). In the fitting routine that is included
in the HALOGEN package and described in Section 5.1 we also use
the same code.

4.1 Random particles

We start with the simplest approach, using random particles from
the 2LPT snapshot as the sites for haloes. We expect to recover the

4 http://members.ift.uam-csic.es/dmonge/CUTE.html

Figure 2. 2PCF of the GOLIAT haloes in comparison to HALOGEN for the var-
ious evolutionary stages presented in Sections 4.1 through 4.5. The dashed
vertical line indicates the cell size of lcell = 5 h−1 Mpc applied for the
approaches 4.3 through 4.5.

large-scale shape of the 2PCF in this way, as this is encoded in the
2LPT density field which we trace.

However, it is clear from Fig. 2 that this method (‘random no-
exc’) consistently underestimates the 2PCF over all scales except
r < 1 h−1 Mpc, where it should sharply drop to −1, but rather
remains positive.

The consistent underestimate is a realization of an inaccurate
linear bias, b, defined as the scaling factor between the two-point
function of the haloes and the underlying matter density field,

ξhalo(r) = b2ξdm(r). (2)

We begin to address this in Section 4.3.
The small-scale clustering can be explained by the fact that par-

ticles can be arbitrarily close, whereas distinct haloes – recall that
subhaloes have been removed – have a well-defined minimum sepa-
ration (otherwise they merge). The turnover in the simulation based
2PCF occurs around the mean halo radius scale.

4.2 Random particles (with exclusion)

The simplest improvement to the random case is to eliminate the
artificial small-scale correlations. Though the primary application
of HALOGEN will be for large scales, a simple improvement at small
scales is useful.

As we have noted, the artificial clustering at small scales arises
from the fact that particles can be arbitrarily close, whereas simu-
lated haloes have a minimum separation. The radius of a halo is a
rather subjective quantity, and its definition is modified in various
applications and halo finders. However, we may parametrize this
by

R" =



 3Mhalo

4π"hρcrit




1/3

, (3)

where "h is the overdensity of the halo with respect to the criti-
cal density of the Universe. For the work presented here we used
"h = 200.

Using this scale, we introduce exclusion, a modifiable option
which controls the degree to which haloes can overlap, which we
set to mimic the halo finder’s specification. For example, in this work
we use both AHF and FOF (see Knebe et al. 2013, for a comparison
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§ phase-space distribution function

  

€ 

f (! r , ! v ,t) d3r d3v

probability* of finding a dark matter particle in the interval:

  

€ 

[! r − d! r 
2
, ! r +

! 
d r
2
]

[! v − d! v 
2
, ! v + d! v 

2
]

  

€ 

* f (! r , ! v ,t) d3r d3v∫ =1 continuity, self-gravity and no collisions =>

e.g., particle with velocity v1 and coordinate r1:   

€ 

f (! r , ! v ) = δ(! r − ! r 1)δ(
! v − ! v 1)

the n-body principle
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§ collisionless Boltzmann equation (CBE)
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3

∑ = 0 Þ difficult to solve numerically!

  

€ 

ΔΦ(! r ) = 4πGρ(! r )

§ coupled with Poisson’s equation

Þ we’ll deal with it later…

the n-body principle
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§ “method of characteristics”:
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§ “method of characteristics”:
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€ 

f  is constant along the possible trajectories  [! r (t),! v (t)]
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solution to CBE

the problems “reduces” to finding [r(t), v(t)] for a given initial value problem f(r0,v0) 
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§ initial value problem
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H =
1
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v 2 +Φ(! r )  
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f (! r (t0),
! v (t0))

Hamiltonian of the system the equations of motionthe initial values

§ N-body approach

1. sample f(ri(t0),vi(t0)) with  i=1, …, N points [ri(t0),vi(t0)]

2. those [ri(t),vi(t)] obeying the equations-of-motion sample f(ri(t),vi(t))

the n-body principle
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§ consistency check…
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the n-body principle
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the evolution of the Universe

one “simulation particle”
represents

billions of dark matter particles:

msimu~107M¤ vs mDM<<10-60M¤

(non-baryonic) dark matter candidates

axion: 10-5 eV
neutrino: 10eV
WIMP: 1-103 GeV
monopoles: 1016 GeV
Planck relics:1019 GeV

???
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§ collisionless system of N-bodies

• equations-of-motion
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= −∇Φ =
" 
F (! r ,t)

the n-body principle

N bodies are used to sample

the evolution of the Universe

one “simulation particle”
represents

billions of dark matter particles:

msimu~107M¤ vs mDM<<10-60M¤
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§ introduction of comoving coordinates

the equations-of-motion

all length scales scale like a(t)
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! r (t) = a(t)! x (t)

expanding Universe

a(t)

® we are only interested in the peculiar motion…
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§ the forces – in comoving coordinates
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§ overcoming the N2 bottleneck by using a “tree”

combing distant particles into aggregates

walking the tree (         ):
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the forces

§ particle approach



Computational Cosmology

  

€ 

! 
F i(
! x i) = −

Gm j

(xi − x j )
3 (
! x i −
! x j )

i≠ j
∑ ∀i∈N
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§ open-source code: 

• GADGET2

the forces

§ particle approach
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§ grid approach

§ numerically solve Poisson’s equation via Fourier Transforms
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§ grid approach

§ numerically solve Poisson’s equation via Fourier Transforms
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§ grid approach

§ numerically solve Poisson’s equation via Fourier Transforms

• Green’s function of Poisson’s equation:

  

€ 

Δψ(! g k,l,m ) =
4πG

a
ρ(! g k,l,m ) − ρ ( )

    

€ 

ˆ G (
! 
k ) = −

1
k 2

    

€ 

G( ! x ) =
1
4π x

  

€ 

ΔG = δ

® equation we wish to solve

® equation way easier to solve…
(d = Dirac’s delta-function)

€ 

Δψ = S

® Fourier Space

® Real Space

the forces



Computational Cosmology

§ grid approach

§ numerically solve Poisson’s equation via Fourier Transforms
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§ grid approach

§ numerically solve Poisson’s equation via Fourier Transforms
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FFT demands a regular grid though!
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§ grid approach
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Δψ(! g k,l,m ) =
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the forces

§ open-source code: 

• AMIGA
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§ hybrid approach

• treePM
- long-range force = PM method
- short-range force = tree method

• P3M
- long-range force = PM method
- short-range force = PP method (direct summation)

•AMR
- PM method, but recursively refining cells

the forces
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- short-range force = tree method

• P3M
- long-range force = PM method
- short-range force = PP method (direct summation)
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- PM method, but recursively refining cells

the forcesComputational Cosmology

density field of simulated galaxy cluster

adaptive grid hierarchy
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§ hybrid approach

• treePM
- long-range force = PM method
- short-range force = tree method

• P3M
- long-range force = PM method
- short-range force = PP method (direct summation)

•AMR
- PM method, but recursively refining cells

the forcesComputational Cosmology

not limited to astrophysics
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• collisionless matter (e.g. dark matter)
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Δφ

§ full set of equations
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• collisionless matter (e.g. dark matter)

• collisional matter (e.g. gas)
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§ full set of equations

dominated by long-range interactions!



Computational Cosmology

• collisionless matter (e.g. dark matter)

• collisional matter (e.g. gas)
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§ full set of equations

dominated by short-range/local interactions!



Computational Cosmology the universe in a computer

• simulation of cosmic structure formation

1. primordial matter density field

your favourite simulation code

2. today’s matter density field

3. halo/galaxy catalogue



Computational Cosmology the universe in a computer

• simulation of cosmic structure formation

1. primordial matter density field

your favourite simulation code

2. today’s matter density field

3. halo/galaxy catalogue

movie time!



Computational Cosmology movie time

§ formation of large-scale structure (Local Universe!)



Computational Cosmology movie time

§ formation of Local Group – incl. gas (CDM vs. WDM)



Computational Cosmology movie time

§ formation of MW-type object – incl. gas (CDM)
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Computational Cosmology CosmoSim



Computational Cosmology zoom initial conditions

MultiDark Simulation
B=1000 Mpc/h

density map of dark matter in a slice…



Computational Cosmology zoom initial conditions

MultiDark Simulation
B=1000 Mpc/h

density map of dark matter haloes in a slice…



Computational Cosmology zoom initial conditions

MultiDark Simulation
B=1000 Mpc/h

density map of haloes in a slice…

The 300 Project
to be re-simulated
w/ full physics...



Computational Cosmology zoom initial conditions

§ run a low resolution simulation

§ identify an interesting object

§ trace back particles of that object to Lagrangian positions in IC’s

§ re-sample waves in that area with more particles

§ re-run the whole simulation



Computational Cosmology

§ low resolution simulation

zoom initial conditions



Computational Cosmology

§ low resolution simulation

zoom initial conditions

identify collapsed region 
in initial conditions

and re-sample with more particles…



Computational Cosmology

§ low resolution simulation

zoom initial conditions

resimulate with
higher resolution



Computational Cosmology
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§ zoom initial conditions

zoom initial conditions

resimulate with
higher resolution



Computational Cosmology

§ zoom simulation

zoom initial conditions


