Cosmic Dawn:The First Stars & Galaxies

Alexander Knebe (Universidad Autonoma de Madrid)

"We've discovered a massive dust and gas
cloud which is either the beginning of a new
star, or just an awful lot of dust and gas."
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~ 1 billion <-Reionization complete

Galaxies evolve

~ 9 billion
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~ 13 billion 00 Today: Astronomers
.. figure it all out!

S.G. Djorgovski et al. & Digital Media Center, Caltech
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A Schematic Outline of the Cosmic History
Time since the ‘ .
Big Bang (years) | < The Big Bang
The Universe filled

R Ry /" (onized gas

~ 300 thousand ~The Universe becomes
neutral

The Dark Ages start

...but how do the first stars & galaxies form?

Galaxies and Quasars
begin to form
~ 500 million The Reionization starts

Cosmic Dawa

The Cosmic Renaissance
The Dark Ages end

~ 1 billion ~ <-Reionization complete

= after photon decoupling...
Universe continues to expand and cool
no new sources of energy
‘em forms

dark matter continues to cluster and...

...baryons fall into dark matter potential wells
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* the dark ages of the Universe
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= the first galaxies

" implications for subsequent structure formation
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\_

ﬂ first stars — summary

star formation requires coolant for collapse

only available coolant for first stars = H,

sufficient conditions are given for z < 100

numerical models suggest that first stars are very massive M € [10, 500]Mg

massive stars die hard & fast:
* supernovae of M € [8, 100]Mg will pollute IGM with metals, and

* those metals facilitate subsequent star formation

~N
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" star formation in general

* virial theorem

G=Eﬁi"_;i "

)
*Note: moment of inertia => I=Emi|?i|2 = %%=%% mi|fi|2=%2mz’dl;;| =Emi7;.r;=2ﬁi.?;=G

i i i i




Cosmic Dawn:The First Stars & Galaxies

the first stars

" star formation in general

* virial theorem




Cosmic Dawn:The First Stars & Galaxies

the first stars

" star formation in general

* virial theorem

dG

dr =Eﬁi"7i+2Ekin

i




Cosmic Dawn:The First Stars & Galaxies

the first stars

" star formation in general

* virial theorem

dG

dr =Eﬁi"7i+2Ekin

i

\%|
ol
<3

Il
15
4
S




Cosmic Dawn:The First Stars & Galaxies

the first stars

" star formation in general

* virial theorem

dG
Z = nEpot + 2Ek

in




Cosmic Dawn:The First Stars & Galaxies

the first stars

" star formation in general

* virial theorem

dG
Z = nEpot + 2Ek

in

dG 1 +dG 1
<E> - ?{Edt = ;[G(r)—G(O)]
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" star formation in general

* virial theorem

dG
Z = nEpot + 2Ek

in

G

max

|=

7\ T
bound system!

(coordinates and velocities have upper and lower limits...)

Gmin

dG 1 +dG 1
<dt >T r‘{ dt t I[G(T) )
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" star formation in general

* virial theorem

dG
E = nEpot + 2Ek

in

<dG> =lfd_Gdt=l[G(r)—G(0) G =G ==,

G IE
dt T, dt T f T

bound system!
(coordinates and velocities have upper and lower limits...)
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" star formation in general

* virial theorem

dG
E = nEpot + 2Ek

in

<dG> =lfd_Gdt=l[G(r)—G(0) G =G ==,

G IE
dt T, dt T f T

bound system!
(coordinates and velocities have upper and lower limits...)

dG n
= 0s <E>r B 2<Ekin >r + n<Ep0t>1: ’ Epm xr
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the first stars

" star formation in general

e virial theorem (=-1 for gravity)

0=2(E,,) —<Epm >, , E, =Cr"

can be used to derive the Jeans mass for a homogenous sphere...
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" star formation in general

e virial theorem (:=-1 for gravity)

0=2(E,,) —<Epm >, , E, =Cr"

» gravitational potential of homogeneous sphere (ie. p= const.)
M(r)=p4?ﬂr3

dM(r) = pdmr’dr
M(r)dM(r)
r

dE . =-G

pot
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" star formation in general

e virial theorem (:=-1 for gravity)

0=2(E,,) —<Epm >, , E, =Cr"

» gravitational potential of homogeneous sphere (ie. p= const.)
M(r)=p4?ﬂr3

dM(r) = pdmr’dr
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r 0

:
ar
3

2
redr

R
=-471Gp’ f

16.7772 zR 4
- G ridr
5o

o

r

162° ., 5. s
=— Gp°R
15 o

167° G M?




Cosmic Dawn:The First Stars & Galaxies

the first stars

" star formation in general

e virial theorem (:=-1 for gravity)

0= 2<Ekin >17 _<Ep0t >T

» gravitational potential of homogeneous sphere (ie. p= const.)

Pt 50 R




Cosmic Dawn:The First Stars & Galaxies the first stars

" star formation in general

e virial theorem (:=-1 for gravity)

0= 2<Ekin >17 _<Ep0t >T

» gravitational potential of homogeneous sphere (ie. p= const.)

Pt 50 R

* kinetic energy of homogeneous (gas) sphere

E,, = %NkBT = i M

2 uymy

k,T
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" star formation in general

e virial theorem (:=-1 for gravity)

0= 2<Ekin >17 _<Ep0t >T

» gravitational potential of homogeneous sphere (ie. p= const.)

3 M’ )
EPOI == T
5 R
L 3(5k,)’”
* kinetic energy of homogeneous (gas) sphere > 1M, =\/4W(GﬂBm % T
H"""H
E, = NkT=>M k1
2 2 wymy
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the first stars

" star formation in general

e virial theorem (:=-1 for gravity)

0= 2<Ekin >17 _<Ep0t >T

* Jeans mass
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M, = 5.46( B ) (—)
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the first stars

" star formation in general

e virial theorem (:=-1 for gravity)

0= 2<Ekin >17 _<Ep0t >T

* Jeans mass

M,=5.46( Ky

Guy,my
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relation between 7 and p determines fate of collapse...
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the first stars

" star formation in general

* nature of gravitational collapse

= adiabatic?

PV' =const. = Txp' ™ = Txp*”

P=—P k1

Uy

y=5/3

(monatomic gas)
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" star formation in general

* nature of gravitational collapse

= adiabatic?

PV' =const. = Txp' ™ = Txp*”

P=—F k1 y=5/3
Uymy (monatomic gas)
k 3/2 T3 1/2
M,=546|—2 | |—| = /p
Guymy P

M > M; => collapse starts => p A => M; 21 => collapse stops!
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" star formation in general

* nature of gravitational collapse

= isothermal!

T = const.

. 32 73\ {
PR T
Guymy P \/;

:

M > M, => collapse starts => p 2 => M, N => “runaway” collapse!

collapse converges to isothermal sphere...
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" star formation in general

* nature of gravitational collapse

= isothermal sphere

M, 1/ 1 |
pr—taNE — pla = px_ = logpx-2logR
3 3 3 2
RJ RJ RJ RJ
density profile asymptotically approaches logarithmic slope of -2
log p

| | | |
Ry(t3) R,(t) Rit) Ryt log R
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" star formation in general

* nature of gravitational collapse

= isothermal collapse requires cooling:

dust grains/metals can absorb and re-emit energy...
...but there are no such things at cosmic dawn!?*

* see BBNS lecture
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" star formation in general

* nature of gravitational collapse

= isothermal collapse requires cooling:

dust grains/metals can absorb and re-emit energy...
...but there are no such things at cosmic dawn!?*

this is where and why the first star formation differs from today’s:

in the primeval Universe was no dust/metal acting as coolant!

* see BBNS lecture
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* cooling

the dominant coolant is (molecular) hydrogen H, !
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= first star formation

* cooling

the dominant coolant is (molecular) hydrogen H, !

* cooling by H, via rotational/vibrational channels:

o rotational/vibrational excitation through collision

o de-excitation via...
- radiation (— cooling) or
- collision
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the first stars

= first star formation

» cooling by H, requires H, in the first place...

.. formation of H,

O
O

O
O

o

H+ e —H +y
H+H  SH+e
H+p —Hy +y

H+H —H, +H*

H+H+H —H,+H
H+H+H2 —>H2+H2
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the first stars

= first star formation

» cooling by H, requires H, in the first place...

.. formation of H,

O H+e

o H+H

O H+p

o H+H,

o H+H+H
© H+H+H,

—H +y
— H, + e

— H," + y
— H, + H*

— H, +H
— H, + H,

*remnants of the epoch of recombination plus ionized H by energy of initial collapse

we require*:

> e presence of free e and p
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the first stars

= first star formation

» cooling by H, requires H, in the first place...

.. formation of H,

O
O

o

H+ e
H+ H-

H+p
H+ H,*

H+H+H
H+H+H,

—H +y
— H, + e

— H," + y
— H, + H*

— H, +H
— H, + H,

*remnants of the epoch of recombination plus ionized H by energy of initial collapse

we require*:

> e presence of free e and p

J

} * high densities n;;>10%cm™
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= first star formation

» cooling by H, requires H, in the first place...
.. formation of H, requires:
©  presence of free e and p

O high densities 7n;;>10%cm™

.. H, fraction x4, must exceed ~5x 10~ for cooling to be effective
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the first stars

= first star formation

* cooling by Hy:

formation of H,

H, fraction
\\ \l T T T T T T ] T T T _
. \\
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(Tegmark et al. 1997)

H, fraction produced
in Hubble time

-
e © H (2)

H, fraction able
to cool in Hubble time

3T
2nA(T)

cool

(A(T): cooling function)
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the first stars

= first star formation

* cooling by Hy:

0.01
10-3
-
o
2
3
©
& 1074
EN
10-5
10-6

formation of H,

H, fraction

T T T T T 1 ] T T T

we require of order Yy = 5% 103
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(Tegmark et al. 1997)

H, fraction produced
in Hubble time

-
e © H (2)

H, fraction able
to cool in Hubble time

3T
2nA(T)

cool

(A(T): cooling function)
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= first star formation

* cooling by H,:  formation of H,

H, fraction
\l\ T T T T T T ] T T T A
001 N we require of order Yy = 5% 103 —
s ~ o N G‘?ﬁ f 2=100
~- Q) NO Jd H, fraction produced
~ \“‘{\P\ 2 2z=50
Seo ~~ - e . in Hubble time
-3 R e =25 i
c ]-O T~ 7 '>"< ///gz tHubbleocH I(Z)
9 - ~—" S~ -
5 ST, T
© ]7:47’ }: Seo H, fraction able
= 1074 0 == ===dz=50 : .
G4— NE’ 3 to cool in Hubble time
o E’D -
- = z=100 _ kT
N ! 2nA(T)
o
1 0_5 = (A(T): cooling function)
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= first star formation

* cooling by H,:  formation of H,

H, cooling function A(7)

6 -3
n, =10"cm

) ||||l||}\- Lol

Cooling rate (erg cm® s™%)
10728 107”7 107%6 107®° 107** 10?3 107®®

(Glover 2005)

I.! lllllll
11 IIIIIII

100 1000

[
o
N

Temperature (K)

cooling efficiency increases with temperature!
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= first star formation

* cooling by H,
o adiabatic collapse due to lack of sufficient H,
o increasing density leads to more H,
o increasing temperature leads to more efficient cooling

o collapse becomes isothermal...
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= first star formation

* cooling by H,
o adiabatic collapse due to lack of sufficient H,
o increasing density leads to more H,
o increasing temperature leads to more efficient cooling

o collapse becomes isothermal...

...how massive are those first stars!?
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= first star formation

* masses of first stars

o mass growth of proto-stellar gas cloud: M. (r)=M , +fM(r)dr
0
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= first star formation

* masses of first stars

o mass growth of proto-stellar gas cloud: M, (r)=M, +fM(r)dr

o numerical models for mass accretion rate M dM/dt Iead to..

o
(@]
o IIIII T IIIIIIII T IIIIIIII T IIIIIIII T IIIIIIE
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= first star formation

* masses of first stars

o mass growth of proto-stellar gas cloud: M, (r)=M, +fM(r)dr

o numerical models for mass accretion rate M dM/dt Iead to..

o
o
o I I I IIII g
b 4
1 in very short times the proto-star
' becomes extremely massive!
>
=3
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=
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= first star formation

* masses of first stars

o mass growth of proto-stellar gas cloud: M, (r)=M, +fM(r)d1,~
o numerical models for mass accretion rate M dM/dt Iead to..

o feedback can substantially reduce accretion rates and hence M.:

I I I

60 | without feedback
50 1

M. (M)

with feedback
30

20

stellar mass :

10

(Yoshida et al. 2012)

0 2 4 6 8
time (10* yr)

ok
a)
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the first stars

= first star formation

e primeval Initial Mass Function

o first stars have mass M € [10, 500]Mg

o determined via simulations:
20 1 I I

—
un
T

Number of stars
o

first stars

(Susa et al. 2014)
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= first star formation

e primeval Initial Mass Function

o first stars have mass M € [10, 500]Mg

o determined via simulations:

20 ] .
substantially different from current IMF:
B I T I T T T T I T T T B
n 15+ 4k ]
© - ., i
= X
W —
b~ >
: :
8 =
2 10 2
> e
z &
Wip
F = —~
— D N
SIS =
= s
o . | 8
e o ]
7] 1|11<l|||1||1|m|-|-1»:v
A
= -1 0 1
log(Mstar /Msun)
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* on the life and death of high-mass stars

* mass-luminosity relation for main sequence stars

Locd_E

dt
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* on the life and death of high-mass stars

* mass-luminosity relation for main sequence stars’
dE
Loc—oc M
dt

*approximate derivation:

perfect black-body radiator: [, =47R*0T*

E 2 1/4
ap__GMp <P>=_lﬂ N <p>v=_lEm=1GM T Mo M L
dr r 3V 3 5 R my m, 4mR

RoM"™ \ M2 5% /
«—

MP L < M'«LM”® < M'«LR < MxL"R” = Mo

hydrostatic equilibrium:
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the first stars

* on the life and death of high-mass stars

* mass-luminosity relation for main sequence stars

LOCd—EOCM3'5

dt

* energy reservoir is proportional to mass

E oM
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the first stars

* on the life and death of high-mass stars

* mass-luminosity relation for main sequence stars

LOCd—EOCM3'5

dt

* energy reservoir is proportional to mass

E oM

— typical time on main sequence T = E/L oc M2




Cosmic Dawn:The First Stars & Galaxies

the first stars

* on the life and death of high-mass stars

* mass-luminosity relation for main sequence stars

LOCd—EOCM3'5

dt

* energy reservoir is proportional to mass

E oM

— typical time on main sequence T = E/L oc M2 “

“ high-mass stars die hard® & fast*® “

$ spectecular end-stages *after a few Myrs only!
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* on the life and death of high-mass stars

» metal-free high-mass stars either...
o form a black hole or...

o completely disrupt (‘pair instability supernova’)
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the first stars

* on the life and death of high-mass stars

* initial mass vs. final mass in general

A low mass stars massive stars very massive stars : \/oe?"
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the first stars

* on the life and death of high-mass stars

* initial mass vs. final mass in general

A low mass stars massive stars very massive stars : \,o"?"
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the first stars

* on the life and death of high-mass stars

* initial mass vs. final mass in general

final mass [Mg]
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\_

ﬂ first stars — summary

star formation requires coolant for collapse

only available coolant for first stars = H,

sufficient conditions are given for z < 100

numerical models suggest that first stars are very massive M € [10, 500]Mg

massive stars die hard & fast:
* supernovae of M e [8, 100]Mg will pollute IGM with metals, and

* those metals facilitate subsequent star formation

~N




Cosmic Dawn:The First Stars & Galaxies

the first stars

" first stars — open questions

» do the first stars also form in binaries?

* how did Pop Il star formation come to an end?
 what is the influence of magnetic fields?
* how exactly works turbulence/fragmentation?

* what about dark matter?




Cosmic Dawn:The First Stars & Galaxies the first stars

" first stars — open questions

» do the first stars also form in binaries?
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E ‘ Single Star Fraction F _4.501 E
06E™ Binary Star Fraction F_;. 501 3
- Triple Star Fraction F _,. 501 3
O.bF Quadruple Star Fraction F _5.501 3
s U4y E
.O: E et e T e s ghanare 3
- C Lawwerrtt -
L O’B :_ ----- | .... ) —:
0.2F =
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Primary Mass M, (Mg) £
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" first stars — open questions

» do the first stars also form in binaries?

T T I T T T T T T T T I T T
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4} Binary Star Fraction F 1:q>0.1
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Moe et al. (2017)
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the first stars

" first stars — open questions

» do the first stars also form in binaries?

* how did Pop Il star formation come to an end?
 what is the influence of magnetic fields?
* how exactly works turbulence/fragmentation?

« what about dark matter?
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* the dark ages of the Universe
" the first stars
» the first galaxies

" implications for subsequent structure formation
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= the first bound objects

* protogalaxies! are forming within dark matter halos

— baryons fall into dark matter potential wells

Iprotogalaxy = gravitationally bound gas cloud
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= the first bound objects

* protogalaxies are forming within dark matter halos

— baryons fall into dark matter potential wells

biased galaxy formation scenario (White & Rees 1974)
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protogalaxies

ﬂ the first bound objects — summary

characterize DM peaks by their “height” v

v Q% , O (M)=
D(a)o(M)

1
20

[ R()Wy; (k)k*dk,  D+2HD - %QmHzD =0
0

compare dark matter M, (a) to its Jeans mass M (a)

it is possible to form 3-o dark matter haloes already at z=30

dark matter haloes virialize due to relaxation processes

~N
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protogalaxies

ﬂ the first bound objects — summary

characterize DM peaks by their “height” v

1
o

[ R()Wy; (k)k*dk,  D+2HD - %QmHzD =0
0

0y (M) = >

Ve
D(a)a(M)

compare dark matter M, (a) to its Jeans mass M (a)

it is possible to form 3-o dark matter haloes already at z=30

dark matter haloes virialize due to relaxation processes

~N
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= the first bound objects

* number density of dark matter halos (according to Press-Schechter formalism)

— 2
ﬂdM = \/z p o exp _662 am
dM Mo, 20, | M

dIno,,
dinM

1
27

oh =— TP(k)Wz(kR)kz dk
W (x) = %(sin(x) ~ xcos(x))
X

D(a)
D(a,)

P(k) = ) P (k)




Cosmic Dawn:The First Stars & Galaxies protogalaxies

= the first bound objects

* number density of dark matter halos (according to Press-Schechter formalism)

— 2
ﬂdM = \/z p o exp _662 am
dM Mo, 20, | M

dIno,,
dinM

oo N
oy = 12 [ PUOW? (kR)K* dk
27, , :
combine and introduce
W(x)=%(sin(x)—xcos(x)) > _ &
x " T D@)oo(M)
D(a) )
P(k) = P,(k
(k) 5 (ao)) (k) )




Cosmic Dawn:The First Stars & Galaxies

protogalaxies

= the first bound objects

* number density of dark matter halos (according to Press-Schechter formalism)

_dM \f(@‘

0

C

" D(z)o,(M)

1 o0
Ty (M) = 2% "

o\
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protogalaxies

= the first bound objects

* number density of dark matter halos (according to Press-Schechter formalism)

—dM

0

C

" D(z)o,(M)

1 o0
Ty (M) = 2% "

Sk 5o

characterize peaks by their “height”
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ﬂ the first bound objects — summary \

* characterize DM peaks by their “height” v

V= __ % , o (M)=
D(a)o(M)

1
20

[ R()Wy; (k)k*dk,  D+2HD - %QmHzD =0
0

« compare dark matter M, (a) to its Jeans mass M (a)
* it is possible to form 3-o dark matter haloes already at z=30

* dark matter haloes virialize due to relaxation processes

g )
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= the first bound objects

- dark matter halo mass > Jeans mass

—> definite collapse!
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= the first bound objects

1A

- dark matter halo mass >[jeans mass]

—> definite collapse!




Cosmic Dawn:The First Stars & Galaxies protogalaxies

= the first bound objects

3 1/2
« dark matter halo mass >[jeans mass:] M, x (T_)
P

(cf.“star formation” slides)
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protogalaxies

= the first bound objects

(3
- dark matter halo mass >[jeans mass:] M, x

?

1/2
T )

0
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= the first bound objects

6 1/2
« dark matter halo mass >[jeans mass:] M, x (Uv )
P

E,. = ENkBT =—mo.
2 2
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protogalaxies

= the first bound objects

- dark matter halo mass >[jeans mass:] M, oc(

6

1%

0

1/2
y )
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protogalaxies

= the first bound objects

6]
« dark matter halo mass >[ eans mass:] M g,
P

\1/2

J

scaling with redshift?
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= the first bound objects

6 1/2
« dark matter halo mass >[jeans mass:] M, x (Uv )
P

O, Xa

pXa
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= the first bound objects

6 1/2
« dark matter halo mass >[jeans mass:] M, x (Uv )
P

g, x a1

[M x a‘3/2}
s ]

p X a
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= the first bound objects

6 1/2
« dark matter halo mass >[jeans mass:] M, x (Uv )
P

1

O, Xa

L (Mea] - az s MN

p X a
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= the first bound objects

6 1/2
« dark matter halo mass >[jeans mass:] M, x (Uv )
P

1

O, Xa

L (Mea] - az s MN

p X a

= formation becomes easier and easier...
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= the first bound objects

1/2

6
- dark matter halo mass >[jeans mass:] M, x 9,
o,

g, x a1

L (Mea] - az s MN

p X a

= formation becomes easier and easier...

Note:
This Jeans mass refers to the mass of a dark matter halo, but determines

whether its baryonic component is able to collapse or will be prevented from it.
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protogalaxies

= the first bound objects

6 1/2
.[dark matter halo mass}> Jeans mass: M (av )

evolution of M, (a)?

g, x a1

-3

p X a

0

[M]oca‘3/2] — a/ = M;\

= formation becomes easier and easier...
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= the first bound objects
e “3-0 dark matter halos”
0 .
V= - = D(z) = linear growth factor (. Lss lecture)
D(z2)o,(M,,,)
| A
ol(M)= — RAGUAG L
0
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= the first bound objects
e “3-0 dark matter halos”
o) .
V= < =3 D(z) = linear growth factor (. Lss lecture)
[P0, (M)
scaling with redshift? o2 (M) = 2;2 f P k)Wjé (> dk
0
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= the first bound objects

e “3-0dark matter halos”

0

V5 < =3 D(z) = linear growth factor (. Lss lecture)
[P0, (M)

1
20

0y (M) = }%(k)ﬁvﬁ (k)k*dk

ACDM model

z=0 =——
7O LTTTTT]
10 F 0f3 --nene- -

v=38/3=0.562

a(M) = D(z)oo(M)

0.01 1 1 1 1 1
1e+06 1e+08 1e+10 1le+12 1le+14 1e+16
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= the first bound objects

e “3-0dark matter halos”

0

V5 < =3 D(z) = linear growth factor (. Lss lecture)
[P0, (M)

1

oy (M) = 2’

jpo(k)W; (k> dk

ACDM model

z=0 =——
7O LTTTTT]
10 | O r

v=38/3=0.562

a(M) = D(z)oo(M)

0.01

1 1 1 1 1
1e+06 1e+08 1e+10 1le+12 1le+14 1e+16
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= the first bound objects

e “3-0dark matter halos”

6 s . )
V 5 < =3 2. D(z) = linear growth factor
\ v
(L@, e = w
) 2 2 2
03 (M) = —— [ Ry(OW;; (o dk
ACDM model . T o WV,
Z7=0 —
z=20 w=summms
10 | N 7
\
g
S
R
S
S v=5/3=0.562
” ey, =
—~ h ""Z-\r.%.O
2 Ay,
| — o] a,
o od
001 1eI+O6 19:-08 19:-10 1e:-12 1e:-14 1e+16
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= the first bound objects

e “3-0dark matter halos”

V 5 % =3 2. D(z) = linear growth factor
[PG@)oy (M) » \
| 30 = [ B OW (ke dk
ACDM model . T o J
3. | | | I

8/3 reeen i

D(z)ao(M)

v=38/3=0.562

o(M)

0.01

1 1 1 1 1
1e+06 1e+08 1e+10 1le+12 1le+14 1e+16
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= the first bound objects

e “3-0dark matter halos”

0 .
V5 < =3 2. D(z) = linear growth factor
[P@o,(M,,) » 3
. 1 % A
2 2 2
ol(M)= — f P, (k)W (k)k*dk
ACDM model \. 0 J
1 3. | | | =
S
S
fl\? 1
Do A R .\ W v=8/3=0.562
Il
S
o o1
4. %G (22218302 ]06.7 ]\/1[;+08 1e+1OM 1e+12 MLGE;A;O): 101:3;—1]\6/[@ :> M36 (Z)
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= the first bound objects
e “3-0 dark matter halos”
0 9] _ 5
V5 < =3 - D(z) = linear growth factor
[D)o,(01,)] y 2
1 = n
03 (M) = —— [ Ry(OW;; (o dk
ACDM model \. T o J

a(M) = D(z)oo(M)

0.01

z=0 =——
7O LTTTTT]
[ - -

v=38/3=0.562
v=6/4=0422

1 1 1
4 1e+06 1e+08 1e+10

My (2200~ 10° Mo 0

1
1le+12

T e => Mo (2)
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protogalaxies

= the first bound objects

» compare dark matter M, (a) to its Jeans mass M a)

©
o
—

E (Glover 2005)

Mass (Mg)
108 107
|

10°
|

10%
|

1000

50 20
Redshift (1+z)

10

M4G (Z)
M3G (Z)

= “45 dark matter halos”

= “36 dark matter halos”
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= the first bound objects

» compare dark matter M, (a) to its Jeans mass M a)

©— :
E (Glover 2005)
N i M,s(z) = “4c dark matter halos”
o L
- M;s(z) = “3c dark matter halos”
iy o
® o
3 ~—
/7]
i Te]
S5k
Jeans Mass (Glover 2005):
e 32
e A 12147
= M,=49x10*(Q 1’ —=1' M
St i ! (@0t 150 ®
/
-/‘
o /
gl
— 50

Redshift (1+z)
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= the first bound objects
» compare dark matter M, (a) to its Jeans mass M a)
@©
S p————
E (Glover 2005)
N i M,s(z) = “4c dark matter halos”
o L
- M, (z) = “3c dark matter halos”
—~©
oS F
EF
@
§ mS 3
E Jeans Mass (Glover 2005):
—— 32
. 4 12 (1+z2
bl /4 M, =49x10*(Q,,h’) (ﬁ) M,
/
;
o /
S ¥
= 50

Rethift (1+2)

formation of first proto-galaxies at z = 30
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= the first bound objects
» compare dark matter M, (a) to its Jeans mass M a)
©
S ———
E (Glover 2005)
N i M,s(z) = “4c dark matter halos”
o L
- M, (z) = “3c dark matter halos”
—~©
® o
3 i
0
S5k
Jeans Mass (Glover 2005):
—— 32
SR 4 12 (1+z2
bl | M, =49%10%(Q, /*) (ﬁ) M,
/
;
o /
S ¥
= 50

Redshift (1+z)

no strong redshift dependence due to steep M (z)
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= the first bound objects

* spherical top-hat collapse: 1+6,,(,,)=187" =178 (cf.LSS lecture)




Cosmic Dawn:The First Stars & Galaxies

protogalaxies

= the first bound objects

* spherical top-hat collapse: 1+4,,(

vir

)=18x"

~178

(cf. LSS lecture)

assumption of virial theorem in derivation!

...but how do dark matter haloes reach it?
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= the first bound objects

* spherical top-hat collapse: 1+6,,(,,)=187" =178 (cf.LSS lecture)

* relaxation & virialisation:

— relaxation:  process by which system acquires equilibrium™

— virialisation: finally reaching virial equilibrium 27'=-U

*re-distribute gravitational collapse energy into random motion
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= the first bound objects

* spherical top-hat collapse: 1+6,,(,,)=187" =178 (cf.LSS lecture)

* relaxation towards virial equilibrium:

— two-body relaxation: two-body interactions

— violent relaxation:  change in energy due to change in overall potential

— phase-mixing: spreading of phase-space due to different frequencies of orbits
— chaotic mixing: spreading of phase-space due to chaotic nature of orbits

— Landau damping:  damping and decay of perturbations
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= the first bound objects

* spherical top-hat collapse: 1+6,,(,,)=187" =178 (cf.LSS lecture)

* relaxation towards virial equilibrium:

— two-body relaxation: two-body interactions

N R
trelax = tCl’()SS ’ tCI”()SS =—
10InN v

4 >> 1 ibbie

(for all cosmological objects of interest to us...)

relax
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= the first bound objects

* spherical top-hat collapse: 1+6,,(,,)=187" =178 (cf.LSS lecture)

* relaxation towards virial equilibrium:

— violent relaxation:  change in energy due to change in overall potential

\ - no
relaxation

4 N

remember: ‘ / particle
our objects are collapsing looses
energy
-
\
particle
gains

energy

» time
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= the first bound objects

* spherical top-hat collapse: 1+6,,(,,)=187" =178 (cf.LSS lecture)

* relaxation towards virial equilibrium:

— phase-mixing: spreading of phase-space due to different frequencies of orbits
@ @
— chaotic mixing: spreading of phase-space due to chaotic nature of orbits

ON
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= the first bound objects

* spherical top-hat collapse: 1+6,,(,,)=187" =178 (cf.LSS lecture)

* relaxation towards virial equilibrium:

— Landau damping:  damping and decay of perturbations...

...due to interaction of particles with (density) waves

K > W
vV »
p Y >
moving slower than wave moving faster than wave

=> pushed by wave (energy gain) => pushing wave (energy loss)
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protogalaxies

ﬂ the first bound objects — summary

characterize DM peaks by their “height” v

v Q% , O (M)=
D(a)o(M)

1
20

[ R()Wy; (k)k*dk,  D+2HD - %QmHzD =0
0

compare dark matter M, (a) to its Jeans mass M (a)

it is possible to form 3-o dark matter haloes already at z=30

dark matter haloes virialize due to relaxation processes

~N
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protogalaxies

ﬂ the first bound objects — summary

characterize DM peaks by their “height” v

v Q% , O (M)=
D(a)o(M)

1
20

[ R()Wy; (k)k*dk,  D+2HD - %QmHzD =0
0

compare dark matter M, (a) to its Jeans mass M (a)

it is possible to form 3-o dark matter haloes already at z=30

dark matter haloes virialize due to relaxation processes

~N

?
ies Nnow:
hat about the proto-ga\ax
...and W
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" proto-galaxies

* presence of DM halo appears inevitable, but

» potential well of DM halo needs to be sufficiently deep to
retain gas heated to high temperatures (>10%K) by first stars

* cooling of gas cloud required
* collapse to disk-like structure because of angular momentum® conservation

* fragmentation via turbulence

*tidal torque theory: anisotropic collapse of &
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protogalaxies

" proto-galaxies

» complexity of galaxy formation in general:

Ny

-
B




Cosmic Dawn:The First Stars & Galaxies

* the dark ages of the Universe
" the first stars
= the first galaxies

= implications for subsequent structure formation
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" proto-galaxies

* enrichment of the Universe with heavy elements

* re-ionisation of the Universe

— first objects affect everything that comes afterwards
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cosmic effects of first objects

= the first supernova explosion

* explosion after ca. |0 years
* En = 10°3 ergs

* color-coded gas density after | Myr
» red dots = stellar ejecta
»  blue dots = HlIl regions

* inset panel:
» metal distribution after 3Myrs

L 4

I kpc

*

(Bromm et al. 2003)
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cosmic effects of first objects

m Active Galactic Nuclei

Radio Galaxy 3C31 = NGC 383
Copyright NRAO/AUI 2006




Cosmic Dawn:The First Stars & Galaxies cosmic effects of first objects

* shaping the luminosity function of galaxies

theory (CDM-motivated)

based on Press-Schechter mass function

o(L) 1

>

(Silk et al., 2013)

Galaxy luminosity
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cosmic effects of first objects

* shaping the luminosity function of galaxies

(L)

observations

Galaxy luminosity

>

theory (CDM-motivated)

based on Press-Schechter mass function

(Silk et al., 2013)
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* shaping the luminosity function of galaxies

theory (CDM-motivated)

based on Press-Schechter mass function

o(L) 1

observations

(Silk et al., 2013)

>
Galaxy luminosity -
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" reionising the Universe

What is the Reionization Era?

A Schematic Outline of the Cosmic History
Time since the
Big 'g§~,g'r.;-,,:argj. < The Big Bang

The Universe filled
with ionized gas

~ 300 thousand <-The Universe bacomes
neutral and opaque

The Dark Ages start

Galaxes and Quasars
beg orm
~ 500 million The Reionization starts

The Cosmic Renaissance
The Dark Ages end

Galaxies evolve

The Solar System forms

~ 13 billion 3 To tro
Y figure it all out

y ronomers

S.G. Djorgovski et al. & Digital Media Center, Caltech
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cosmic effects of first objects

" reionising the Universe

* energy released by first objects ionizes neutral hydrogen

* detected via...

...Gunn-Peterson trough in QSO spectra:
neutral hydrogen along line-of-sight absorbs photons

What is the Reionization Era?

A Schematic Outline of the Cosmic History
<+ The Big Bang

Time since the
Big Bang (years)

~ 300 thousand

~ 500 million

~ 13 billion

S.G. Djorgovski et al. & Digital Media Center, Caltech

The Universe filled
with ionized gas

<-The Universe becomes
neutral and opaque

The Dark Ages start

Galaxes and Quasars
begin to form
The Reionization starts

The Cosmic Renaissance
The Dark Ages end

Galaxies evolve

The Solar System forms
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cosmic effects of first objects

" reionising the Universe

* energy released by first objects ionizes neutral hydrogen
* detected via...
...Gunn-Peterson trough in QSO spectra:

neutral hydrogen along line-of-sight absorbs photons,
but no through in spectra for QSO’s with z<6!

What is the Reionization Era?

A Schematic Outline of the Cosmic History
<+ The Big Bang

Time since the
Big Bang (years)

~ 300 thousand

~ 500 million

~ 13 billion

S.G. Djorgovski et al. & Digital Media Center, Caltech

The Universe filled
with ionized gas

<-The Universe becomes
neutral and opaque

The Dark Ages start

Galaxes and Quasars
begin to form
The Reionization starts

The Cosmic Renaissance
The Dark Ages end

Galaxies evolve

The Solar System forms
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cosmic effects of first objects

" reionising the Universe

* energy released by first objects ionizes neutral hydrogen
* detected via...

...Gunn-Peterson trough in QSO spectra:
neutral hydrogen along line-of-sight absorbs photons,
but no through in spectra for QSO’s with z<6!

...Thomson scattering of CMB photons:
erasing of small scale anisotropies, polarization of CMB,
Planck 2013: reionisation started at z=1 |

What is the Reionization Era?

A Schematic Outline of the Cosmic History

Time since the
Big Bang (years)

~ 300 thousand

~ 500 million

~ 13 billion

S.G. Djorgovski et al. & Digital Media Center, Caltech

<+ The Big Bang

The Universe filled
with ionized gas

<-The Universe becomes
neutral and opaque

The Dark Ages start

Galaxes and Quasars
begin to form
The Reionization starts

The Cosmic Renaissance
The Dark Ages end

the Universe becomes
transparent again

Galaxies evolve

The Solar System forms

Today: Astronomers
figure it all out
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" reionising the Universe - inhomogenous process

pre-overlap

ionisator

A N
b

dense clumps

front H II

/ HI
ionization Y
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cosmic effects of first objects

" reionising the Universe - inhomogenous process

pre-overlap

/

dense clumps

.

ionization
front

ionisator

N
A

HI

HIl

/y
1

overlap

/

dense clumps

-

ionization
front

ionisator
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Cosmic Dawn:The First Stars & Galaxies

cosmic effects of first objects

" reionising the Universe - inhomogenous process
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Cosmic Dawn:The First Stars & Galaxies cosmic effects of first objects

" reionising the Universe - Cosmic Dawn simulation (ocvirk ecal. 201¢)




Cosmic Dawn:The First Stars & Galaxies

cosmic effects of first objects

" reionising the Universe — first stars? first galaxies?
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BBC horizon

= Cosmic Dawn: The Real Moment of Creation

meE \www.bbc.co.uk/programmes/b06b3tnx
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Cosmic Dawn: The Real Moment of

Creation
2014-2015 Episode 18 of 19

Forget the big bang. The real moment of creation was the Cosmic Dawn
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BBC Two - Horizon, 2014-2015, Cosmic Dawn: The Real Moment of Creation
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See all episodes from Horizon

3 days left to watch
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