Alexander Knebe (Universidad Autonoma de Madrid)

- astronomy is...

...collecting and counting photons
- astronomy is...

$N(\lambda)$

...collecting and counting photons

- astronomy is...

...collecting and counting photons
- astronomy is...

supernova I994D
$N(\lambda)$
obviously depends on the wavelength, the observed object
...collecting and counting photons

NGC 1232

NGC II32

- astronomy is...

supernova I994D

Distant Galaxy in the Hubble Ultra Deep Field • HUDF-JD2 Hubble Space Telescope - ACS/ WFC
...collecting and counting photons

- astronomy is...

supernova I994D

Distant Galaxy in the Hubble Ultra Deep Field • HUDF-JD2 Hubble Space Telescope - ACS/ WFC
...collecting and counting photons

- astronomy is...

supernova I994D

Distant Galaxy in the Hubble Ultra Deep Field • HUDF-JD2 Hubble Space Telescope - ACS/ WFC
...collecting and counting photons

- astronomy is...

supernova I994D

Distant Galaxy in the Hubble Ultra Deep Field • HUDF-JD2 Hubble Space Telescope • ACS/ WFC

NASA, ESA, and B. Mobasher (STScI/ESA)
...collecting and counting photons

- cosmology uses...

supernova I994D

$N(\lambda)$

depends on
the object and the distance to the object

- cosmology uses...

supernova I994D

$$
\begin{aligned}
& \qquad \mathbf{N}(\lambda) \\
& \text { depends on } \\
& \text { the object and } \\
& \text { the distance to the object }
\end{aligned}
$$

...standard "candles" and "rulers" to eliminate the dependence on the object?

- cosmology uses...

...standard "candles" and "rulers" to eliminate the dependence on the object
- cosmology uses...
standard ruler: objects might have different luminosity, but the same size

$$
D_{1}=\mathrm{D}_{2}
$$

...standard "rulers" to eliminate the dependence on the object

- cosmology uses...
standard ruler: objects might have different luminosity, but the same size

$$
D_{1}=\mathrm{D}_{2}
$$

...standard "rulers" to eliminate the dependence on the object

- cosmology uses...
standard candle: objects might have different sizes, but the same luminosity

$$
N_{\mathrm{E}, 1}(\lambda)=N_{\mathrm{E}, 2}(\lambda)
$$

$$
N_{0,1}(\lambda)!=N_{0,2}(\lambda)
$$

...standard "candles" to eliminate the dependence on the object

- cosmology uses...
standard candle: objects might have different sizes, but the same luminosity

$$
N_{\mathrm{E}, 1}(\lambda)=N_{\mathrm{E}, 2}(\lambda)
$$

$$
N_{0,1}(\lambda)!=N_{0,2}(\lambda)
$$

...standard "candles" to eliminate the dependence on the object

- cosmology uses...

$$
\begin{aligned}
& d=f(\alpha)!? \\
& d=f(N)!?
\end{aligned}
$$

...standard "candles" and "rulers" to eliminate the dependence on the object

- cosmology uses...

...standard "candles" and "rulers" to eliminate the dependence on the object
- cosmology uses...

...standard "candles" and "rulers" to eliminate the dependence on the object and to infer the cosmological parameters!
- cosmology uses...

...standard "candles" and "rulers" to eliminate the dependence on the object and to infer the cosmological parameters!
- cosmology uses...

...standard "candles" and "rulers" to eliminate the dependence on the object and to infer the cosmological parameters!
- cosmic distance ladder
- cosmological distances
- cosmological horizons \& volumes
- supernova cosmology
- cosmic distance ladder
- cosmological distances
- cosmological horizons \& volumes
- supernova cosmology
- cosmological distance ladder...

- cosmological distance ladder?

- cosmological distance Iadder?

apparent magnitudes F
and never
absolute magnitudes L!
- cosmological distance Iadder?

- cosmological distance ladder?
- example:
- we have a class of stars with identical luminosities
- we determine the distance to one such star locally (e.g. via parallax)
- cosmological distance Iadder?
- example:
- we have a class of stars with identical luminosities
- we determine the distance to one such star locally (e.g. via parallax)

- cosmological distance ladder?

- example:
- we have a class of stars with identical luminosities
- we determine the distance to one such star locally (e.g. via parallax)
- observing such star(s) in another type of distant object (globular cluster, galaxy, etc.) we can calculate the distance to that object via $d^{2}=L / 4 \pi F$

- cosmological distance ladder?

- example:
- we have a class of stars with identical luminosities
- we determine the distance to one such star locally (e.g. via parallax)
- observing such star(s) in another type of distant object (globular cluster, galaxy, etc.) we can calculate the distance to that object via $d^{2}=L / 4 \pi F$

- cosmological distance Iadder?

- example:
- we have a class of stars with identical luminosities
- we determine the distance to one such star locally (e.g. via parallax)
- observing such star(s) in another type of distant object (globular cluster, galaxy, etc.)
we can calculate the distance to that object via $d^{2}=L / 4 \pi F$
- that object itself (if "standard" in some sense) can then be used as the next rung...

- cosmological distance ladder?

- example:
- we have a class of stars with identical luminosities
we still require a gauge!
- we determine the distance to one such star locally (e.g. via parallax)
- observing such star(s) in another type of distant object (globular cluster, galaxy, etc.)
we can calculate the distance to that object via $d^{2}=L / 4 \pi F$
- that object itself (if "standard" in some sense) can then be used as the next rung...

- direct parallax:

> one of the few possibility to directly get the distance
without knowing anything about the object

- direct parallax:

$$
\begin{aligned}
& \sin p=\frac{R_{e}}{D} \\
& \quad(\sin p \approx p[\text { radians }] \quad \text { (for small } p \text {) } \\
& \quad p^{\prime \prime}=\frac{R_{e}}{D} \times \frac{360}{2 \pi} \times \frac{1}{3600}[\operatorname{arcsec}]
\end{aligned}
$$

- parsec (definition!):

$$
\begin{aligned}
D & =\frac{1^{\prime \prime}}{p^{\prime \prime}} \quad[\mathrm{pc}] \\
1 p c & =3.0857 \cdot 10^{16} m
\end{aligned}
$$

earth's motion around the sun

- RR Lyrae stars:
pulsating horizontal branch stars
- similar (mean) absolute luminosity:

$$
\text { standard candle: } \quad\langle L\rangle \approx \text { const. (=energy/time })
$$

- unfortunately not very bright though...

- Cepheid stars:

pulsating stars off the main sequence

- much brighter than RR Lyrae stars
- relation between pulsation period and absolute luminosity:

$$
\log L \propto \log P
$$

- Cepheid stars:
- much brighter than RR Lyrae stars
- relation between pulsation period and absolute luminosity:

$$
\log L \propto \log P
$$

- HII regions
- large clouds of ionized hydrogen surrounding very hot stars < 30 Mpc standard ruler: $\quad\langle D\rangle \approx c o n s t$

- HII regions
- large clouds of ionized hydrogen surrounding very hot stars < 30 Mpc

$$
\text { standard ruler: } \quad\langle D\rangle \approx \text { const. }
$$

- planetary nebulae
- reprocessed light from central star standard candle: $\langle L\rangle \approx$ const.

- HII regions
- large clouds of ioniz

- globular clusters
- clusters of around 10^{5} to 10^{7} stars
standard candle: $\quad\langle L\rangle \approx$ const.
- elliptical galaxies - Faber-Jackson relation
- empirically determined

$$
L \propto \sigma_{\text {los }}^{\alpha} \quad \text { with } \alpha \approx 3-4
$$

- elliptical galaxies - Faber-Jackson relation
- empirically determined

$$
L \propto \sigma_{\text {los }}^{\alpha} \quad \text { with } \alpha \approx 3-4
$$

- explanation:

$$
\begin{aligned}
& \begin{array}{l}
U \propto \frac{M^{2}}{R} \xrightarrow{2 T+U=0} \sigma_{l o s}^{2} \propto \frac{M}{R} \longrightarrow \sigma_{l o s}^{2} \propto \frac{L}{R} \quad \longrightarrow \quad \sigma_{l o s}^{2} \propto \frac{L}{\sqrt{L / 4 \pi \Sigma}} \\
T \propto \sigma_{l o s}^{2}
\end{array} \\
& \text { virial theorem } \\
& \text { eliminate } M \text { in favour of } L \\
& \text { assuming } M / L=\text { const. } \\
& \text { eliminate } R \text { in favour of } \Sigma \\
& \text { assuming } \Sigma=L / 4 \pi R^{2}=\text { const. } \\
& \Longrightarrow \quad \sigma_{l o s}^{4} \propto L
\end{aligned}
$$

- elliptical galaxies
- empirically determined

$D_{n} \propto \sigma_{\text {los }}^{\alpha} \quad$ with $\alpha \approx 1.2$

$D_{n}=$ diameter within which
the mean surface brightness exceeds some threshold
- elliptical galaxies - fundamental plane
- surface brightness profile

$$
\Sigma(R)=\Sigma_{0} e^{-\left(R / R_{e f f}\right)^{4}}
$$

$$
\rightarrow \Sigma_{0}
$$

$$
\rightarrow R_{e f f}
$$

- line-of-sight velocity dispersion

$$
\rightarrow \sigma_{l o s}
$$

- fundamental plane:

$$
\log _{10} R_{\text {eff }}=A \log _{10} \sigma_{\text {los }}+B \log _{10} \Sigma_{0}+C
$$

- elliptical galaxies - fundamental plane
- surface brightness profile

$$
\begin{aligned}
& \rightarrow \Sigma_{0} \\
& \rightarrow R_{e f f}
\end{aligned}
$$

- fundamental plane:

$$
\log _{10} R_{e f f}=A \log _{10} \sigma_{l o s}+B \log _{10} \Sigma_{0}+C
$$

- spiral galaxies - Tully-Fisher relation
- empirically determined

$$
L \propto v_{r o t}^{\beta} \quad \text { with } \beta \approx 4
$$

- spiral galaxies - Tully-Fisher relation
- empirically determined

$$
L \propto v_{r o t}^{\beta} \quad \text { with } \beta \approx 4
$$

- explanation:
\rightarrow same logic as with Faber-Jackson relation...
- supernovae type la (SN la)

- supernovae type la (SN la)

- supernovae type la (SN la)
- characteristic light curve

> B Band

- supernovae type la (SN la)
- characteristic light curve (corrected for redshift...)

- supernovae type la (SN la)
- characteristic light curve
- observable out to great distances

- baryonic acoustic oscillations

- baryonic acoustic oscillations
- regular, periodic fluctuations in baryonic matter
- originating from acoustic oscillations in pre-recombination plasma
- only to be seen in very large surveys:

- the distance ladder

- cosmic distance ladder
- cosmological distances
- cosmological horizons \& volumes
- supernova cosmology
- cosmic distance ladder
- cosmological distances:
- proper/comoving distance
- luminosity distance
- angular diameter distance
- travel-time distance
- summary
- cosmological horizons \& volumes
- supernova cosmology
- cosmological distances:
we are after a relation $d=f(R)=f(z)$
- cosmological distances:

x_{E} is the comoving coordinate, it is not per se the distance to the object!
- cosmological distances:

- cosmological distances:

- cosmological distances:

- proper distance:

-FRW metric:

$$
d s^{2}=(c d t)^{2}-R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}+x^{2}\left(d \boldsymbol{\vartheta}^{2}+\sin ^{2}(\vartheta) d \varphi^{2}\right)\right]
$$

- proper distance:

-FRW metric:

$$
d s^{2}=(c d t)^{2}-R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}+x^{2}\left(d \boldsymbol{\vartheta}^{2}+\sin ^{2}(\vartheta) d \varphi^{2}\right)\right]
$$

proper distance separates two events

happening at constant cosmic time.

- proper distance:

- FRW metric $(d t=0): \quad d s^{2}=R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}+x^{2}\left(d \vartheta^{2}+\sin ^{2}(\vartheta) d \varphi^{2}\right)\right]$
proper distance separates two events happening at constant cosmic time.
- proper distance:

- FRW metric $(d t=0): \quad d s^{2}=R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}+x^{2}\left(d \vartheta^{2}+\sin ^{2}(\vartheta) d \varphi^{2}\right)\right]$
proper distance separates two events happening at constant cosmic time.
- proper distance:

- FRW metric $(d t=0): \quad d s^{2}=R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}+x^{2}\left(d \vartheta^{2}+\sin ^{2}(\vartheta) d \varphi^{2}\right)\right]$
proper distance separates two events
happening at constant cosmic time.
- proper distance:

- FRW metric $(d t=0)$: $\quad d s^{2}=R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}+x^{2}\left(d \vartheta^{2}+\sin ^{2}(\vartheta) d \varphi^{2}\right)\right]$

$$
\begin{aligned}
& d \vartheta=0 ; d \varphi=0 \\
& \Rightarrow \quad d d_{p}=d s=R(t) \frac{d x}{\sqrt{1-k x^{2}}}
\end{aligned}
$$

proper distance separates two events
happening at constant cosmic time.

- proper distance:

- FRW metric $(d t=0): \quad d s^{2}=R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}+x^{2}\left(d \vartheta^{2}+\sin ^{2}(\vartheta) d \varphi^{2}\right)\right]$

$$
\begin{aligned}
& d \vartheta=0 ; d \varphi=0 \\
& =\quad d d_{p}=d s=R(t) \frac{d x}{\sqrt{1-k x^{2}}} \\
& =\quad d_{p}=R(t) \int_{0}^{x_{E}} \frac{d x}{\sqrt{1-k x^{2}}}=R(t) f\left(x_{E}\right)
\end{aligned}
$$

proper distance separates two events happening at constant cosmic time.

- proper distance:

proper distance separates two events
happening at constant cosmic time.
(impossible to measure as it is defined only at one particular moment in time)
- proper distance (transverse):
what is the distance between two galaxies at x_{E} ?

- proper distance (transverse):

- FRW metric $(d t=0): \quad d s^{2}=R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}+x^{2}\left(d \vartheta^{2}+\sin ^{2}(\vartheta) d \varphi^{2}\right)\right]$

$$
\begin{aligned}
d x & =0 ; d \varphi=0 \\
& =>\quad d d_{p}^{\vartheta}=R(t) x_{E} d \vartheta
\end{aligned}
$$

$$
\Rightarrow d_{p}^{\vartheta}=R(t) x_{E} \int_{0}^{\vartheta_{E}} d \vartheta
$$

- comoving distance:

proper distance at some pre-defined reference time
(common practice is to use today's time as reference)
- comoving distance:

proper distance at some pre-defined reference time
(common practice is to use today's time as reference)
- comoving distance:

if setting $R\left(t_{0}\right)=1$, then $f\left(x_{E}\right)$ is in fact the comoving distance...
proper distance at some pre-defined reference time
(common practice is to use today's time as reference)
- comoving/proper distance:

proper distance at some pre-defined reference time
- comoving/proper distance:

$$
f\left(x_{E}\right)=\left\{\begin{array}{cc}
x_{E} & \mathrm{k}=0 \\
\frac{1}{\sqrt{|k|}} \arcsin \left(\sqrt{|k|} x_{E}\right) & \mathrm{k}=1 \\
\frac{1}{\sqrt{|k|}} \operatorname{arcsinh}\left(\sqrt{|k|} x_{E}\right) & \mathrm{k}=-1
\end{array}\right.
$$

- comoving/proper distance:

$$
f\left(x_{E}\right)=\left\{\begin{array}{cc}
x_{E} & \mathrm{k}=0 \\
\frac{1}{\sqrt{|k|}} \arcsin \left(\sqrt{|k|} x_{E}\right) & \mathrm{k}=1 \\
\frac{1}{\sqrt{|k|}} \operatorname{arcsinh}\left(\sqrt{|k|} x_{E}\right) & \mathrm{k}=-1
\end{array}\right.
$$

[^0]- comoving/proper distance:

- comoving/proper distance:

- null geodesic for photons*: $\quad d s^{2}=0=(c d t)^{2}-R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}\right]$
- comoving/proper distance:

- null geodesic for photons: $\quad d s^{2}=0=(c d t)^{2}-R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}\right]$

$$
f\left(x_{E}\right)=\int_{0}^{x_{E}} \frac{d x}{\sqrt{1-k x^{2}}}
$$

- comoving/proper distance:

- null geodesic for photons: $\quad d s^{2}=0=(c d t)^{2}-R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}\right]$

$$
f\left(x_{E}\right)=\int_{0}^{x_{E}} \frac{d x}{\sqrt{1-k x^{2}}}=\int_{t_{E}}^{t_{0}} \frac{c d t}{R(t)}
$$

- comoving/proper distance:

- null geodesic for photons: $\quad d s^{2}=0=(c d t)^{2}-R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}\right]$

> side note for later...
time intervals are changed in proportion to the expansion
(this agrees with an energy change, to be used below...)

- comoving/proper distance:

- null geodesic for photons: $\quad d s^{2}=0=(c d t)^{2}-R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}\right]$

$$
f\left(x_{E}\right)=\int_{0}^{x_{E}} \frac{d x}{\sqrt{1-k x^{2}}}=\int_{t_{E}}^{t_{0}} R d t \text { replace with Friedmann equation... }
$$

- comoving/proper distance:

- null geodesic for photons: $\quad d s^{2}=0=(c d t)^{2}-R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}\right]$

$$
\begin{aligned}
f\left(x_{E}\right)=\int_{0}^{x_{E}} \frac{d x}{\sqrt{1-k x^{2}}} & =\int_{t_{E}}^{t_{0}} \frac{c d t}{R(t)} \\
& =c \int_{R_{E}}^{R_{0}} \frac{d R}{\dot{R} R}=c \int_{R_{E}}^{R_{0}} \frac{d R}{R^{2} H_{0} E(z)} \quad ; H^{2}(z)=\sum_{i}^{2} \Omega_{i, 0}(1+z)^{3\left(1+w_{i}\right)} \\
\frac{R}{R_{0}}=\frac{1}{1+z}- & =\frac{c}{H_{0}} \int_{z_{E}}^{0} \frac{(1+z)^{2}}{R_{0} E(z)}\left(-\frac{1}{(1+z)^{2}}\right) d z=\frac{c}{H_{0}} \int_{0}^{z} \frac{R_{0}}{R^{2} E(z)} \frac{R^{2}}{R_{0}^{2}} d z=\frac{c}{H_{0} R_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z
\end{aligned}
$$

- comoving/proper distance:

- null geodesic for photons: $\quad d s^{2}=0=(c d t)^{2}-R^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}\right]$

$$
\begin{aligned}
f\left(x_{E}\right) & =\int_{0}^{x_{E}} \frac{d x}{\sqrt{1-k x^{2}}}
\end{aligned}=\int_{t_{E}}^{t_{0}} \frac{c d t}{R(t)} \quad H^{2}=H_{0}^{2} E^{2}(z) \quad \begin{aligned}
\frac{R}{R_{0}}=\frac{1}{1+z}- & c \int_{R_{E}}^{R_{0}} \frac{d R}{\dot{R} R}=c \int_{R_{E}}^{R_{0}} \frac{d R}{R^{2} H_{0} E(z)} \quad ; E^{2}(z)=\sum_{i} \Omega_{i, 0}(1+z)^{3\left(1+w_{i}\right)} \\
& =\frac{c}{H_{0}} \int_{z_{E}}^{0} \frac{(1+z)^{2}}{R_{0} E(z)}\left(-\frac{1}{(1+z)^{2}}\right) d z=\frac{c}{H_{0}} \int_{0}^{z E} \frac{R_{0}}{R^{2} E(z)} \frac{R^{2}}{R_{0}^{2}} d z=\frac{c}{H_{0} R_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z
\end{aligned}
$$

- comoving/proper distance:

- null geodesic for photons:

$$
f\left(x_{E}\right)=\frac{c}{H_{0} R_{0}} \int_{0}^{z_{F}} \frac{1}{E(z)} d z
$$

$$
\text { with } E^{2}(z)=\sum_{i} \Omega_{i, 0}(1+z)^{3\left(1+w_{i}\right)} \quad w_{i}=\left\{\begin{array}{cl}
0 & \text { dust } \\
1 / 3 & \text { radiation } \\
-1 / 3 & \text { curvature } \\
-1 & \Lambda
\end{array}\right.
$$

- comoving/proper distance: we were after the relation $d=f(z)$...and found it!

- null geodesic for photons:

$$
f\left(x_{E}\right)=\frac{c}{H_{0} R_{0}} \int_{0}^{z_{F}} \frac{1}{E(z)} d z
$$

$$
\text { with } E^{2}(z)=\sum_{i} \Omega_{i, 0}(1+z)^{3\left(1+w_{i}\right)} \quad w_{i}=\left\{\begin{array}{cl}
0 & \text { dust } \\
1 / 3 & \text { radiation } \\
-1 / 3 & \text { curvature } \\
-1 & \Lambda
\end{array}\right.
$$

- comoving/proper distance: we were after the relation $d=f(z)$...and found it!

- null geodesic for photons:

$$
f\left(x_{E}\right)=\frac{c}{H_{0} R_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z
$$

$$
\text { with } E^{2}(z)=\sum_{i} \Omega_{i, 0}(1+z)^{3\left(1+w_{i}\right)} \quad w_{i}=\left\{\begin{array}{cl}
0 & \text { dust } \\
1 / 3 & \text { radiation } \\
-1 / 3 & \text { curvature } \\
-1 & \Lambda
\end{array}\right.
$$

- comoving/proper distance: we were after the relation $d=f(z)$...and found it!

- null geodesis how to connect it to observabales (other than z)?

$$
f\left(x_{E}\right)=\frac{c}{H_{0} R_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z
$$

$$
\text { with } E^{2}(z)=\sum_{i} \Omega_{i, 0}(1+z)^{3\left(1+w_{i}\right)} \quad w_{i}=\left\{\begin{array}{cl}
0 & \text { dust } \\
1 / 3 & \text { radiation } \\
-1 / 3 & \text { curvature } \\
-1 & \Lambda
\end{array}\right.
$$

...and it sensitively depends on the cosmological parameters.

- cosmic distance ladder
- cosmological distances:
- proper/comoving distance
- Iuminosity distance
- angular diameter distance
- travel-time distance
- summary
- cosmological horizons \& volumes
- supernova cosmology
- luminosity distance:

- luminosity distance:

$$
F_{o b s} \stackrel{!}{=} \frac{L_{E}}{4 \pi d_{L}^{2}}
$$

- luminosity distance:

$$
\sqrt{\frac{4 \pi F_{o b s}}{L_{E}}}=d_{L}
$$

- luminosity distance:

- luminosity distance:

- luminosity distance:

1. change of wavelength

$$
(1+z)^{-1}: \sqrt[N]{ }: \sqrt[N]{ }
$$

2. change of distance between photons
$(1+z)^{-1}: \mathrm{MO}_{1}: \mathrm{OMO}_{1}$

$$
\frac{d t_{0}}{R_{0}}=\frac{d t_{E}}{R_{E}}
$$

- luminosity distance:

2. geometry: $\quad L_{o b s}=L_{0} \times f \quad$ with $f=\frac{\pi \varepsilon^{2}}{4 \pi} \quad$ (ratio of solid angles)

- luminosity distance:

2. geometry: $\quad L_{o b s}=L_{0} \times f \quad$ with $\quad f=\frac{\pi \varepsilon^{2}}{4 \pi} \uparrow=$

$$
b=R\left(t_{0}\right) x_{E} \int_{0}^{\varepsilon} d \vartheta=R\left(t_{0}\right) x_{E} \varepsilon
$$

($R\left(t_{0}\right)$ because of "telescope size today",
cf. "proper transverse distance" in formula for b)

- luminosity distance:

2. geometry: $\begin{aligned} L_{o b s}=L_{0} \times f \quad \text { with } \quad f=\frac{\pi \varepsilon^{2}}{4 \pi} & =\frac{\pi b^{2}}{4 \pi R^{2}\left(t_{0}\right) x_{E}^{2}} \\ b & =R\left(t_{0}\right) x_{E} \int_{0}^{\varepsilon} d \vartheta=R\left(t_{0}\right) x_{E} \varepsilon\end{aligned}$
($R\left(t_{0}\right)$ because of "telescope size today",
cf."proper transverse distance" in formula for b)

- luminosity distance:

2. geometry: $\quad L_{\text {obs }}=L_{0} \times f \quad$ with $\quad f=\frac{\pi \varepsilon^{2}}{4 \pi}=\frac{\pi b^{2}}{4 \pi R^{2}\left(t_{0}\right) x_{E}^{2}}$
$\underset{\text { (energyrtime/area) }}{\text { 3. measurement: }} \quad F_{o b s}=\frac{L_{o b s}}{\pi b^{2}}$

- luminosity distance:

2.geometry: $\quad L_{\text {obs }}=L_{0} \times f \quad$ with $\quad f=\frac{\pi \varepsilon^{2}}{4 \pi}=\frac{\pi b^{2}}{4 \pi R^{2}\left(t_{0}\right) x_{E}^{2}}$
$\underset{\text { (energytime/area) }}{\text { 3. measurement: }} \quad F_{o b s}=\frac{L_{o b s}}{\pi b^{2}}=\frac{1}{\pi b^{2}} \frac{L_{E}}{(1+z)^{2}} \frac{\pi b^{2}}{4 \pi R^{2}\left(t_{0}\right) x_{E}^{2}}=\frac{R^{2}\left(t_{E}\right)}{R^{4}\left(t_{0}\right) x_{E}^{2}} \frac{L_{E}}{4 \pi}$
- luminosity distance:

I. photons:

$$
L_{0}=\frac{L_{E}}{(1+z)^{2}}
$$

$$
L_{E} \text { (=energy/time) }
$$

2.geometry: $\quad L_{\text {obs }}=L_{0} \times f \quad$ with $\quad f=\frac{\pi \varepsilon^{2}}{4 \pi}=\frac{\pi b^{2}}{4 \pi R^{2}\left(t_{0}\right) x_{E}^{2}}$
$\underset{\text { (energy/timelarea) }}{\text { 3. measurement: }} \quad F_{o b s}=\frac{L_{o b s}}{\pi b^{2}}=\frac{1}{\pi b^{2}} \frac{L_{E}}{(1+z)^{2}} \frac{\pi b^{2}}{4 \pi R^{2}\left(t_{0}\right) x_{E}^{2}}=\frac{R^{2}\left(t_{E}\right)}{R^{4}\left(t_{0}\right) x_{E}^{2}} \frac{L_{E}}{4 \pi}$
$\sqrt{\frac{4 \pi F_{o b s}}{L_{E}}} \stackrel{!}{=} d_{L} \quad=>$

- luminosity distance:

I. photons:

$$
L_{0}=\frac{L_{E}}{(1+z)^{2}}
$$

$$
L_{E} \text { (=energy/time) }
$$

2.geometry: $\quad L_{\text {obs }}=L_{0} \times f \quad$ with $\quad f=\frac{\pi \varepsilon^{2}}{4 \pi}=\frac{\pi b^{2}}{4 \pi R^{2}\left(t_{0}\right) x_{E}^{2}}$
$\underset{\text { (energy/timelarea) }}{\text { 3. measurement: }} \quad F_{o b s}=\frac{L_{o b s}}{\pi b^{2}}=\frac{1}{\pi b^{2}} \frac{L_{E}}{(1+z)^{2}} \frac{\pi b^{2}}{4 \pi R^{2}\left(t_{0}\right) x_{E}^{2}}=\frac{R^{2}\left(t_{E}\right)}{R^{4}\left(t_{0}\right) x_{E}^{2}} \frac{L_{E}}{4 \pi}$

$$
\sqrt{\frac{4 \pi F_{o b s}}{L_{E}}} \stackrel{!}{=} d_{L} \Rightarrow d_{L}=\sqrt{\frac{L_{E} / 4 \pi}{F_{o b s}}}=\frac{R^{2}\left(t_{0}\right)}{R\left(t_{E}\right)} x_{E}
$$

- luminosity distance:

I. photons:

$$
L_{0}=\frac{L_{E}}{(1+z)^{2}}
$$

$$
L_{E} \text { (=energy/time) }
$$

2.geometry: $\quad L_{\text {obs }}=L_{0} \times f \quad$ with $\quad f=\frac{\pi \varepsilon^{2}}{4 \pi}=\frac{\pi b^{2}}{4 \pi R^{2}\left(t_{0}\right) x_{E}^{2}}$
$\underset{\text { (energy/timelarea) }}{\text { 3. measurement: }} \quad F_{o b s}=\frac{L_{o b s}}{\pi b^{2}}=\frac{1}{\pi b^{2}} \frac{L_{E}}{(1+z)^{2}} \frac{\pi b^{2}}{4 \pi R^{2}\left(t_{0}\right) x_{E}^{2}}=\frac{R^{2}\left(t_{E}\right)}{R^{4}\left(t_{0}\right) x_{E}^{2}} \frac{L_{E}}{4 \pi}$

$$
\sqrt{\frac{4 \pi F_{o b s}}{L_{E}}} \stackrel{!}{=} d_{L} \Rightarrow d_{L}=\sqrt{\frac{L_{E} / 4 \pi}{F_{o b s}}}=\frac{R^{2}\left(t_{0}\right)}{R\left(t_{E}\right)} x_{E} \quad d_{L}=h\left(x_{E}\right)!
$$

- luminosity distance:

I. photons:

$$
L_{0}=\frac{L_{E}}{(1+z)^{2}}
$$

$$
L_{E} \text { (=energy/time) }
$$

2. geometry: $\quad L_{o b s}=L_{0} \times f \quad$ with $\quad f=\frac{\pi \varepsilon^{2}}{4 \pi}=\frac{\pi b^{2}}{4 \pi R^{2}\left(t_{0}\right) x_{E}^{2}}$
$\underset{\text { (energytime/area) }}{\text { 3. measurement: }} \quad F_{o b s}=\frac{L_{o b s}}{\pi b^{2}}=\frac{1}{\pi b^{2}} \frac{L_{E}}{(1+z)^{2}} \frac{\pi b^{2}}{4 \pi R^{2}\left(t_{0}\right) x_{E}^{2}}=\frac{R^{2}\left(t_{E}\right)}{R^{4}\left(t_{0}\right) x_{E}^{2}} \frac{L_{E}}{4 \pi}$
we require standard candles!

$$
d_{L}=V_{L_{E}}^{L_{\text {obs }}}=\frac{R^{2}\left(t_{0}\right)}{R\left(t_{E}\right)} x_{E}
$$

$$
d_{L}=h\left(x_{E}\right)!
$$

- cosmic distance ladder
- cosmological distances:
- proper/comoving distance
- luminosity distance
- angular diameter distance
- travel-time distance
- summary
- cosmological horizons \& volumes
- supernova cosmology
- angular diameter distance:

- angular diameter distance:

- angular diameter distance:

$$
\begin{gathered}
D=R\left(t_{E}\right) x_{E} \int_{0}^{\vartheta_{E}} d \vartheta^{\prime}=R\left(t_{E}\right) x_{E} \vartheta_{E} \\
\vartheta_{\left(R\left(t_{E}\right)\right. \text { because of "galaxy size at time of emission") }}=\vartheta_{E} \\
\boldsymbol{\vartheta}_{o b s} \stackrel{\left.\vartheta_{\text {obs }}\right)}{=} \frac{D}{d_{A}} \quad \Rightarrow \quad d_{A}=\frac{D}{\vartheta_{\text {obs }}}=R\left(t_{E}\right) x_{E}
\end{gathered}
$$

- angular diameter distance:

$$
\begin{aligned}
& D=R\left(t_{E}\right) x_{E} \int_{0}^{\vartheta_{E}} d \boldsymbol{\vartheta}=R\left(t_{E}\right) x_{E} \boldsymbol{\vartheta}_{E} \\
& \text { (} R\left(t_{E}\right) \text { because of "galaxy size at time of emission") } \\
& \boldsymbol{\vartheta}_{\text {obs }} \equiv \boldsymbol{\vartheta}_{E} \\
& \boldsymbol{\vartheta}_{o b s} \stackrel{!}{=} \frac{D}{d_{A}} \quad \Rightarrow \quad d_{A}=\frac{D}{\vartheta_{o b s}}=R\left(t_{E}\right) x_{E} \\
& d_{A}=h\left(x_{E}\right)!
\end{aligned}
$$

- angular diameter distance:

we require standard rulers!

$$
d_{A}=\frac{D}{\boldsymbol{\vartheta}_{o b s}}=R\left(t_{E}\right) x_{E} \quad d_{A}=h\left(x_{E}\right)!
$$

- cosmic distance ladder
- cosmological distances:
- proper/comoving distance
- luminosity distance
- angular diameter distance
- travel-time distance
- summary
- cosmological horizons \& volumes
- supernova cosmology
- travel-time distance:

- cosmic distance ladder
- cosmological distances:
- proper/comoving distance
- luminosity distance
- angular diameter distance
- travel-time distance
- summary
- cosmological horizons \& volumes
- supernova cosmology
- inter-relation:
- comoving distance:

$$
d_{c}
$$

$$
=\frac{c}{H_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z
$$

- proper distance:

$$
d_{p} \quad=\frac{R(t)}{R_{0}} d_{C}
$$

- luminosity distance:

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\frac{R_{0}}{R(t)} R_{0} x_{E}
$$

- angular diameter distance: $\quad d_{A}=\frac{D}{\vartheta_{o b s}} \quad=\frac{R(t)}{R_{0}} R_{0} x_{E}$

$$
E^{2}(z)=\sum_{i} \Omega_{i, 0}(1+z)^{3\left(1+w_{i}\right)}
$$

- inter-relation:
- comoving distance:

$$
d_{c}
$$

$$
=\frac{c}{H_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z
$$

- proper distance:

$$
d_{p} \quad=\frac{R(t)}{R_{0}} d_{C}
$$

- luminosity distance:

$$
d_{A}=\left(\frac{R(t)}{R_{0}}\right)^{2} d_{L}
$$

- angular diameter distance: $d_{A}=\frac{D}{\vartheta_{o b s}} \quad=\frac{R(t)}{R_{0}} R_{0} x_{E}$

$$
E^{2}(z)=\sum_{i} \Omega_{i, 0}(1+z)^{3\left(1+m_{i j}\right)}
$$

- inter-relation:
- comoving distance:

$$
d_{c}
$$

$$
=\frac{c}{H_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z
$$

- proper distance:

$$
d_{p} \quad=\frac{R(t)}{R_{0}} d_{C}
$$

- luminosity distance:

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\frac{R_{0}}{R(t)} R \underbrace{}_{\underline{x_{E}}}
$$

- angular diameter distance: $\quad d_{A}=\frac{D}{\vartheta_{o b s}} \quad=\frac{R(t)}{R_{0}} R{ }_{[0} x_{E}$

$$
E^{2}(z)=\sum_{i} \Omega_{i, 0}(1+z)^{3\left(1+w_{i}\right)}
$$

- inter-relation:
- comoving distance:

$$
d_{c}
$$

$$
=\frac{c}{H_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z
$$

- proper distance:

$$
d_{p} \quad=\frac{R(t)}{R_{0}} d_{C}
$$

- luminosity distance:

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\frac{R_{0}}{R(t)} R_{0} x_{E}
$$

- angular diameter distance: $\quad d_{A}=\frac{D}{\vartheta_{o b s}} \quad=\frac{R(t)}{R_{0}} R_{0} x_{E}$

$$
x_{E} \text { via inversion of } f\left(x_{E}\right)=\frac{c}{H_{0} R_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z=\left\{\begin{array}{cc}
x_{E} & \mathrm{k}=0 \\
\frac{1}{\sqrt{|k|}} \arcsin \left(\sqrt{|k|} x_{E}\right) & \mathrm{k}=1 \\
\frac{1}{\sqrt{|k|}} \operatorname{arcsinh}\left(\sqrt{|k|} x_{E}\right) & \mathrm{k}=-1
\end{array}\right.
$$

$$
E^{2}(z)=\sum_{i} \Omega_{i, 0}(1+z)^{3\left(1+w_{i}\right)}
$$

- inter-relation:
- comoving distance:

$$
d_{c} \quad=\frac{c}{H_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z
$$

- proper distance:

$$
d_{p} \quad=\frac{R(t)}{R_{0}} d_{C}
$$

- luminosity distance:

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\frac{R_{0}}{R(t)} R_{0} x_{E}
$$

- angular diameter distance: $d_{A}=\frac{D}{\vartheta_{\text {obs }}} \quad=\frac{R(t)}{R_{0}} R_{0} x_{E}$
- inter-relation:
- comoving distance:

$$
=\frac{c}{H_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z
$$

- proper distance:

$$
=\frac{R(t)}{R_{0}} d_{C}
$$

- luminosity distance:

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\frac{R_{0}}{R(t)} R_{0} x_{E}
$$

$$
\text { - angular diameter distance: } d_{A}=\frac{D}{\vartheta_{o b s}} \quad=\frac{R(t)}{R_{0}} R_{0} x_{E}
$$

$$
x_{E}=\left\{\begin{array}{cccc}
\bullet \text { angular diameter distance: } & a_{A}=\frac{\boldsymbol{\vartheta}_{\text {obs }}}{\boldsymbol{R}_{0}} \boldsymbol{K}_{0} x_{E} \\
\frac{1}{R_{0}} & d_{c} & ; k=0 & \\
\frac{1}{R_{0}} \frac{c}{H_{0} \sqrt{\left|\Omega_{k, 0}\right|}} \sin & \left(\frac{\sqrt{\mid \Omega_{k, 0}} H_{0}}{c} d_{c}\right) & ; k=1 & \\
\frac{1}{R_{0}} \frac{c}{H_{0} \sqrt{\left|\Omega_{k, 0}\right|}} \sinh & \left(\frac{\sqrt{\left|\Omega_{k, 0}\right|} H_{0}}{c} d_{c}\right) & ; k=-1 & \left(\Omega_{k, 0}=-\frac{c^{2} k}{R_{0}^{2} H_{0}^{2}}, \text { cf. FRW lecture }\right)
\end{array} E^{2}(z\right.
$$

$$
E^{2}(z)=\sum_{i} \Omega_{i, 0}(1+z)^{3\left(1+w_{i}\right)}
$$

- examples for x_{E} :

$$
\text { - } k=0, \Omega_{r} \ll \Omega_{m} \Omega_{\Lambda}=1-\Omega_{m} \text { (} \Lambda \text { CDM model) }
$$

$$
x_{E}=\frac{c}{H_{0} R_{0}} \int_{0}^{z_{E}} \frac{d z}{\left[\Omega_{m, 0}(1+z)^{3}+\Omega_{\Lambda, 0}\right]^{1 / 2}}
$$

- $\Omega_{\Lambda}=0, \Omega_{r}=0, \Omega_{m}=2 q_{0}$

$$
x_{E}=\frac{z_{E} q_{0}+\left(q_{0}-1\right)\left(-1+\sqrt{2 q_{0} z_{E}+1}\right)}{H_{0} R_{0} q_{0}^{2}\left(1+z_{E}\right)}
$$

- $\Omega_{\Lambda}=1, \Omega_{m}=0, k=0$

$$
x_{E}=\frac{c z_{E}}{H_{0} R_{0}}
$$

- examples for x_{E} :

$$
\left.\cdot k=0, \Omega_{r} \ll \Omega_{m} \Omega_{\Lambda}=1-\Omega_{m} \text { (} \Lambda \text { CDM model }\right)
$$

$$
\left.\begin{array}{rl}
x_{E} & =\frac{c}{H_{0} R_{0}} \int_{0}^{z_{E}} \frac{d z}{\left[\Omega_{m, 0}(1+z)^{3}+\Omega_{\Lambda, 0}\right]^{1 / 2}} \\
d_{C}(z) & =\frac{c}{H_{0}} \int_{0}^{z} \frac{d z^{\prime}}{E\left(z^{\prime}\right)} \\
d_{L}(z) & =d_{C}(1+z) \\
d_{A}(z) & =\frac{d_{C}}{(1+z)}
\end{array}\right\} \text { simple relation of } d_{L} \text { and } d_{A} \text { to } d_{C}
$$

- inter-relation:
- comoving distance:

$$
d_{c} \quad=\frac{c}{H_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z
$$

- proper distance:

$$
d_{p}^{\substack{\text { observationally! } \\ \text { (for standard ruler/candle) }}} \frac{R(t)}{R_{0}} d_{C}
$$

- luminosity distance:

$$
\begin{aligned}
& d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\frac{R_{0}}{R(t)} R_{0} x_{E} \\
& d_{A}=\frac{D}{\vartheta_{o b s}}=\frac{R(t)}{R_{0}} R_{0} x_{E}
\end{aligned}
$$

- angular diameter distance:

$$
x_{E}=\left\{\frac{1}{R_{0}} \frac{c}{H_{0} \sqrt{\left|\Omega_{k, 0}\right|}} \sin \left(\frac{\sqrt{\left|\Omega_{k, 0}\right|} H_{0}}{c} d_{c}\right) \quad ; k=1\right.
$$

- inter-relation:
- comoving distance:

$$
d_{c} \quad=\frac{c}{H_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z
$$

- proper distance:

$$
=\frac{R(t)}{R_{0}} d_{C}
$$ provides the link to "quantify cosmology"!

- luminosity distance:

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\frac{R_{0}}{R(t)} R_{0} x_{E}
$$

- angular diameter distance: $\quad d_{A}=\frac{D}{\vartheta_{o b s}}$

$$
=\frac{R(t)}{R_{0}} R_{0} x_{E}
$$

$$
x_{E}=\left\{\begin{array}{ccc}
\frac{1}{R_{0}} & d_{c} & ; k=0 \\
\frac{1}{R_{0}} \frac{c}{H_{0} \sqrt{\left|\Omega_{k, 0}\right|}} \sin \left(\frac{\sqrt{\left|\Omega_{k, 0}\right|} H_{0}}{c} d_{c}\right) & ; k=1 & \\
\frac{1}{R_{0}} \frac{c}{H_{0} \sqrt{\left|\Omega_{k, 0}\right|}} \sinh \left(\frac{\sqrt{\left|\Omega_{k, 0}\right|} H_{0}}{c} d_{c}\right) & ; k=-1 & \left(\Omega_{k, 0}=-\frac{c^{2} k}{R_{0}^{2} H_{0}^{2}}, \text { cf. FRW lecture }\right)
\end{array} E^{2}(z)=\sum_{i} \Omega_{i, 0}(1+z)^{3\left(1+w_{i}\right)}\right.
$$

- inter-relation:
- comoving distance:

$$
d_{c}
$$

$$
=\frac{c}{H_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z
$$

- proper distance:

$$
d_{p} \quad=\frac{R(t)}{R_{0}} d_{C}
$$

- luminosity dis can we find a simplelapproximate relation between redshift z and distance? x_{E}

$$
\begin{aligned}
& \text { - angular diameter distance: } d_{A}=\frac{D}{\vartheta_{o b s}} \quad=\frac{R(t)}{R_{0}} R_{0} x_{E} \\
& \frac{1}{R_{0}} \\
& d_{c} \quad ; k=0 \\
& x_{E}=\left\{\frac{1}{R_{0}} \frac{c}{H_{0} \sqrt{\Omega_{k j} \mid}} \sin \left(\frac{\sqrt{\left[\Omega_{k 0}\right.} H_{0}}{c} d_{c}\right) ; k=1\right. \\
& \frac{1}{R_{0}} \frac{c}{H_{0} \sqrt{\Omega_{k 00} \mid}} \sinh \left(\frac{\sqrt{\Omega_{k 0}} H_{0}}{c} d_{c}\right) ; k=-1 \quad\left(\Omega_{k 0}=-\frac{c^{2} k}{R_{0}^{2} H_{0}^{2}}, \text { cf. FRW lecture }\right) \\
& E^{2}(z)=\sum_{i} \Omega_{i, 0}(1+z)^{3\left(1+w_{i}\right)}
\end{aligned}
$$

- distance and redshift: Hubble's Law - revisited

$$
z=\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1
$$

- distance and redshift: Hubble's Law - revisited

$$
z=\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1
$$

- Taylor expanding $z: \quad z=\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1=\left(\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1\right)_{0}+\frac{d}{d t_{E}}\left(\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1\right)_{0}\left(t_{E}-t_{0}\right)+\ldots$

$$
\approx-\left(\frac{R\left(t_{0}\right)}{R^{2}\left(t_{E}\right)} \dot{R}\left(t_{E}\right)\right)_{0}\left(t_{E}-t_{0}\right)=\frac{\dot{R}\left(t_{0}\right)}{R\left(t_{0}\right)}\left(t_{0}-t_{E}\right)=H_{0}\left(t_{0}-t_{E}\right)
$$

- distance and redshift: Hubble’s Law - revisited

$$
z=\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1
$$

- Taylor expanding $z: \quad z=\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1=\left(\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1\right)_{0}+\frac{d}{d t_{E}}\left(\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1\right)_{0}\left(t_{E}-t_{0}\right)+\ldots$

$$
\approx-\left(\frac{R\left(t_{0}\right)}{R^{2}\left(t_{E}\right)} \dot{R}\left(t_{E}\right)\right)_{0}\left(t_{E}-t_{0}\right)=\frac{\dot{R}\left(t_{0}\right)}{R\left(t_{0}\right)}\left(t_{0}-t_{E}\right)=H\left(t_{0}-t_{E}\right) ?
$$

- distance and redshift: Hubble's Law - revisited

$$
z=\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1
$$

- Taylor expanding $z: \quad z=\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1=\left(\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1\right)_{0}+\frac{d}{d t_{E}}\left(\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1\right)_{0}\left(t_{E}-t_{0}\right)+\ldots$

$$
\approx-\left(\frac{R\left(t_{0}\right)}{R^{2}\left(t_{E}\right)} \dot{R}\left(t_{E}\right)\right)_{0}\left(t_{E}-t_{0}\right)=\frac{\dot{R}\left(t_{0}\right)}{R\left(t_{0}\right)}\left(t_{0}-t_{E}\right)=H_{0}\left(t_{0}-t_{E}\right)
$$

- Taylor expanding $d_{c}: \quad f\left(x_{E}\right)=\int_{t_{E}}^{t_{0}} \frac{c d t}{R(t)} \approx c \frac{t_{0}-t_{E}}{R\left(t_{0}\right)}$
- distance and redshift: Hubble's Law - revisited

$$
z=\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1
$$

- Taylor expanding $z: \quad z=\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1=\left(\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1\right)_{0}+\frac{d}{d t_{E}}\left(\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1\right)_{0}\left(t_{E}-t_{0}\right)+\ldots$

$$
\approx-\left(\frac{R\left(t_{0}\right)}{R^{2}\left(t_{E}\right)} \dot{R}\left(t_{E}\right)\right)_{0}\left(t_{E}-t_{0}\right)=\frac{\dot{R}\left(t_{0}\right)}{R\left(t_{0}\right)}\left(t_{0}-t_{E}\right)=H_{0}\left(t_{0}-t_{E}\right)
$$

- Taylor expanding $d_{c}: \quad f\left(x_{E}\right)=\int_{t_{E}}^{t_{0}} \frac{c d t}{R(t)} \approx c \frac{t_{0}-t_{E}}{R\left(t_{0}\right)}$
- proper distance: $\quad d_{p}=R\left(t_{0}\right) f\left(x_{E}\right) \approx R\left(t_{0}\right) c \frac{t_{0}-t_{E}}{R\left(t_{0}\right)}=c\left(t_{0}-t_{E}\right)$
- distance and redshift: Hubble’s Law - revisited

$$
z=\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1
$$

- Taylor expanding $z: \quad z=\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1=\left(\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1\right)_{0}+\frac{d}{d t_{E}}\left(\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1\right)_{0}\left(t_{E}-t_{0}\right)+\ldots$

$$
\approx-\left(\frac{R\left(t_{0}\right)}{R^{2}\left(t_{E}\right)} \dot{R}\left(t_{E}\right)\right)_{0}\left(t_{E}-t_{0}\right)=\frac{\dot{R}\left(t_{0}\right)}{R\left(t_{0}\right)}\left(t_{0}-t_{E}\right)=H_{0}\left(t_{0}-t_{E}\right)
$$

- Taylor expanding $d_{c}: \quad f\left(x_{E}\right)=\int_{t_{E}}^{t_{0}} \frac{c d t}{R(t)} \approx c \frac{t_{0}-t_{E}}{R\left(t_{0}\right)}$
- proper distance:

$$
d_{p}=R\left(t_{0}\right) f\left(x_{E}\right) \approx R\left(t_{0}\right) c \frac{t_{0}-t_{E}}{R\left(t_{0}\right)}=c\left(t_{0}-t_{E}\right)
$$

- distance and redshift: Hubble’s Law - revisited

$$
z=\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1
$$

- Taylor expanding $z: \quad z=\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1=\left(\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1\right)_{0}+\frac{d}{d t_{E}}\left(\frac{R\left(t_{0}\right)}{R\left(t_{E}\right)}-1\right)_{0}\left(t_{E}-t_{0}\right)+\ldots$

$$
\approx-\left(\frac{R\left(t_{0}\right)}{R^{2}\left(t_{E}\right)} \dot{R}\left(t_{E}\right)\right)_{0}\left(t_{E}-t_{0}\right)=\frac{\dot{R}\left(t_{0}\right)}{R\left(t_{0}\right)}\left(t_{0}-t_{E}\right)=H_{0}\left(t_{0}-t_{E}\right)
$$

- Taylor expanding $d_{c}: \quad f\left(x_{E}\right)=\int_{t_{E}}^{t_{0}} \frac{c d t}{R(t)} \approx c \frac{t_{0}-t_{E}}{R\left(t_{0}\right)}$
- proper distance: $\quad d_{p} \approx \frac{c z}{H_{0}}$
("Hubble-law distance")

$$
\Rightarrow c z \approx H_{0} d_{p}
$$

- cosmic distance ladder
- cosmological distances
- cosmological horizons \& volumes
- supernova cosmology
- cosmic distance ladder
- cosmological distances
- cosmological horizons \& volumes
- horizons
- volumes
- supernova cosmology
- horizons (see fRW lecture)
- particle horizon: max. distance particle can have travelled since decoupling

$$
R_{p}(t)=R(t) \int_{t_{\text {dec }}}^{t} \frac{c d t^{\prime}}{R\left(t^{\prime}\right)}
$$

- "particle horizon": max. distance photon can have travelled since big bang (there are events we have not yet seen...)

$$
R_{p}(t)=R(t) \int_{0}^{t} \frac{c d t^{\prime}}{R\left(t^{\prime}\right)}
$$

- event horizon: max. distance particle can travel from now onwards (there may be events we will never see...)

$$
R_{e}(t)=R(t) \int_{t}^{\infty} \frac{c d t^{\prime}}{R\left(t^{\prime}\right)}
$$

- (comoving) Hubble radius: distance at which recessional velocity equals speed of light

$$
R_{H}(t)=\frac{c}{H} ; \quad R_{c H}(t)=\frac{R_{0}}{R} \frac{c}{H}
$$

- horizons (see fRW lecture)
- different bounds define different horizons
- all based upon proper distance
- particle horizon: max. distance particle can have travelled since decoupling

$$
R_{p}(t)=R(t) \int \frac{c d t^{\prime}}{R\left(t^{\prime}\right)}
$$

- "particle horizon": max. distance photon can have travelled since big bang (there are events we have not yet seen...)

$$
R_{p}(t)=R(t) \frac{c) c d t^{\prime}}{0 R\left(t^{\prime}\right)}
$$

- event horizon: max. distance particle can travel from now onwards (there may be events we will never see...)

$$
R_{e}(t)=R(t)=\frac{c d t^{\prime}}{R\left(t^{\prime}\right)}
$$

- (comoving) Hubble radius: distance at which recessional velocity equals speed of light

$$
R_{H}(t)=\frac{c}{H} ; \quad R_{c H}(t)=\frac{R_{0}}{R} \frac{c}{H}
$$

- cosmic distance ladder
- cosmological distances
- cosmological horizons \& volumes
- horizons
- volumes
- supernova cosmology
- proper volume at t_{0}

$$
d V_{p}\left(t_{0}\right)=\sqrt{\operatorname{det}\left(g_{i j}\right)} d r d \vartheta d \varphi
$$

- proper volume at t_{0}

$$
\begin{array}{r}
d V_{p}\left(t_{0}\right)=\sqrt{\operatorname{det}\left(g_{i j}\right)} d r d \vartheta d \varphi \\
\begin{array}{c}
t=t_{0} \\
d \Omega=d \theta^{2}+\sin ^{2} \theta d \phi^{2}
\end{array} R_{0}^{3} x^{2} \frac{d x}{\sqrt{1-k x^{2}}} d \Omega
\end{array}
$$

- proper volume at t_{0}

$$
\begin{array}{r}
d V_{p}\left(t_{0}\right)=\sqrt{\operatorname{det}\left(g_{i j}\right)} d r d \vartheta d \varphi \\
\begin{array}{c}
t=t_{0} \\
d \Omega=d \theta^{2}+\sin ^{2} \theta d \phi^{2}
\end{array} R_{0}^{3} x^{2} \frac{d x}{\sqrt{1-k x^{2}}} d \Omega
\end{array}
$$

how to relate to one of our distances?

- proper volume at t_{0}

$$
\begin{aligned}
& d V_{p}\left(t_{0}\right)=\sqrt{\operatorname{det}\left(g_{i j}\right)} d r d \vartheta d \varphi \\
&=R_{0}^{3} x^{2} \frac{d x}{\sqrt{1-k x^{2}}} d \Omega \\
& \frac{d x}{\sqrt{1-k x^{2}}=\frac{c d t}{R(t)}=\frac{d t}{d z} \frac{d z}{R(t)} \circlearrowright}=R_{0}^{3} x^{2} \frac{-c d z}{H_{0} R_{0} E(z)} d \Omega \\
&=R_{0}^{2} x^{2} \frac{-c d z}{H_{0} E(z)} d \Omega \\
&=-\frac{R_{0}^{2} x^{2}}{R_{0} R} \frac{R_{0}^{2} R_{E}^{2}}{R_{0}^{2} R_{E}^{2}} \frac{-c d z}{H_{0} E(z)} d \Omega \\
&=\frac{R_{0}^{4} x^{2}}{R_{E}^{2}} \frac{R_{E}^{2}}{R_{0}^{2}} \frac{-c d z}{H_{0} E(z)} d \Omega
\end{aligned}
$$

- proper volume at t_{0}

$$
\begin{aligned}
d V_{p}\left(t_{0}\right) & =\sqrt{\operatorname{det}\left(g_{i j}\right)} d r d \vartheta d \varphi \\
& =R_{0}^{3} x^{2} \frac{d x}{\sqrt{1-k x^{2}}} d \Omega \\
\frac{d x}{\sqrt{1-k x^{2}}}=\frac{c d t}{R(t)}=\frac{d t}{d z} \frac{c d z}{R(t)} \circlearrowright & =R_{0}^{3} x^{2} \frac{-c d z}{H_{0} R_{0} E(z)} d \Omega \\
& =R_{0}^{2} x^{2} \frac{-c d z}{H_{0} E(z)} d \Omega \\
& =-R_{0}^{2} x^{2} \frac{R_{0}^{2} R_{E}^{2}}{R_{0}^{2} R} \frac{-c d z}{R_{0}^{2} E(z)} d \Omega \\
& =\frac{R_{0}^{4} x^{2} R_{E}^{2}}{R_{E}^{2}} \frac{-c d z}{R_{0}^{2}} \frac{H_{0} E(z)}{H_{0}} d \Omega
\end{aligned}
$$

- proper volume at t_{0}

$$
\begin{aligned}
d V_{p}\left(t_{0}\right) & =\sqrt{\operatorname{det}\left(g_{i j}\right)} d r d \vartheta d \varphi \\
& =R_{0}^{3} x^{2} \frac{d x}{\sqrt{1-k x^{2}}} d \Omega \\
\frac{d x}{\sqrt{1-k x^{2}}}=\frac{c d t}{R(t)}=\frac{d t}{d z} \frac{d z}{R(t)} \frown & =R_{0}^{3} x^{2} \frac{-c d z}{H_{0} R_{0} E(z)} d \Omega \\
& =R_{0}^{2} x^{2} \frac{-c d z}{H_{0} E(z)} d \Omega \\
& =R_{0}^{2} x^{2} \frac{R_{0}^{2} R_{E}^{2}}{R_{0}^{2} R_{E}^{2}} \frac{-c d z}{H_{0} E(z)} d \Omega \\
& =\frac{R_{0}^{4} x^{2}}{R_{0}^{2} R} \frac{R_{E}^{2}}{R_{0}^{2}} \frac{-c d z}{H_{0} E(z)} d \Omega \\
& =d_{L}^{2} \frac{1}{(1+z)^{2}} \frac{-c d z}{H_{0} E(z)} d \Omega
\end{aligned}
$$

- proper volume at t_{0}

$$
\begin{aligned}
& d V_{p}\left(t_{0}\right)=\sqrt{\operatorname{det}\left(g_{i j}\right)} d r d \vartheta d \varphi \\
&=R_{0}^{3} x^{2} \frac{d x}{\sqrt{1-k x^{2}}} d \Omega \\
& \frac{d x}{\sqrt{1-k x^{2}}=\frac{c d t}{R(t)}=\frac{d t}{d z} \frac{c d z}{R(t)} \supset}=R_{0}^{3} x^{2} \frac{-c d z}{H_{0} R_{0} E(z)} d \Omega \\
&=R_{0}^{2} x^{2} \frac{-c d z}{H_{0} E(z)} d \Omega \\
&=R_{0}^{2} x^{2} \frac{R_{0}^{2} R_{E}^{2}}{R_{0}^{2} R_{E}^{2}} \frac{-c d z}{H_{0} E(z)} d \Omega \\
&=\frac{R_{0}^{4} x^{2}}{R_{E}^{2}} \frac{R_{E}^{2}}{R_{0}^{2}} \frac{-c d z}{H_{0} E(z)} d \Omega \\
& \text { integration } \int_{L_{L}=\frac{R_{0}^{2}}{R_{E}} x}^{\sim}=d_{L}^{2} \frac{1}{(1+z)^{2}} \frac{-c d z}{H_{0} E(z)} d \Omega \\
&\left.=>V_{p}\left(t_{0}\right)=\frac{4 \pi}{H_{0}} \int_{0}^{z_{E}} \frac{d_{L}^{2}(z)}{(1+z)^{2} E(z)} d z=4 \pi R_{0}^{3} \int_{0}^{x_{E}} \frac{x^{2}}{\sqrt{1-k x^{2}}} d x\right]
\end{aligned}
$$

- proper volume at t_{0}

$$
V_{p}\left(t_{0}\right)=\frac{4 \pi}{H_{0}} \int_{0}^{z_{E}} \frac{d_{L}^{2}(z)}{(1+z)^{2} E(z)} d z=4 \pi R_{0}^{3} \int_{0}^{x_{E}} \frac{x^{2}}{\sqrt{1-k x^{2}}} d x
$$

$$
\Rightarrow \quad V_{p}\left(t_{0}\right)=\left\{\begin{array}{cc}
\frac{4 \pi}{3}\left(\frac{d_{L}}{1+z}\right)^{3} & k=0 \\
\frac{2 \pi}{H_{0}^{3} \Omega_{k, 0}}\left[H_{0} \frac{d_{L}}{1+z} \sqrt{1+\left[\frac{H_{0} d_{L}}{1+z}\right]^{3} \Omega_{k, 0}}-\frac{1}{\sqrt{\left|\Omega_{k, 0}\right|}} \arcsin \left(H_{0} d_{L} \sqrt{\left|\Omega_{k, 0}\right|}\right)\right] & k=1 \\
\frac{2 \pi}{H_{0}^{3} \Omega_{k, 0}}\left[H_{0} \frac{d_{L}}{1+z} \sqrt{1+\left[\frac{H_{0} d_{L}}{1+z}\right]^{3} \Omega_{k, 0}}-\frac{1}{\sqrt{\left|\Omega_{k, 0}\right|}} \operatorname{arcsinh}\left(H_{0} d_{L} \sqrt{\left|\Omega_{k, 0}\right|}\right)\right.
\end{array}\right] \quad k=-1
$$

- $V_{p}\left(t_{0}\right)$ is a function of $H_{0}, \Omega_{m}, \Omega_{\Lambda}$, and z
- $V_{p}\left(t_{0}\right)$ gets corrected by the solid angle Ω at z via $V_{p}^{\Omega}=V_{p} \frac{\Omega}{4 \pi}$
- proper volume at $t!=t_{0}$

$$
d V_{p}(t)=\sqrt{\operatorname{det}\left(g_{i j}\right)} d r d \vartheta d \varphi
$$

$$
\begin{aligned}
\text { difference to previous colculutionn... } & =R^{3}(t) j^{2} \frac{d x}{\sqrt{1-k x^{2}}} d \Omega \\
& =\ldots \\
& =(1+z)^{3} d V_{p}\left(t_{0}\right)
\end{aligned}
$$

- comoving volume

$$
\begin{aligned}
& d V_{p}=R^{3}(t) x^{2} \frac{d x}{\sqrt{1-k x^{2}}} d \Omega \\
& d V_{c}= x^{2} \frac{d x}{\sqrt{1-k x^{2}}} d \Omega \\
& \Rightarrow V_{c}(z)=\frac{V_{p}(z)}{R^{3}(t(z))}
\end{aligned}
$$

- cosmic distance ladder
- cosmological distances
- cosmological horizons \& volumes
- supernova cosmology
http://cosmocalc.icrar.org/
- cosmic distance ladder
- cosmological distances
- cosmological horizons \& volumes
- supernova cosmology
- cosmological parameters

$$
H_{0}, \quad \Omega_{m, 0}, \quad \Omega_{k, 0}, \quad \Omega_{\Lambda, 0}
$$

- cosmological parameters

$$
\begin{gathered}
H_{0}, \quad \Omega_{m, 0}, \quad \Omega_{k, 0}, \quad \Omega_{\Lambda, 0} \\
1=\Omega_{m, 0}+\Omega_{k, 0}+\Omega_{\Lambda, 0}
\end{gathered}
$$

- cosmological parameters

$$
\begin{gathered}
H_{0}, \Omega_{m, 0}, \Omega_{k, 0}, \Omega_{\Lambda, 0} \\
1=\Omega_{m, 0}+\Omega_{k, 0}+\Omega_{\Lambda, 0} \\
\downarrow \text { only three parameters remain... } \\
H_{0}, \Omega_{m, 0}, \Omega_{\Lambda, 0}
\end{gathered}
$$

$$
\left(\Omega_{r, 0} \approx 0\right)
$$

- cosmological parameters

how to use supernovae la to obtain these parameters?
- $m(z)$-relation for Union 2.I SN-la data set

*http://supernova.lbl.gov/union
- $m(z)$-relation for Union 2.I SN-la data set
where does this equation come from?

*http://supernova.lbl.gov/union
- m(z)-relation for Union 2.I SN-la data set
where does this equation come from?

*http://supernova.lbl.gov/union
- luminosity distance

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\frac{R_{0}}{R\left(t_{E}\right)} R_{0} x_{E}=\left(1+z_{E}\right) R_{0} x_{E}
$$

- luminosity distance

$$
\begin{aligned}
& \left.d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\frac{R_{0}}{R\left(t_{E}\right)} R_{0} x_{E}=\left(1+z_{E}\right) R X_{E}\right) \\
& x_{E}=\left\{\begin{array}{ccc}
\frac{1}{R_{0}} & ; k=0 \\
\frac{c}{R_{0} H_{0}} \frac{1}{\sqrt{\left|1-\Omega_{m, 0}-\Omega_{\Lambda, 0}\right|}} \sin & \left(\sqrt{\left|1-\Omega_{m, 0}-\Omega_{\Lambda, 0}\right|} \frac{H_{0}}{c} d_{c}\right) & ; k=1 \\
\frac{c}{R_{0} H_{0}} \frac{1}{\sqrt{1-\Omega_{m, 0}-\Omega_{\Lambda, 0} \mid}} \sinh & \left(\sqrt{\left|1-\Omega_{m, 0}-\Omega_{\Lambda, 0}\right|} \frac{H_{0}}{c} d_{c}\right) & ; k=-1
\end{array}\right.
\end{aligned}
$$

- luminosity distance

$$
\begin{aligned}
& d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\frac{R_{0}}{R\left(t_{E}\right)} R_{0} x_{E}=\left(1+z_{E}\right) R \widehat{x_{E}} \\
& x_{E}=\left\{\begin{array}{cc}
\frac{1}{R_{0}} & ; k=0 \\
\frac{c}{R_{0} H_{0}} \frac{1}{\sqrt{1-\Omega_{m, 0}-\Omega_{\Lambda, 0}}} \sin & \left(\sqrt{1-\Omega_{m, 0}-\Omega_{\Lambda, 0} \mid} \frac{H_{c}}{c}\right)
\end{array} ; k=1\right. \\
& \frac{c}{R_{0} H_{0}} \frac{1}{\sqrt{1-\Omega_{m, 0}-\Omega_{\Lambda, 0}}} \sinh \left(\sqrt{1-\Omega_{m, 0}-\Omega_{\Lambda, 0} \mid} \frac{H_{c}}{c}\right)
\end{aligned} ; k=-1 .
$$

- luminosity distance

$$
\begin{aligned}
& d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\frac{R_{0}}{R\left(t_{E}\right)} R_{0} x_{E}=\left(1+z_{E}\right) R x_{E} \\
& \frac{1}{R_{0}} \\
& \left\langle d_{c}\right\rangle \\
& \text {; } k=0 \\
& x_{E}=\left\{\frac{c}{R_{0} H_{0}} \frac{1}{\sqrt{1-\Omega_{m, 0}-\Omega_{\Lambda, 0} \mid}} \sin \left(\sqrt{\left|1-\Omega_{m, 0}-\Omega_{\Lambda, 0}\right|} \frac{H_{c}}{c}\right) \quad ; k=1\right. \\
& \frac{c}{R_{0} H_{0}} \frac{1}{\sqrt{1-\Omega_{m, 0}-\Omega_{\Lambda, 0} \mid}} \sinh \left(\sqrt{1-\Omega_{m, 0}-\Omega_{\Lambda, 0}} \frac{H_{f}}{c} d_{c}\right) \quad ; k=-1 \\
& d_{c}=\frac{c}{H_{0}} \int_{0}^{z} \frac{1}{E(z)} d z \\
& E(z)=\sqrt{\Omega_{m, 0}(1+z)^{3}+\left(1-\Omega_{m, 0}-\Omega_{\Lambda, 0}\right)(1+z)^{2}+\Omega_{\Lambda, 0}}
\end{aligned}
$$

- luminosity distance
right-hand side under control,
but what about d_{L} itself (e.g. how do m and M enter)?

$$
\begin{aligned}
& d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\frac{R_{0}}{R\left(t_{E}\right)} R_{0} x_{E}=\left(1+z_{E}\right) R x_{E} \\
& \frac{1}{R_{0}} \\
& \left\langle d_{c}\right. \text {. } \\
& \text {; } k=0 \\
& x_{E}=\left\{\frac{c}{R_{0} H_{0}} \frac{1}{\sqrt{\left|1-\Omega_{m, 0}-\Omega_{\Lambda, 0}\right|}} \sin \left(\sqrt{\left|1-\Omega_{m, 0}-\Omega_{\Lambda, 0}\right|} \frac{H_{c}}{c}\right) \quad ; k=1\right. \\
& \frac{c}{R_{0} H_{0}} \frac{1}{\sqrt{1-\Omega_{m, 0}-\Omega_{\Lambda, 0} \mid}} \sinh \left(\sqrt{1-\Omega_{m, 0}-\Omega_{\Lambda, 0}} \frac{H_{f}}{c} d_{c}\right) \quad ; k=-1 \\
& d_{c}=\frac{c}{H_{0}} \int_{0}^{z_{k}} \frac{1}{E(z)} d z \\
& E(z)=\sqrt{\Omega_{m, 0}(1+z)^{3}+\left(1-\Omega_{m, 0}-\Omega_{\Lambda, 0}\right)(1+z)^{2}+\Omega_{\Lambda, 0}}
\end{aligned}
$$

- distance modulus

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{\text {obs }}}}=\left(1+z_{E}\right) R_{0} x_{E}
$$

- distance modulus

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\left(1+z_{E}\right) R \underbrace{x_{E}}_{\square \text { formula to relate to cosmology }}
$$

- distance modulus

$$
d_{L}=\sqrt{\frac{\square \text { theory of } \mathrm{SN} \text { la }}{\frac{L_{E}}{4 \pi F_{\text {obs }}}}}=\left(1+z_{E}\right) R \underbrace{x_{E}}_{\square \text { formula to relate to cosmology }}
$$

- distance modulus

$$
d_{L}=\sqrt{\frac{\square \text { theory of SN la }}{\frac{L_{E}}{4 \pi F_{o b s}}}}=\left(1+z_{E}\right) R \underbrace{x_{E}}_{\square \text { formula to relate to cosmology }}
$$

- distance modulus

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\left(1+z_{E}\right) R_{0} x_{E}
$$

- apparent magnitudes m :* $\quad m_{1}-m_{2}=-2.5 \log _{10}\left(\frac{F_{1}}{F_{2}}\right) \quad$ where $F=\frac{L}{4 \pi d^{2}}$
- distance modulus

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{\text {obs }}}}=\left(1+z_{E}\right) R_{0} x_{E}
$$

- apparent magnitudes $m: \quad m_{1}-m_{2}=-2.5 \log _{10}\left(\frac{F_{1}}{F_{2}}\right) \quad$ where $F=\frac{L}{4 \pi d^{2}}$
- absolute magnitudes M :

$$
\begin{aligned}
m-M & =-2.5 \log _{10}\left(\frac{L}{4 \pi d^{2}} \frac{4 \pi(10 \mathrm{pc})^{2}}{L}\right)_{\text {placing ligh }} \\
& =-2.5 \log _{10}\left(\frac{(10 \mathrm{pc})^{2}}{d^{2}}\right)=-5 \log \left(\frac{10 \mathrm{pc}}{\mathrm{~d}}\right)
\end{aligned}
$$

$$
\text { placing light source } L \text { at } 10 \mathrm{pc}
$$

- distance modulus

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{\text {obs }}}}=\left(1+z_{E}\right) R_{0} x_{E}
$$

- apparent magnitudes $m: \quad m_{1}-m_{2}=-2.5 \log _{10}\left(\frac{F_{1}}{F_{2}}\right) \quad$ where $F=\frac{L}{4 \pi d^{2}}$
- absolute magnitudes $M: \quad m-M=-2.5 \log _{10}\left(\frac{L}{4 \pi d^{2}} \frac{4 \pi(10 \mathrm{pc})^{2}}{L}\right)$

$$
=-2.5 \log _{10}\left(\frac{(10 \mathrm{pc})^{2}}{d^{2}}\right)=-5 \log \left(\frac{10 \mathrm{pc}}{\mathrm{~d}}\right)
$$

$$
\Rightarrow \quad d=10^{1+\frac{m-M}{5}} \mathrm{pc}=10^{-5+\frac{m-M}{5}} \mathrm{Mpc}
$$

- distance modulus

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{\text {obs }}}}=\left(1+z_{E}\right) R_{0} x_{E}
$$

- apparent magnitudes $m: \quad m_{1}-m_{2}=-2.5 \log _{10}\left(\frac{F_{1}}{F_{2}}\right) \quad$ where $F=\frac{L}{4 \pi d^{2}}$
- absolute magnitudes $M: \quad m-M=-2.5 \log _{10}\left(\frac{L}{4 \pi d^{2}} \frac{4 \pi(10 \mathrm{pc})^{2}}{L}\right)$

$$
=-2.5 \log _{10}\left(\frac{(10 \mathrm{pc})^{2}}{d^{2}}\right)=-5 \log \left(\frac{10 \mathrm{pc}}{\mathrm{~d}}\right)
$$

$$
\Rightarrow \quad d=10^{1+\frac{m-M}{5}} \mathrm{pc}=10^{-5+\frac{m-M}{5}} \mathrm{Mpc} \equiv \mathrm{~d}_{L}
$$

- distance modulus

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{\text {obs }}}}=\left(1+z_{E}\right) R_{0} x_{E}
$$

- apparent magnitudes $m: \quad m_{1}-m_{2}=-2.5 \log _{10}\left(\frac{F_{1}}{F_{2}}\right) \quad$ where $F=\frac{L}{4 \pi d^{2}}$
- absolute magnitudes $M: \quad m-M=-2.5 \log _{10}\left(\frac{L}{4 \pi d^{2}} \frac{4 \pi(10 \mathrm{pc})^{2}}{L}\right)$

$$
=-2.5 \log _{10}\left(\frac{(10 \mathrm{pc})^{2}}{d^{2}}\right)=-5 \log \left(\frac{10 \mathrm{pc}}{\mathrm{~d}}\right)
$$

$$
\Rightarrow \quad d=10^{1+\frac{m-M}{5}} \mathrm{pc}=10^{-5+\frac{m-M}{5}} \mathrm{Mpc} \equiv \mathrm{~d}_{L}
$$

$$
\stackrel{\left[d_{L}\right]=M p c}{=} m-M=25+5 \log \left(d_{L}\right)
$$

- distance modulus

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\left(1+z_{E}\right) R_{0} x_{E}
$$

- apparent magnitudes $m: \quad m_{1}-m_{2}=-2.5 \log _{10}\left(\frac{F_{1}}{F_{2}}\right) \quad$ where $F=\frac{L}{4 \pi d^{2}}$
- absolute magnitudes $M: \quad m-M=-2.5 \log _{10}\left(\frac{L}{4 \pi d^{2}} \frac{4 \pi(10 \mathrm{pc})^{2}}{L}\right)$

$$
\begin{gathered}
=-2.5 \log _{10}\left(\frac{(10 \mathrm{pc})^{2}}{d^{2}}\right)=-5 \log \left(\frac{10 \mathrm{pc}}{\mathrm{~d}}\right) \\
\Rightarrow \quad d=10^{1+\frac{m-M}{5}} \mathrm{pc}=10^{-5+\frac{m-M}{5}} \mathrm{Mpc} \equiv \mathrm{~d}_{L} \\
\stackrel{\left[d_{L}\right]=M p c}{\Rightarrow} m-M=25+5 \log \left(d_{L}\right)-5 \log \left(H_{0}\right)+5 \log \left(H_{0}\right)
\end{gathered}
$$

- distance modulus

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{\text {obs }}}}=\left(1+z_{E}\right) R_{0} x_{E}
$$

- apparent magnitudes $m: \quad m_{1}-m_{2}=-2.5 \log _{10}\left(\frac{F_{1}}{F_{2}}\right) \quad$ where $F=\frac{L}{4 \pi d^{2}}$
- absolute magnitudes $M: \quad m-M=-2.5 \log _{10}\left(\frac{L}{4 \pi d^{2}} \frac{4 \pi(10 \mathrm{pc})^{2}}{L}\right)$

$$
\begin{array}{r}
\qquad=-2.5 \log _{10}\left(\frac{(10 \mathrm{pc})^{2}}{d^{2}}\right)=-5 \log \left(\frac{10 \mathrm{pc}}{\mathrm{~d}}\right) \\
\Rightarrow \quad d=10^{1+\frac{m-M}{5}} \mathrm{pc}=10^{-5+\frac{m-M}{5}} \mathrm{Mpc} \equiv \mathrm{~d}_{L} \\
\stackrel{\left[d_{L}\right]=M p c}{\Rightarrow} m-M=25-5 \log \left(H_{0}[\mathrm{~km} / \mathrm{sec} / \mathrm{Mpc}]\right)+5 \log \left(H_{0} d_{L}\right)
\end{array}
$$

- distance modulus

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\left(1+z_{E}\right) R_{0} x_{E}
$$

- apparent magnitudes m :

$$
m_{1}-m_{2}=-2.5 \log _{10}\left(\frac{F_{1}}{F_{2}}\right) \quad \text { Where } F=\frac{L}{4 \pi d^{2}}
$$

- absolute magnitudes M :

$$
\left.m-M=-2.5 \log _{10}\left(\frac{L}{4 \pi d^{2}} \frac{4 \pi(10 \mathrm{pc})^{2}}{L}\right)\right)
$$

$$
=-2.5 \log _{10}\left(\frac{(10 \mathrm{pc})^{2}}{d^{2}}\right)=-5 \log \left(\frac{10 \mathrm{pc}}{d}\right)
$$

$$
\Rightarrow \quad d=10^{1+\frac{m-M}{5}} \mathrm{pc}=10^{-5+\frac{m-M}{5}} \mathrm{Mpc} \equiv \mathrm{~d}_{L}
$$

$$
\stackrel{\left[d_{L}\right]}{=M p c} m-M=25-5 \log \left(H_{0}[\mathrm{~km} / \mathrm{sec} / \mathrm{Mpc}]\right)+5 \log \left(H\left(d_{L}\right)\right.
$$

- distance modulus

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{\text {obs }}}}=\left(1+z_{E}\right) R_{0} x_{E}
$$

- apparent magnitudes m.

$$
\begin{aligned}
m_{1}-m_{2} & =-2.5 \log _{10}\left(\frac{F_{1}}{F_{2}}\right) \quad \text { where } F=\frac{L}{4 \pi d^{2}} \\
\text { gnitudes } m: \int-M & =-2.5 \log _{10}\left(\frac{L}{4 \pi d^{2}} \frac{4 \pi(10 \mathrm{pc})^{2}}{L}\right) \\
& =-2.5 \log _{10}\left(\frac{(10 \mathrm{pc})^{2}}{d^{2}}\right)=-5 \log \left(\frac{10 \mathrm{pc}}{\mathrm{~d}}\right)
\end{aligned}
$$

$$
\downarrow=>\quad d=10^{1+\frac{m-M}{5}} \mathrm{pc}=10^{-5+\frac{m-M}{5}} \mathrm{Mpc} \equiv \mathrm{~d}_{L}
$$

$$
\stackrel{\left[d_{L}\right]=M p}{=>} \longrightarrow M=25-5 \log \left(H_{0}[\mathrm{~km} / \mathrm{sec} / \mathrm{Mpc}]\right)+5 \log \left(H_{0} d_{L}\right)
$$

- distance modulus

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{\text {obs }}}}=\left(1+z_{E}\right) R_{0} x_{E}
$$

- observation m :

$$
F_{o b s}=10^{-2 m / 5} \times 2.52 \times 10^{-5} \frac{\mathrm{erg}}{\mathrm{~cm}^{2} \mathrm{sec}}
$$

- standard candle $M: \quad L_{E}=10^{-2 M / 5} \times 3.02 \times 10^{35} \frac{\mathrm{erg}}{\mathrm{sec}}$

$$
m-M=25-5 \log \left(H_{0}[\mathrm{~km} / \mathrm{sec} / \mathrm{Mpc}]\right)+5 \log \left(H_{0} d_{L}\right)
$$

- distance modulus

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{\text {obs }}}}=\left(1+z_{E}\right) R_{0} x_{E}
$$

- observation m :

$$
F_{o b s}=10^{-2 \mathrm{~m} / 5} \times 2.52 \times 10^{-5} \frac{\mathrm{erg}}{\mathrm{~cm}^{2} \mathrm{sec}}
$$

=> invert to get m and M

- standard candle $M: \quad L_{E}=10^{-2 M / 5} \times 3.02 \times 10^{35} \frac{\mathrm{erg}}{\mathrm{sec}}$

$$
m-M=25-5 \log \left(H_{0}[\mathrm{~km} / \mathrm{sec} / \mathrm{Mpc}]\right)+5 \log \left(H_{0} d_{L}\right)
$$

- $m(z)$-relation

$$
\begin{aligned}
& m-M=25-5 \log \left(H_{0}\right)+5 \log \left(D\left(z, \Omega_{m, 0}, \Omega_{\Lambda, 0}\right)\right) \\
& D_{\left(z, \Omega_{m, 0}, \Omega_{\Lambda, 0}\right)=\frac{c(1+z)}{\sqrt{k \mid}} \operatorname{sinn}\left(\sqrt{|k|} \int_{0}^{2}\left[\left(1+z^{\prime}\right)^{2}\left(1+\Omega_{m, 0^{\prime}}\right)-z^{\prime}\left(2+z^{\prime}\right) \Omega_{\Lambda, 0}\right]^{-1 / 2} d z^{\prime}\right)}=\text {) }
\end{aligned}
$$

- $m(z)$-relation

$$
\begin{aligned}
& m-M=25-5 \log \left(H_{0}\right)+5 \log \left(Q\left(z, \Omega_{m, 0}, \Omega_{\Lambda, 0}\right)\right) \\
& D_{\left(z, \Omega_{m, 0}, \Omega_{\Lambda, 0}\right)}=\frac{c(1+z)}{\sqrt{|k|}} \sin \left(\sqrt{|k|} \int_{0}^{2}\left[\left(1+z^{\prime}\right)^{2}\left(1+\Omega_{m, 0} z^{\prime}\right)-z^{\prime}\left(2+z^{\prime}\right) \Omega_{\Lambda, 0}\right]^{-1 / 2} d z^{\prime}\right)
\end{aligned}
$$

- m, z : observables
- M : standard candle
- $m(z)$-relation

$$
\begin{aligned}
& m-M=25-5 \log \left(\underline{H_{0}}\right)+5 \log \left(D\left(z, \underline{\Omega_{m, 0}, \Omega_{\Lambda, 0}}\right)\right) \\
& \left.D_{\left(z, \Omega_{m, 0}, \Omega_{\Lambda, 0}\right)=\frac{c(1+z)}{\sqrt{k \mid}]} \operatorname{sinn}\left(\sqrt{|k|} \int_{0}^{2}\left[\left(1+z^{\prime}\right)^{2}\left(1+\Omega_{m, z^{\prime}}\right)-z^{\prime}\left(2+z^{\prime}\right) \Omega_{\Lambda, 0}\right]^{-1 / 2} d z^{\prime}\right)}\right)
\end{aligned}
$$

- m, z: observables
- $H_{0}, \Omega_{m, 0}, \Omega_{\Lambda, 0}$: cosmology
- M : standard candle
- $m(z)$-relation

$$
\begin{aligned}
& m-M=25-5 \log \left(H_{0}\right)+5 \log \left(D\left(z, \Omega_{m, 0}, \Omega_{\Lambda, 0}\right)\right) \\
& D_{\left(z, \Omega_{m, 0}, \Omega_{\Lambda, 0}\right)}=\frac{c(1+z)}{\sqrt{|k|}} \sin \left(\sqrt{|k|} \int_{0}^{2}\left[\left(1+z^{2}\right)^{2}\left(1+\Omega_{m, z^{\prime}}\right)-z^{\prime}\left(2+z^{\prime}\right) \Omega_{\Lambda, 0}\right]^{-1 / 2} d z^{\prime}\right)
\end{aligned}
$$

- m, z: observables
- $H_{0}, \Omega_{m, 0}, \Omega_{\Lambda, 0}$: cosmology
- M : standard candle
\rightarrow measuring H_{0}

- $m(z)$-relation

$$
\begin{aligned}
& m-M=25-5 \log \left(H_{0}\right)+5 \log \left(D\left(z, \Omega_{m, 0}, \Omega_{\Lambda, 0}\right)\right) \\
& D_{\left(z, \Omega_{m, 0}, \Omega_{\Lambda, 0}\right)=\frac{c(1+z)}{\sqrt{k \mid}} \operatorname{sinn}\left(\sqrt{|k|} \int_{0}^{2}\left[\left(1+z^{\prime}\right)^{2}\left(1+\Omega_{m, z^{\prime}}\right)-z^{\prime}\left(2+z^{\prime}\right) \Omega_{\Lambda, 0}\right]^{-1 / 2} d z^{\prime}\right)}=\text {) }
\end{aligned}
$$

- m, z: observables
- $H_{0}, \Omega_{m, 0}, \Omega_{\Lambda, 0}$: cosmology
- M: standard candle
\rightarrow measuring q_{0}

- $m(z)$-relation

$$
\begin{aligned}
& m-M=25-5 \log \left(H_{0}\right)+5 \log \left(D\left(z, \Omega_{m, 0}, \Omega_{\Lambda, 0}\right)\right) \\
& D_{\left(z, \Omega_{m, 0}, \Omega_{\Lambda, 0}\right)=}=\frac{c(1+z)}{\sqrt{k \mid}} \operatorname{sinn}\left(\sqrt{|k|} \int_{0}^{z}\left[\left(1+z^{\prime}\right)^{2}\left(1+\Omega_{m, 0^{\prime}}\right)-z^{\prime}\left(2+z^{\prime}\right) \Omega_{\Lambda, 0}\right]^{-1 / 2} d z^{\prime}\right)
\end{aligned}
$$

- m, z: observables
- $H_{0}, \Omega_{m, 0}, \Omega_{\Lambda, 0}$: cosmology
- M : standard candle
\rightarrow measuring q_{0}

- $m(z)$-relation

$$
\begin{aligned}
& m-M=25-5 \log \left(H_{0}\right)+5 \log \left(D\left(z, \Omega_{m, 0}, \Omega_{\Lambda, 0}\right)\right) \\
& D_{\left(z, \Omega_{m, 0}, \Omega_{\Lambda, 0}\right)}=\frac{c(1+z)}{\sqrt{|k|}} \sin \left(\sqrt{|k|} \int_{0}^{2}\left[\left(1+z^{2}\right)^{2}\left(1+\Omega_{m, z^{\prime}}\right)-z^{\prime}\left(2+z^{\prime}\right) \Omega_{\Lambda, 0}\right]^{-1 / 2} d z^{\prime}\right)
\end{aligned}
$$

- m, z : observables
- $H_{0}, \Omega_{m, 0}, \Omega_{\Lambda, 0}$: cosmology
- M : standard candle
\rightarrow measuring q_{0}

- $m(z)$-relation
- SN la are feasible standard candles:
- visible out to $z \approx 1$
- small dispersion of light curve maximum
- light curve independent on redshift
- Perlmutter et al. (I997,ApJ, 483, 565*)
- Garnavich et al. (1997,AAS presentation ${ }^{+}$) $\}$

$$
q_{0}<0 \Rightarrow \Omega_{\Lambda, 0} \neq 0
$$

- $m(z)$-relation
- SN la are feasible standard candles:
- visible out to $z \approx 1$
- small dispersion of light curve maximum
- light curve independent on redshift
- Perlmutter et al. (I997,ApJ, 483, 565*)
- Garnavich et al. (I997,AAS presentation ${ }^{+}$) $\} q_{0}<0 \Rightarrow \Omega_{\Lambda, 0} \neq 0$
- Riess, Schmidt et al. (I998, AJ, I I6, 1009*)
- $m(z)$-relation for SN -la - the money plots...

- $m(z)$-relation for SN-la - Union 2* data set

- $m(z)$-relation for SN-la - Union 2 data set vs. Λ CDM

- comoving distance:

$$
d_{c} \quad=\frac{c}{H_{0}} \int_{0}^{z_{E}} \frac{1}{E(z)} d z
$$

- proper distance:

$$
d_{p} \quad=\frac{R(t)}{R_{0}} d_{C}
$$

- luminosity distance:

$$
d_{L}=\sqrt{\frac{L_{E}}{4 \pi F_{o b s}}}=\frac{R_{0}}{R(t)} R_{0} x_{E}
$$

- angular diameter distance: $\quad d_{A}=\frac{D}{\vartheta_{o b s}}$

$$
=\frac{R(t)}{R_{0}} R_{0} x_{E}
$$

$$
x_{E}=\left\{\begin{array}{ccc}
\frac{1}{R_{0}} & d_{c} & ; k=0 \\
\frac{1}{R_{0}} \frac{c}{H_{0} \sqrt{\left|\Omega_{k, 0}\right|}} \sin \left(\frac{\sqrt{\left|\Omega_{k, 0}\right|} H_{0}}{c} d_{c}\right) & ; k=1 & E^{2}(z)=\sum_{i} \Omega_{i, 0}(1+z)^{3\left(1+w_{i}\right)} \\
\frac{1}{R_{0}} \frac{c}{H_{0} \sqrt{\left|\Omega_{k, 0}\right|}} \sinh & \left(\frac{\sqrt{\Omega_{k, 0}} \mid H_{0}}{c} d_{c}\right) & ; k=-1
\end{array} \Omega_{k, 0}=-\frac{c^{2} k}{R_{0}^{2} H_{0}^{2}},\right. \text { cf. FRW lecture }
$$

[^0]: ...but how to calculate $f\left(x_{E}\right)$ for object at given redshift z_{E} ?

