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what?

we know that there are matter perturbations…
…but how do they grow?
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throughout the whole lecture we only consider

matter perturbations well inside the Hubble radius!
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Cosmological Structure Formation governing equations

Tµν = −pg
µν + (ρc2 + p)uµuν

the Universe is filled with a perfect fluid...

...which we treat non-relativisticly
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two distinct approaches to following structure formation

→ preferred approach for the time being...
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• Poisson’s equation

• continuity equation

• conservation of momentum
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we want to solve these equations in…
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we want to solve these equations in…
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§ transformation to comoving coordinates in detail…

• comoving Poisson equation
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§ transformation to comoving coordinates in detail…

• comoving Poisson equation
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governing equations

Notes:

• Friedmann equations are for the “background”

• the comoving potential F is responsible for the growth of perturbations 

• there is no solution to Poisson’s equation in infinite space unless the source function averages to zero

• inclusion of L-term will not change result (it would be compensated by the appearance in the 2nd Friedmann equation)
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§ transformation to comoving coordinates in detail…
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§ transformation to comoving coordinates in detail…
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Notes:

• it contains an additional drag term due to the cosmic expansion
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§ transformation to comoving coordinates in detail…

• comoving conservation of momentum
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§ transformation to comoving coordinates in detail…
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§ transformation to comoving coordinates in detail…

• comoving conservation of momentum
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• it also contains an additional drag term due to the cosmic expansion
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• Poisson’s equation

• continuity equation

• conservation of momentum

• adiabatic perturbations

we want to solve these equations for…

…small perturbations about a homogeneous and isotropic background
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§ introducing density contrast in detail…

• Poisson’s equation

governing equations
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Δ xΦ = 4πGa2(ρ − ρ )
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§ introducing density contrast in detail…

• Poisson’s equation

€ 

ΔΦ = 4πGa2ρ δ

€ 

ρ − ρ = ρ δ

€ 

Δ xΦ = 4πGa2(ρ − ρ )
= 4πGa2ρ δ

governing equations

proof:
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§ introducing density contrast in detail…

• Poisson’s equation

€ 

ΔΦ = 4πGa2ρ δ

€ 

ρ − ρ = ρ δ

€ 

Δ xΦ = 4πGa2(ρ − ρ )
= 4πGa2ρ δ

governing equations

proof:

we also drop the subscript x from now on...
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§ introducing density contrast in detail…

• continuity equation

governing equations
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§ introducing density contrast in detail…

• continuity equation
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§ introducing density contrast in detail…

• conservation of momentum

governing equations

∂u
!

∂t
+
1
a
(u
!
⋅∇x )u
!
+
"a
a
u
!
= −

1
a
∇xΦ−

1
a
∇x p
ρ
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∂u
!

∂t
+
1
a
(u
!
⋅∇)u
!
+
"a
a
u
!
= −

1
a
∇Φ−

cs
2

a
∇δ
1+δ

§ introducing density contrast in detail…

• conservation of momentum

A

∂u
!

∂t
+
1
a
(u
!
⋅∇x )u
!
+
"a
a
u
!
= −

1
a
∇xΦ−

1
a
∇x p
ρ

∇p
ρ
=
cs
2∇ρ
ρ

=
cs
2∇ ρ(1+δ)( )

ρ
=
cs
2 (1+δ)∇ρ + ρ∇(1+δ)[ ]

ρ
=
cs
2ρ∇(1+δ)

ρ
=
cs
2ρ∇δ
ρ

=
cs
2∇δ
1+δ

A

∇p = cs
2 ∇ρ

adiabatic perturbations

governing equations

proof:
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• Poisson’s equation

• continuity equation

• conservation of momentum

• adiabatic perturbations

€ 

ΔΦ = 4πGa2ρ δ

€ 

∂δ
∂t

+
1
a
∇ ⋅ [(1+ δ)u] = 0

∇p = cs
2 ∇ρ

∂u
!

∂t
+
1
a
(u
!
⋅∇)u
!
+
"a
a
u
!
= −

1
a
∇Φ−

cs
2

a
∇δ
1+δ

ü non-relativistic fluid
ü comoving coordinates
ü perturbations

governing equations

we want to solve these equations for…

…small perturbations about a homogeneous and isotropic background
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we want to solve these equations for…

…small perturbations about a homogeneous and isotropic background

€ 

ΔΦ = 4πGa2ρ δ

€ 

∂δ
∂t

+
1
a
∇ ⋅ [(1+ δ)u] = 0

linearization δ <<1,
!u ⋅∇( )
a

<< H =
!a
a

• Poisson’s equation

• continuity equation

• conservation of momentum

• adiabatic perturbations
∇p = cs

2 ∇ρ

∂u
!

∂t
+
1
a
(u
!
⋅∇)u
!
+
"a
a
u
!
= −

1
a
∇Φ−

cs
2

a
∇δ
1+δ

governing equations

ü non-relativistic fluid
ü comoving coordinates
ü perturbations
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we want to solve these equations for…

…small perturbations about a homogeneous and isotropic background

€ 

ΔΦ = 4πGa2ρ δ

€ 

∂δ
∂t

+
1
a
∇ ⋅ [(1+ δ)u] = 0

linearization δ <<1,
!u ⋅∇( )
a

<< H =
!a
a

• Poisson’s equation

• continuity equation

• conservation of momentum

• adiabatic perturbations
∇p = cs

2 ∇ρ

∂u
!

∂t
+
1
a
(u
!
⋅∇)u
!
+
"a
a
u
!
= −

1
a
∇Φ−

cs
2

a
∇δ
1+δ

governing equations

ü non-relativistic fluid
ü comoving coordinates
ü perturbations
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€ 

ΔΦ = 4πGa2ρ δ

€ 

∂δ
∂t

+
1
a
∇ ⋅ u = 0

∂u
!

∂t
+
!a
a
u
!
= −

1
a
∇Φ−

cs
2

a
∇δ

• Poisson’s equation

• continuity equation

• conservation of momentum

• adiabatic perturbations
∇p = cs

2 ∇ρ

governing equations

ü non-relativistic fluid
ü comoving coordinates
ü small perturbations
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€ 

∂δ
∂t

+
1
a
∇ ⋅ u = 0

∂u
!

∂t
+
!a
a
u
!
= −

1
a
∇Φ−

cs
2

a
∇δ

• Poisson’s equation – careful (multiple components)

• continuity equation

• conservation of momentum

• adiabatic perturbations
∇p = cs

2 ∇ρ

governing equations

∆Φ = 4𝜋𝐺𝑎!𝜌̅"#"
𝜌̅
𝜌̅"#"

𝛿 +
𝜌̅$
𝜌̅"#"

𝛿$ +
𝜌̅%
𝜌̅"#"

𝛿% + ⋯

ü non-relativistic fluid
ü comoving coordinates
ü small perturbations
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€ 

∂δ
∂t

+
1
a
∇ ⋅ u = 0

∂u
!

∂t
+
!a
a
u
!
= −

1
a
∇Φ−

cs
2

a
∇δ

• Poisson’s equation – careful (multiple components)

• continuity equation

• conservation of momentum

• adiabatic perturbations
∇p = cs

2 ∇ρ

governing equations

∆Φ = 4𝜋𝐺𝑎!𝜌̅"#"
𝜌̅
𝜌̅"#"

𝛿 +
𝜌̅$
𝜌̅"#"

𝛿$ +
𝜌̅%
𝜌̅"#"

𝛿% + ⋯

these equations remain
individually

for the
decoupled component

of interest!

ü non-relativistic fluid
ü comoving coordinates
ü small perturbations
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€ 

∂δ
∂t

+
1
a
∇ ⋅ u = 0

∂u
!

∂t
+
!a
a
u
!
= −

1
a
∇Φ−

cs
2

a
∇δ

• Poisson’s equation – careful (multiple components)

• continuity equation

• conservation of momentum

• adiabatic perturbations
∇p = cs

2 ∇ρ

governing equations

∆Φ = 4𝜋𝐺𝑎!𝜌̅"#"
𝜌̅
𝜌̅"#"

𝛿 +
𝜌̅$
𝜌̅"#"

𝛿$ +
𝜌̅%
𝜌̅"#"

𝛿% + ⋯

these equations remain
individually

for the
decoupled component

of interest!

ü non-relativistic fluid
ü comoving coordinates
ü small perturbations

the coupling between different component
is primarily via gravity
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€ 

∂δ
∂t

+
1
a
∇ ⋅ u = 0

∂u
!

∂t
+
!a
a
u
!
= −

1
a
∇Φ−

cs
2

a
∇δ

• Poisson’s equation – careful (multiple components)

• continuity equation

• conservation of momentum

• adiabatic perturbations
∇p = cs

2 ∇ρ

governing equations

∆Φ = 4𝜋𝐺𝑎!𝜌̅"#"
𝜌̅
𝜌̅"#"

𝛿 +
𝜌̅$
𝜌̅"#"

𝛿$ +
𝜌̅%
𝜌̅"#"

𝛿% + ⋯

these equations remain
for the

decoupled component
of interest!

the only quantity common to all possible components is the grav. potential!

ü non-relativistic fluid
ü comoving coordinates
ü small perturbations
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€ 

ΔΦ = 4πGa2ρ δ

€ 

∂δ
∂t

+
1
a
∇ ⋅ u = 0

∂u
!

∂t
+
!a
a
u
!
= −

1
a
∇Φ−

cs
2

a
∇δ

• Poisson’s equation

• continuity equation

• conservation of momentum

• adiabatic perturbations
∇p = cs

2 ∇ρ

governing equations

ü non-relativistic fluid
ü comoving coordinates
ü small perturbations

decoupled matter well inside the horizon
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€ 

ΔΦ = 4πGa2ρ δ

€ 

∂δ
∂t

+
1
a
∇ ⋅ u = 0

∂u
!

∂t
+
!a
a
u
!
= −

1
a
∇Φ−

cs
2

a
∇δ

combine and eliminate u, ∇p, and F

• Poisson’s equation

• continuity equation

• conservation of momentum

• adiabatic perturbations
∇p = cs

2 ∇ρ

governing equations

ü non-relativistic fluid
ü comoving coordinates
ü small perturbations

decoupled matter well inside the horizon
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§ combination in detail…

€ 

A = 0 =
∂δ
∂t

+
1
a
∇ ⋅ u

B = 0 = ∂u
!

∂t
+
!a
a
u
!
+
1
a
∇Φ+

cs
2

a
∇δ

governing equations

continuity equation:

momentum equation:
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€ 

A = 0 =
∂δ
∂t

+
1
a
∇ ⋅ u

B = 0 = ∂u
!

∂t
+
!a
a
u
!
+
1
a
∇Φ+

cs
2

a
∇δ

€ 

0 =
∂A
∂t

−
1
a
∇ ⋅ B

governing equations

§ combination in detail…
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€ 

A = 0 =
∂δ
∂t

+
1
a
∇ ⋅ u

B = 0 = ∂u
!

∂t
+
!a
a
u
!
+
1
a
∇Φ+

cs
2

a
∇δ

€ 

0 =
∂A
∂t

−
1
a
∇ ⋅ B

€ 

∂A
∂t

=
∂
∂t

∂δ
∂t

+
1
a
∇ ⋅ u

& 

' 
( 

) 

* 
+ 

=
∂ 2δ
∂t 2 −

˙ a 
a2 ∇ ⋅ u +

1
a
∂
∂t
∇ ⋅ u

=
∂ 2δ
∂t 2 +

˙ a 
a
∂δ
∂t

+
1
a
∂
∂t
∇ ⋅ u

1
a
∇⋅B = 1

a
∇⋅

∂u
!

∂t
+
!a
a
u
"
+
1
a
∇Φ+

cs
2

a
∇δ

$

%
&

'

(
)

=
1
a

∂
∂t
∇⋅u
!
+
"a
a
∇⋅u
!
+
1
a
ΔΦ+

cs
2

a
Δδ

$

%
&

'

(
)

=
1
a

∂
∂t
∇⋅u
!
− "a∂δ

∂t
+
1
a
ΔΦ+

cs
2

a
Δδ

$

%
&

'

(
)

governing equations

§ combination in detail…

continuity equation
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€ 

A = 0 =
∂δ
∂t

+
1
a
∇ ⋅ u

B = 0 = ∂u
!

∂t
+
!a
a
u
!
+
1
a
∇Φ+

cs
2

a
∇δ

€ 

0 =
∂A
∂t

−
1
a
∇ ⋅ B

€ 

∂A
∂t

=
∂
∂t

∂δ
∂t

+
1
a
∇ ⋅ u

& 

' 
( 

) 

* 
+ 

=
∂ 2δ
∂t 2 −

˙ a 
a2 ∇ ⋅ u +

1
a
∂
∂t
∇ ⋅ u

=
∂ 2δ
∂t 2 +

˙ a 
a
∂δ
∂t

+
1
a
∂
∂t
∇ ⋅ u

1
a
∇⋅B = 1

a
∇⋅

∂u
!

∂t
+
!a
a
u
"
+
1
a
∇Φ+

cs
2

a
∇δ

$

%
&

'

(
)

=
1
a

∂
∂t
∇⋅u
!
+
"a
a
∇⋅u
!
+
1
a
ΔΦ+

cs
2

a
Δδ

$

%
&

'

(
)

=
1
a

∂
∂t
∇⋅u
!
− "a∂δ

∂t
+
1
a
ΔΦ+

cs
2

a
Δδ

$

%
&

'

(
)

governing equations

§ combination in detail…

continuity equation
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§ evolution of density contrast d (x, t)

• valid for arbitrary cosmologies

• valid for collisionless (cs = 0) and collisional matter (cs != 0)

• cosmological expansion acts as damping term

∂ 2δ
∂t2

+ 2 !a
a
∂δ
∂t
− 4πGρδ − cs

2

a2
Δδ = 0

ü non-relativistic fluid
ü comoving coordinates
ü small density contrast

governing equations
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§ evolution of density contrast d (x, t)

• valid for arbitrary cosmologies

• valid for collisionless (cs = 0) and collisional matter (cs != 0)

• cosmological expansion acts as damping term

∂ 2δ
∂t2

+ 2 !a
a
∂δ
∂t
− 4πGρδ − cs

2

a2
Δδ = 0

ü non-relativistic fluid
ü comoving coordinates
ü small density contrast

governing equations

→ describes matter perturbations well inside the Hubble radius!
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§ evolution of density contrast d (x, t)

• valid for arbitrary cosmologies

• valid for collisionless (cs = 0) and collisional matter (cs != 0)

• cosmological expansion acts as damping term

∂ 2δ
∂t2

+ 2 !a
a
∂δ
∂t
− 4πGρδ − cs

2

a2
Δδ = 0

ü non-relativistic fluid
ü comoving coordinates
ü small density contrast

governing equations

*this equation describes the evolution of the perturbations of a single, specific component
  which nevertheless could be coupled gravitationally to other components...

→ describes matter perturbations well inside the Hubble radius!

→ additional components enter only into 4pG-term!*



Cosmological Structure Formation

§ governing equations

§ growth of matter perturbations

§ statistics of perturbations

§ non-linear structure formation
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§ evolution of density contrast d (x, t)

§ Ansatz for solution d (x, t): decomposition* into waves

matter perturbations

∂ 2δ
∂t2

+ 2 !a
a
∂δ
∂t
− 4πGρδ − cs

2

a2
Δδ = 0

δ
!x, t( ) = δk (t) e

i
!
k ⋅!x

!
k
∑

*we are dealing with a linear equation...

• valid for arbitrary cosmologies

• valid for collisionless (cs = 0) and collisional matter (cs != 0)

• cosmological expansion acts as damping term
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§ evolution of density contrast d (x, t)

§ Ansatz for solution d (x, t): single wave

δ
!x, t( ) = δk (t) ei

!
k ⋅!x

matter perturbations

∂ 2δ
∂t2

+ 2 !a
a
∂δ
∂t
− 4πGρδ − cs

2

a2
Δδ = 0

• valid for arbitrary cosmologies

• valid for collisionless (cs = 0) and collisional matter (cs != 0)

• cosmological expansion acts as damping term
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§ evolution of density contrast d (x, t)

Δδ = −k2δ

δ
!x, t( ) = δk (t) ei

!
k ⋅!x

matter perturbations

∂ 2δ
∂t2

+ 2 !a
a
∂δ
∂t
− 4πGρδ − cs

2

a2
Δδ = 0

§ Ansatz for solution d (x, t): single wave

• valid for arbitrary cosmologies

• valid for collisionless (cs = 0) and collisional matter (cs != 0)

• cosmological expansion acts as damping term
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δ
!x, t( ) = δk (t) ei

!
k ⋅!x

§ evolution of density contrast d k(t)

matter perturbations

∂ 2δk
∂t2

+ 2 !a
a
∂δk
∂t

+
cs
2

a2
k2 − 4πGρ

"

#
$

%

&
'δk = 0

• valid for arbitrary cosmologies

• valid for collisionless (cs = 0) and collisional matter (cs != 0)

• cosmological expansion acts as damping term
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δ
!x, t( ) = δk (t) ei

!
k ⋅!x

§ evolution of density contrast d k(t)

matter perturbations

∂ 2δk
∂t2

+ 2 !a
a
∂δk
∂t

+
cs
2

a2
k2 − 4πGρ

"

#
$

%

&
'δk = 0

m d 2x(t)
dt2

+ c dx(t)
dt

+ kx(t) = 0 damped harmonic oscillator

• valid for arbitrary cosmologies

• valid for collisionless (cs = 0) and collisional matter (cs != 0)

• cosmological expansion acts as damping term
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δ
!x, t( ) = δk (t) ei

!
k ⋅!x

§ evolution of density contrast d k(t)

matter perturbations

∂ 2δk
∂t2

+ 2 !a
a
∂δk
∂t

+
cs
2

a2
k2 − 4πGρ

"

#
$

%

&
'δk = 0

we need to solve this
for every wave (as characterized by its individual k) separately...

• valid for arbitrary cosmologies

• valid for collisionless (cs = 0) and collisional matter (cs != 0)

• cosmological expansion acts as damping term
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δ
!x, t( ) = δk (t) ei

!
k ⋅!x

§ evolution of density contrast d k(t)

matter perturbations

∂ 2δk
∂t2

+ 2 !a
a
∂δk
∂t

+
cs
2

a2
k2 − 4πGρ

"

#
$

%

&
'δk = 0

• valid for arbitrary cosmologies

• valid for collisionless (cs = 0) and collisional matter (cs != 0)

• cosmological expansion acts as damping term

• ‘()‘ reflects balance between pressure support* and gravity

*note, we allowed for baryonic matter/pressure gradients…
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δ
!x, t( ) = δk (t) ei

!
k ⋅!x

k2

a2
<
4πGρ
cs
2

k2

a2
>
4πGρ
cs
2 =>     ‘()’ > 0     =>  oscillations (w/ decreasing amplitude due to damping term)

=>     ‘()’ < 0     =>  gravitational collapse

§ evolution of density contrast d k(t)

matter perturbations

∂ 2δk
∂t2

+ 2 !a
a
∂δk
∂t

+
cs
2

a2
k2 − 4πGρ

"

#
$

%

&
'δk = 0

• valid for arbitrary cosmologies

• valid for collisionless (cs = 0) and collisional matter (cs != 0)

• cosmological expansion acts as damping term

• ‘()‘ reflects balance between pressure support and gravity
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§ evolution of density contrast d k(t)
δ
!x, t( ) = δk (t) ei

!
k ⋅!x

§ Jeans limits: k = 2πa
λ

matter perturbations

λJ = cs
π
Gρ

MJ ,w =
4π
3

λJ
2

!

"
#

$

%
&
3

ρw

∂ 2δk
∂t2

+ 2 !a
a
∂δk
∂t

+
cs
2

a2
k2 − 4πGρ

"

#
$

%

&
'δk = 0

k2

a2
<
4πGρ
cs
2

k2

a2
>
4πGρ
cs
2 =>     ‘()’ > 0     =>  oscillations (w/ decreasing amplitude due to damping term)

=>     ‘()’ < 0     =>  gravitational collapse

• valid for arbitrary cosmologies

• valid for collisionless (cs = 0) and collisional matter (cs != 0)

• cosmological expansion acts as damping term

• ‘()‘ reflects balance between pressure support and gravity
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§ evolution of density contrast d k(t)
δ
!x, t( ) = δk (t) ei

!
k ⋅!x

§ Jeans limits:

matter perturbations

Jeans length depends on all gravitating components Jeans mass defined for certain component

∂ 2δk
∂t2

+ 2 !a
a
∂δk
∂t

+
cs
2

a2
k2 − 4πGρ

"

#
$

%

&
'δk = 0

λJ = cs
π
Gρ

MJ ,w =
4π
3

λJ
2

!

"
#

$

%
&
3

ρw k = 2πa
λ

k2

a2
<
4πGρ
cs
2

k2

a2
>
4πGρ
cs
2 =>     ‘()’ > 0     =>  oscillations (w/ decreasing amplitude due to damping term)

=>     ‘()’ < 0     =>  gravitational collapse

• valid for arbitrary cosmologies

• valid for collisionless (cs = 0) and collisional matter (cs != 0)

• cosmological expansion acts as damping term

• ‘()‘ reflects balance between pressure support and gravity
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§ evolution of density contrast d k(t)
δ
!x, t( ) = δk (t) ei

!
k ⋅!x

§ Jeans limits:

matter perturbations

∂ 2δk
∂t2

+ 2 !a
a
∂δk
∂t

+
cs
2

a2
k2 − 4πGρ

"

#
$

%

&
'δk = 0

k = 2πa
λ

λJ = cs
π
Gρ

MJ ,w =
4π
3

λJ
2

!

"
#

$

%
&
3

ρw

k2

a2
<
4πGρ
cs
2

k2

a2
>
4πGρ
cs
2 =>     ‘()’ > 0     =>  oscillations (w/ decreasing amplitude due to damping term)

=>     ‘()’ < 0     =>  gravitational collapse

• valid for arbitrary cosmologies

• valid for collisionless (cs = 0) and collisional matter (cs != 0)

• cosmological expansion acts as damping term

• ‘()‘ reflects balance between pressure support and gravity

dominant non-relativistic component is dark matter (i.e. cs = 0)
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§ evolution of density contrast d (t) for dark matter

matter perturbations

∂ 2δ
∂t2

+ 2 !a
a
∂δ
∂t
− 4πGρδ = 0



Cosmological Structure Formation

§ evolution of density contrast d (t) for dark matter

matter perturbations

∂ 2δ
∂t2

+ 2 !a
a
∂δ
∂t
− 4πGρδ = 0

‘-’ ≙ no oscillations!
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§ evolution of density contrast d (t) for dark matter

matter perturbations

∂ 2δ
∂t2

+ 2 !a
a
∂δ
∂t
− 4πGρδ = 0

other formulations possible



Cosmological Structure Formation

§ evolution of density contrast d (t) for dark matter

matter perturbations

∂ 2δ
∂t2

+ 2 !a
a
∂δ
∂t
− 4πGρδ = 0

4πGρ = 4πGΩmρcrit = 4πGΩm
3H 2

8πG
=
3
2
ΩmH

2

∂ 2δ
∂t2

+ 2H ∂δ
∂t
−
3
2
ΩmH

2δ = 0

other formulations possible
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§ evolution of density contrast d (t) for dark matter

matter perturbations

∂ 2δ
∂t2

+ 2 !a
a
∂δ
∂t
− 4πGρδ = 0

4πGρ = 4πGΩmρcrit = 4πGΩm
3H 2

8πG
=
3
2
ΩmH

2

∂ 2δ
∂t2

+ 2H ∂δ
∂t
−
3
2
ΩmH

2δ = 0

q = − !!aa
!a2

𝑡 = 𝑡(𝑎)

other formulations possible

𝑎!
𝜕!𝛿
𝜕𝑎!

+ 𝑎 2 − 𝑞
𝜕𝛿
𝜕𝑎

−
3
2
Ω,𝛿 = 0
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§ evolution of density contrast d (t) for dark matter

matter perturbations

∂ 2δ
∂t2

+ 2 !a
a
∂δ
∂t
− 4πGρδ = 0

4πGρ = 4πGΩmρcrit = 4πGΩm
3H 2

8πG
=
3
2
ΩmH

2

∂ 2δ
∂t2

+ 2H ∂δ
∂t
−
3
2
ΩmH

2δ = 0

q = − !!aa
!a2

𝑡 = 𝑡(𝑎)

the choice is yours....

other formulations possible:

𝑎!
𝜕!𝛿
𝜕𝑎!

+ 𝑎 2 − 𝑞
𝜕𝛿
𝜕𝑎

−
3
2
Ω,𝛿 = 0
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δ(a) ≈ 5a
2
Ωm (a) Ωm

4/7(a)−ΩΛ (a)+ 1+
Ωm (a)
2

%

&
'

(

)
* 1+

ΩΛ (a)
70

%

&
'

(

)
*

+

,
-

.

/
0

−1

exact solution

approx. solution

∂ 2δ
∂t2

+ 2 !a
a
∂δ
∂t
− 4πGρδ = 0

§ evolution of density contrast d (t) for dark matter
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§ evolution of density contrast d (t) for dark matter during matter domination

matter perturbations
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Ansatz:
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˙ δ = nCtn−1

˙ ̇ δ = n(n −1)Ctn−2

§ evolution of density contrast d (t) for dark matter during matter domination
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δ ∝ a - consider growing mode only…
- remember a ~ t2/3 (for Wm=1, cf. FRW lecture)
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in the (early) era of matter domination

dark matter perturbations grow

proportional to the scale factor
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§ dark matter perturbations – during all epochs

matter perturbations
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§ dark matter perturbations – during all epochs
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radiation domination matter domination L domination

FRW lecture:

1= Ωm

ΩΛ

=
Ωm,0

ΩΛ,0

1+ zΛ( )3 ⇒ 1+ zΛ =
1−Ωm,0

Ωm,0

%

&
''

(

)
**

1/3

→ baryonic perturbations free to grow →→ DM perturbations grow

(time axis not to scale!)

tdec
γtdec

DM teq tΛ

1+ zeq =
ρm,0
ρr,0

= 24000Ωm,0h
2

Thermal History lecture:

zeq ≈ 3500 zΛ ≈ 0.3

§ dark matter perturbations – during all epochs
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§ dark matter perturbations – during all epochs
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we are interested in (dark!) matter perturbations…

…but potential perturbations
are sourced by all components!

δ =
ρm
ρ
δm +

ρr
ρ
δr

§ dark matter perturbations – during all epochs
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§ dark matter perturbations – during all epochs

∆Φ = 4𝜋𝐺𝑎!𝜌̅"#"
𝜌̅
𝜌̅"#"

𝛿 +
𝜌̅$
𝜌̅"#"

𝛿$ +
𝜌̅%
𝜌̅"#"

𝛿% +⋯

remember:
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dr ≈ 0    (they oscillate*)

§ dark matter perturbations – during all epochs

*proof requires GR calculations
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§ dark matter perturbations – during all epochs

why don’t we have dr = 4/3 dm?
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dominates can be ignored
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§ dark matter perturbations – during all epochs

6.3 Perturbation growth in the early Universe

Figure 14 shows a schematic of how a density fluctuation grows in
the early Universe. For scales greater than the horizon, perturbations
in matter and radiation can grow together, so fluctuations at early
times grow at the same rate, independent of wavenumber. But this
growth ceases once the perturbations ‘enter the horizon’ – i.e. when
the horizon grows sufficiently to exceed the perturbation wavelength.
At this point, growth ceases. For fluids (baryons) it is the radiation
pressure that prevents the perturbations from collapsing further. For
collisionless matter the rapid radiation driven expansion prevents the
perturbation from growing again until matter radiation equality.

This effect (called the Mészáros effect) is critical in shaping the
late-time power spectrum (as we will show) as the universe preserves
a ‘snapshot’ of the amplitude of the mode at horizon crossing.

aenter aeq
δ

log

a

(a)

log( )

α

a 2α

Figure 14. A schematic of the suppression of
fluctuation growth during the radiation dominated phase
when the density perturbation enters the horizon at
aenter < aeq.

6.4 The Shape of the Matter Power Spectrum

The fluctuation or matter power spectrum Pδ(k) emcompasses the
power or amplitude of each mode of density fluctuations (refer back
to section 5.1). From inflation we predict a scale invariant initial
Zeldovich spectrum where Pi(k) ∝ k. How does the Mészáros effect
modify the shape of this initial power spectrum?

Figure 15 shows that the smallest physical scales (largest k
scales) will be affected first and experience the strongest suppression
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Meszaros effect:

-dm outside horizon grows like a2

-dm  inside horizon grows like ln(a)
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§ dark matter perturbations – during all epochs
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§ dark matter perturbations – during all epochs
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what about baryons?
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§ dark matter perturbations – during all epochs
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§ matter perturbations:

matter perturbations
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Exercise.—Explain the asymptotic scalings of the matter power spectrum

P�(k) =

8
<

:

k k < keq

k
�3

k > keq

. (5.2.35)

5.2.4 Baryons⇤

Let us say a few (non-examinable!) words about the evolution of baryons.

Before Decoupling

At early times, z > zdec ⇡ 1100, photons and baryons are coupled strongly to each other via

Compton scattering. We can therefore treat the photons and baryons a single fluid, with v� = vb

and �� = 4

3
�b. The pressure of the photons supports oscillations on small scales (see fig. 5.5).

Since the dark matter density contrast �c grows like a after matter-radiation equality, it follows

that just after decoupling, �c � �b. Subsequently, the baryons fall into the potential wells

sourced mainly by the dark matter and �b ! �c as we shall now show.
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Figure 5.5: Evolution of photons, baryons and dark matter.

After Decoupling

After decoupling, the baryons lose the pressure support of the photons and gravitational insta-

bility kicks in. Ignoring baryon pressure, the coupled dynamics of the baryon fluid and the dark

zeq ≈ 3500 zdec ≈1200
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§ Jeans Mass analysis – epochs & components:

matter perturbations

teq
(time axis not to scale!)
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→ baryonic perturbations free to grow→ DM perturbations grow
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§ governing equations

§ growth of matter perturbations

§ statistics of perturbations

§ non-linear structure formation
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§ evolution of density contrast d k(t)

δ
!x, t( ) = δk (t) ei

!
k ⋅!x∂ 2δ

∂t2
+ 2 !a

a
∂δ
∂t
− 4πGρδ = 0 ⇒
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§ decomposition of d(x,t) into waves

long wavelength

short wavelength,
large amplitude

short wavelength,
small amplitude
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§ decomposition of d(x,t) into waves
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• perturbation equation is linear =>    grow independently

• first moment   

statistics of perturbations

§ decomposition of d(x,t) into waves: δ
!x, t( ) = δ!k (t) e

i
!
k ⋅!x

!
k
∑

δ!k t( )

δ
!x, t( ) = 0 δ!k t( ) = 0 , δ!k t( ) = δ− !k t( )=>
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§ decomposition of d(x,t) into waves: δ
!x, t( ) = δ!k (t) e

i
!
k ⋅!x

!
k
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• perturbation equation is linear =>    grow independently

• first moment   

• higher order moments: 

δ
!x, t( ) = 0 δ!k t( ) = 0 , δ!k t( ) = δ− !k t( )

δ!k t( )

ξ2 = δ
!x1, t( )δ

!x2, t( )
ξ3 = δ

!x1, t( )δ
!x2, t( )δ

!x3, t( )
ξ4 = δ

!x1, t( )δ
!x2, t( )δ

!x3, t( )δ
!x4, t( )

...

=>
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§ decomposition of d(x,t) into waves: δ
!x, t( ) = δ!k (t) e

i
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k
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δ!k t( )

ξ2 = ξ2
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homogeneity & isotropy
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!x4, t( )

...

• perturbation equation is linear =>    grow independently

• first moment   

• higher order moments: 

δ
!x, t( ) = 0 δ!k t( ) = 0 , δ!k t( ) = δ− !k t( )=>
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§ decomposition of d(x,t) into waves: δ
!x, t( ) = δ!k (t) e
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δ!k t( )

ξ2
!x( ) =

npair (
!x + d!x)

nrandom (
!x + d!x)

−1

• perturbation equation is linear =>    grow independently

• first moment   

• two-point correlation function (2nd moment)

δ
!x, t( ) = 0 δ!k t( ) = 0 , δ!k t( ) = δ− !k t( )=>
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§ decomposition of d(x,t) into waves: δ
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• perturbation equation is linear =>    grow independently

• first moment   

• two-point correlation function

• power spectrum 
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δ
!x, t( ) = 0 δ!k t( ) = 0 , δ!k t( ) = δ− !k t( )=>
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§ decomposition of d(x,t) into waves: δ
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• perturbation equation is linear =>    grow independently

• first moment   

• two-point correlation function

• power spectrum 
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δ
!x, t( ) = 0 δ!k t( ) = 0 , δ!k t( ) = δ− !k t( )=>

what is the initial shape?
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to their amplitude. The largest physical scale fluctuations (smallest k
scales) will be unaffected as they will enter the horizon after matter-
radiation equality. We can therefore see that there will be a turnover
in the power spectrum at a characteristic scale given by the horizon
size at matter-radiation equality.

From Figure 14 we can see that when a fluctuation enters the
horizon before matter-radiation equality its growth is supressed by
f = (aenter/aeq)2. A fluctuation k enters the horizon when DH ≃ 1/k.
As DH = c/aH(a) and H(a) ∝ a−2 during radiation domination we
see that the fluctuations are suppressed by a factor f ∝ k−2 and that
the power spectrum on large k scales follows a k−3 power law.

amplitude grows
with time

P(k)

k

iP (k) 
with time

horizon grows

suppression during 
radiation domination

α k

α k

−3

k0

Figure 15. Schematic of the how the Mészáros
effect modifies the initial power spectrum. Note log
scale.

Transfer functions and characteristic scales The sim-
ple picture of the evolution of fluctuations described above ignores
the fact the universe contains several distinct components (radiation,
baryons and dark matter) which respond to gravity in different ways.
We therefore need to consider the effect of these coupled perturbations
on the power spectrum before obtaining a complete model. (see e.g.
Section 15.4 and 15.5 of Peacock 1999 for the details). We sum up
all of this information in the form of the linear transfer function
T (k, a) for density perturbations

Pδ(k, a) = T (k, a)2Pi(k). (195)

In principle, there is a transfer function for each constituent of the
universe, and these evolve with time. As we have discussed, however,
the different matter ingredients tend to come together at late times,
and the overall transfer function tends to something that is the same
for all matter components and which does not change with time for low
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(inflation: P(k)∝kn ,  n⋍1)

(Meszaros effect)

§ power spectrum P(k) of perturbations – general shape 
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(inflation: P(k)∝kn ,  n⋍1)

(Meszaros effect)

§ power spectrum P(k) of perturbations – general shape 

what is this characteristic scale?
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§ power spectrum P(k) of perturbations – growth during matter domination 
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§ power spectrum P(k) of perturbations – growth during matter domination 
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§ power spectrum P(k) of perturbations – growth during matter domination 
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Exercise.—Explain the asymptotic scalings of the matter power spectrum

P�(k) =

8
<

:

k k < keq

k
�3

k > keq

. (5.2.35)

5.2.4 Baryons⇤

Let us say a few (non-examinable!) words about the evolution of baryons.

Before Decoupling

At early times, z > zdec ⇡ 1100, photons and baryons are coupled strongly to each other via

Compton scattering. We can therefore treat the photons and baryons a single fluid, with v� = vb

and �� = 4

3
�b. The pressure of the photons supports oscillations on small scales (see fig. 5.5).

Since the dark matter density contrast �c grows like a after matter-radiation equality, it follows

that just after decoupling, �c � �b. Subsequently, the baryons fall into the potential wells

sourced mainly by the dark matter and �b ! �c as we shall now show.
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Figure 5.5: Evolution of photons, baryons and dark matter.

After Decoupling

After decoupling, the baryons lose the pressure support of the photons and gravitational insta-

bility kicks in. Ignoring baryon pressure, the coupled dynamics of the baryon fluid and the dark

oscillations leave
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§ Zel’dovich approximation*

*1st order Lagrangian perturbation theory (as opposed to Eulerian treatment from previous slides…)
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§ Zel’dovich approximation
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Y = “peculiar potential”,
sourced by initial perturbations
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We aim to decouple each of these steps from the others as far
as possible so that different algorithms may be used at each point.
The first two steps are relatively trivial, as they use pre-developed
prescriptions from the literature, and we discuss these, and basic
outlines of the last two steps, in this section.

3.1 Density field

The basic scaffolding of HALOGEN is an appropriate dark matter
density field realized at the desired redshift, sampled by N particles.
For simplicity, we choose to use second-order perturbation theory
(2LPT) (Moutarde et al. 1991; Bouchet et al. 1995) to produce this
field, which can be obtained with the public code 2LPTIC.

We show in Fig. 1, the density distribution of an N-body sim-
ulation (top panel) and a 2LPT representation (bottom panel) at
z = 0.5. Notably, the 2LPT distribution appears to be blurred in
comparison to the N-body simulation. This is due to the fact that
2LPTIC – as the name suggests – was originally designed only to
generate ICs (Scoccimarro 1998), since even second-order perturba-
tion theory breaks down at low redshift when overdensities become
highly non-linear. The small-scale difference in Fig. 1 can be ex-
plained by shell crossing, an effect in which particles following their
2LPT trajectories cross paths and continue rather than gravitationally

Figure 1. Here, we show the difference between performing an actual
N-body simulation (top) and using 2LPT (bottom) to generate a particle
distribution at z = 0.5, with the same ICs. The image shows a slice of the
density contrast δ distribution in a 1 h−1 Gpc3 box .

attracting each other in a fully non-linear manner (Sahni & Shan-
darin 1996; Neyrinck 2013). In order to compensate for shell-
crossing, Manera et al. (2013) advocates the use of a smoothing
kernel over the input power spectrum. We tested the effect of this
smoothing in HALOGEN but did not find any improvement in the final
catalogue.

Nevertheless, 2LPT provides a suitable approximation of the large-
scale distribution of matter, where perturbations have not yet entered
into the highly non-linear regime and this is sufficient for HALOGEN.
Note that HALOGEN is in principle agnostic about the method in
which this density field snapshot is produced. Other methods, for
instance the ‘Quick-PM’ (cf. the QPM method described by White
et al. 2014), COLA (Tassev et al. 2013) or 3LPT could equally be
employed by the user. A different choice of density field will yield
somewhat different results, especially at smaller scales. As long as
the chosen method reconstructs large scales correctly, the remaining
steps of HALOGEN should be unmodified.

Despite this, we have by default incorporated 2LPTIC as part of the
HALOGEN code (which bypasses the costly I/O of writing the snapshot
to disc), but also allow the user to provide an arbitrary snapshot with
a distribution of N particles in a cosmological volume. Our choice
for 2LPT was mainly driven by its low computational cost and success
in the distribution of matter at large scales. We use this approach
for all results in this paper.

3.2 The mass function

The HMF n(>M) measures the number density of haloes above a
given mass scale. It is required to generate mass-conditional clus-
tering, which in turn is a pre-requisite for extension to HOD-based
galaxy mock generation.

We produce a sampled mass function by the standard inverse-
Cumulative Distribution Function (CDF) method, utilizing an arbi-
trary input HMF.

The most accurate HMF for a given cosmology, over a range of
suitable scales, may be obtained from an N-body simulation via
a halo-finding algorithm – although there are notable variations
depending on the technique (Knebe et al. 2011). Since we require
a full N-body simulation for the tuning of HALOGEN, it would be
perfectly acceptable to use this simulation to generate the HMF.
However, in the hope of future improvements, we wish to avoid
using the full simulation as far as possible. Fortunately, there is a
wealth of literature concerning accurate predictions of the HMF for
widely varying cosmologies and redshifts using extended Press–
Schechter theory (Press & Schechter 1974; Bond et al. 1991).

The mass function may be calculated by any means, so long
as a discretized function of n(>M) is provided. For simplicity, we
decided to use the online HMF calculator HMFCALC3 (Murray, Power
& Robotham 2013) for obtaining the halo mass distribution in this
paper.

In the remainder of the paper, we use the fit of Watson et al. (2013)
for BIGMULTIDARK and that of Tinker et al. (2008) for GOLIAT which
both constitute reliable fits.

3.3 Spatial placement of haloes

The crucial step in the generation of approximate halo catalogues is
the commissioning of halo positions. In keeping with the philosophy
of modularity, the halo-placement step is decoupled from the rest.

3 http://hmf.icrar.org

MNRAS 450, 1856–1867 (2015)
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!x(a) = !q −D(a)∇Ψ +D(2)∇Ψ (2)

Full N-body 2LPT

non-linear structure formation

z = 0.5
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=
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=
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=
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=
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for collapsed overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

RTH = RTH (t) , MTH = const.

1+δTH (η) =
9
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non-linear structure formation
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for collapsed overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

RTH = RTH (t) , MTH = const.

1+δTH (η) =
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1− cosη( )3

non-linear structure formation

tvir

RTH
δTH (tta ) = ? δTH (tvir ) = ?

ηta ? ηvir ?
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for collapsed overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

RTH (η)
Rta

t(η)
tta

RTH = RTH (t) , MTH = const.

tvir

non-linear structure formation

RTH

Rta = RTH ≡ηta = π

RTH
Rta

=
1
2
1− cosη( )

t
tta
=
1
π
η − sinη( )
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for collapsed overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

RTH (η)
Rta

t(η)
tta

tvir = 2tta ≡ηvir = 2π

RTH = RTH (t) , MTH = const.

non-linear structure formation
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for collapsed overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

1+δTH (tta ) =
9π 2

16
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for collapsed overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

1+δTH (tta ) =
9π 2

16
≈ 5.5 1+δTH (tvir ) =∞ (hmmmm...)virialisation!

RTH = RTH (t) , MTH = const.

1+δTH (η) =
9
2
η − sinη( )2

1− cosη( )3

non-linear structure formation
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tvir = 2tta ≡ηvir = 2π

Rta = RTH ≡ηta = π
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for virialized overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

virialisation

RTH = RTH (t) , MTH = const.

Eta =Uta

Evir = Tvir +Uvir

non-linear structure formation

RTH
tvir = 2tta ≡ηvir = 2π

Rta = RTH ≡ηta = π
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for virialized overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

virialisation
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for virialized overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

virialisation

RTH = RTH (t) , MTH = const.

Eta =Uta

Evir = Tvir +Uvir

Uta = −
3
5
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0 = 2Tvir +Uvir

non-linear structure formation

RTH
tvir = 2tta ≡ηvir = 2π

Rta = RTH ≡ηta = π

virial theorem:
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for virialized overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

virialisation

RTH = RTH (t) , MTH = const.
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for virialized overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

virialisation

RTH = RTH (t) , MTH = const.

Eta =Uta

Evir = Tvir +Uvir

Uta = −
3
5
GMTH
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Rta

Uvir = −
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5
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0 = 2Tvir +Uvir
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non-linear structure formation

virial theorem:

RTH

⇒ 2Evir = 2Tvir +Uvir +Uvir =Uvir = 2Uta = 2Eta
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Rta = RTH ≡ηta = π
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for virialized overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

virialisation

RTH = RTH (t) , MTH = const.
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for virialized overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

virialisation

RTH = RTH (t) , MTH = const.

ρ(tvir ) =
1
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for virialized overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

virialisation

RTH = RTH (t) , MTH = const.

ρ(tvir ) =
1
22
ρ(tta )tvir = 2tta =>

Rvir =
Rta
2

ρTH (tvir ) = 8ρTH (tta )=>

non-linear structure formation

RTH

ρ =
1

6πGt2
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Rta = RTH ≡ηta = π
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for virialized overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

virialisation

RTH = RTH (t) , MTH = const.

non-linear structure formation

1+δTH (tvir ) =
8ρ(tta )
ρ(tta ) / 4

= 32 1+δ(tta )( ) = 32 9π
2

16
=18π 2 ≈178

RTH
tvir = 2tta ≡ηvir = 2π

Rta = RTH ≡ηta = π
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for virialized overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

virialisation

RTH = RTH (t) , MTH = const.

1+δTH (tvir ) =18π
2 ≈178

non-linear structure formation
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for virialized overdensity

• non-singular solution for linearized overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

virialisation

RTH = RTH (t) , MTH = const.

RTH
Rta

=
1
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1− cosη( )

t
tta
=
1
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η − sinη( )
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Rta
4

6π t
tta

!

"
#

$

%
&

2/3

1− 1
20

6π t
tta

!

"
#

$

%
&

2/3

+...
(

)
*
*

+

,
-
-

1+δTH (tvir ) =18π
2 ≈178

non-linear structure formation

RTH
tvir = 2tta ≡ηvir = 2π

Taylor-expanding cos() and sin()
and combining to RTH(t)

Rta = RTH ≡ηta = π
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for virialized overdensity

• non-singular solution for linearized overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

virialisation

RTH = RTH (t) , MTH = const.
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Rta
4

6π t
tta

!

"
#

$

%
&

2/3

1− 1
20

6π t
tta

!

"
#

$

%
&

2/3

+...
(

)
*
*

+

,
-
-

δ(t) ≈ 3
20

6π t
tta

"

#
$

%

&
'

2/3

=>

1+δTH (tvir ) =18π
2 ≈178
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for virialized overdensity

• non-singular solution for linearized overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

virialisation

RTH = RTH (t) , MTH = const.
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non-linear structure formation
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§ Spherical Top-Hat Collapse

• spherical (top-hat) overdensity

• solution for virialized overdensity

• non-singular solution for linearized overdensity

tta

background expansion

collapse of overdensity

turn-around
(i.e. time of maximal expansion)

virialisation

RTH = RTH (t) , MTH = const.

δc ≈
3
20
12π( )2/3 ≈1.686

1+δTH (tvir ) =18π
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non-linear structure formation
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§ Spherical Top-Hat Collapse

• solution for virialized overdensity

• non-singular solution for linearized overdensity

δc ≈
3
20
12π( )2/3 ≈1.686

1+δTH (tvir ) =18π
2 ≈178

non-linear structure formation



Cosmological Structure Formation

SDSS galaxies
(DR7, Northern Sky)

SDSS galaxies
(DR7, Northern Sky)

§ territory of computational cosmology…

§ …but powerful, analytical (quasi-linear) approaches exist, too:

• Zel’dovich approximation (1st order Lagrangian perturbation theory)

• Spherical Top-Hat Collapse

• Press-Schechter halo mass function

• …

non-linear structure formation
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§ powerful “Press-Schechter” theory

non-linear structure formation

one of the most cited papers in cosmology
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§ Press-Schechter formula

• a halo has formed when its linear density contrast d(x, a) has reached dc
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• a halo has formed when its linear density contrast d(x, a) has reached dc=1.69

x

d(x)

dc=1.69

non-linear structure formation



Cosmological Structure Formation

§ Press-Schechter formula

• a halo has formed when its linear density contrast d(x, a) has reached dc=1.69

x

d(x)

dc=1.69

non-linear structure formation

figure (filter!) out the mass inside each peak...
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§ Press-Schechter formula

• a halo has formed when its linear density contrast d(x, a) has reached dc=1.69

x

d(x)

dc=1.69

δR (
!x,a) = δ(!!x ,a)WR (

!x − !!x )d3 !x∫

non-linear structure formation

R1

M =Ωmρcrit
4π
3
R3*which can be related to halo mass via

we consider perturbations on a certain scale R*

one halo of size R1
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§ Press-Schechter formula

• a halo has formed when its linear density contrast d(x, a) has reached dc=1.69

x

d(x)

dc=1.69

we consider perturbations on a certain scale R

δR (
!x,a) = δ(!!x ,a)WR (

!x − !!x )d3 !x∫

non-linear structure formation

R2 R2 R2

three haloes of size R2
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§ Press-Schechter formula

• a halo of size R has formed when its linear density contrast dR(x, a) has reached dc=1.69
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!x − !!x )d3 !x∫

non-linear structure formation

→ we need to count the number of haloes of size R
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§ Press-Schechter formula

• a halo of size R has formed when its linear density contrast dR(x, a) has reached dc=1.69

δR (
!x,a) = δ(!!x ,a)WR (

!x − !!x )d3 !x∫

• the density contrast dR(x) is a Gaussian random field with variance sR
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1
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§ Press-Schechter formula

• a halo of size R has formed when its linear density contrast dR(x, a) has reached dc=1.69
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non-linear structure formation

→ we need to count the number of haloes of size R
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§ Press-Schechter formula

• a halo of size R has formed when its linear density contrast dR(x, a) has reached dc=1.69

δR (
!x,a) = δ(!!x ,a)WR (

!x − !!x )d3 !x∫

• the density contrast dR(x) is a Gaussian random field with variance sR
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1
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σ R
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1
2π 2 P(k)Ŵ 2 (kR)k2 dk

0

+∞

∫

power spectrum of density fluctuations:
(all waves inside R-window affect sR)

non-linear structure formation

P(k) = D(a)
D(a0 )
!
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P0 (k)

→ we need to count the number of haloes of size R
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§ Press-Schechter formula

• a halo of size R has formed when its linear density contrast dR(x, a) has reached dc=1.69
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• probability to have dR > dc 
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§ Press-Schechter formula

• a halo of size R has formed when its linear density contrast dR(x, a) has reached dc=1.69

δR (
!x,a) = δ(!!x ,a)WR (

!x − !!x )d3 !x∫

• number of peaks in range [R, R+dR] 

dN ∝F>δc (R)−F>δc (R+ dR)

• probability to have dR > dc 

F>δc (R) = p(δR )dδR
δc
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• the density contrast dR(x) is a Gaussian random field with variance sR
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§ Press-Schechter formula

• a halo of size R has formed when its linear density contrast dR(x, a) has reached dc=1.69

δR (
!x,a) = δ(!!x ,a)WR (

!x − !!x )d3 !x∫

• number of peaks in range [R, R+dR] 

dN ∝F>δc (R)−F>δc (R+ dR)

• probability to have dR > dc 

F>δc (R) = p(δR )dδR
δc

∞

∫

• the density contrast dR(x) is a Gaussian random field with variance sR

p(δR ) =
1
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• relate scale R to mass M

M =Ωmρcrit
4π
3
R3

σ R
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1
2π 2 P(k)Ŵ 2 (kR)k2 dk
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∫

non-linear structure formation
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dn
dM

dM =
2
π
ρ
M

δc
σM

d lnσM

d lnM
exp −δc

2

2σM
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'
dM
M

r    : mean density of Universe
dc      : density contrast of collapsed structure according to linear perturbation theory
sM : variance of mass on scale corresponding to M = (4p/3)WmrcritR3

§ Press-Schechter formula

σM
2 =

1
2π 2 P(k)Ŵ 2 (kR)k2 dk

0
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∫

Ŵ (x) = 3
x3
sin(x)− xcos(x)( )

non-linear structure formation
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§ Press-Schechter formula

σM
2 =

1
2π 2 P(k)Ŵ 2 (kR)k2 dk

0
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∫

Ŵ (x) = 3
x3
sin(x)− xcos(x)( )

ξ2 (R) =
1
2π 2 P(k)Ŵ 2 (kR)k2 dk

0

+∞

∫

Ŵ (x) = sin(x)
x

side note:

non-linear structure formation
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r    : mean density of Universe
dc      : density contrast of collapsed structure according to linear perturbation theory
sM : variance of mass on scale corresponding to M = (4p/3)WmrcritR3
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§ Press-Schechter formula
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• very good agreement with cosmological simulations

non-linear structure formation
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§ Press-Schechter formula
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• very good agreement with cosmological simulations,
  though improvements match simulations even better…
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§ mass function calculator – https://thehalomod.app/

non-linear structure formation

https://thehalomod.app/
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§ Press-Schechter formula – scale-free cosmology
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§ influence of nature of matter via P(k)
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Figure 11. Monopole of power spectrum from the BigMD-BOSS

light-cone and the CMASS DR12 sample. Top Panel: The true
power spectrum for our light-cone compared to the CMASS DR12
data corrected by fiber collisions using Hahn et al. (in prep.)
method. Solid curve shows the initial matter power spectra of
the BigMDPL simulation scaled to match the amplitude of fluc-
tuations at long waves. A remarkable agreement between the
data and the model is found for scales k . 1hMpc�1. Bottom
Panel The comparison between simulation and observed data
using nearest neighbour weights. Observed measurements also in-
clude systematics weights: wstart, wzf and wsee. The agreement
between the data and the model, in both panels, shows the good
performance of the fiber collisions assignment in the light-cone.
In bottom subpanels, dashed lines represent an accuracy level of
10%

5.2 Three point correlation function

We are also interested in comparing the prediction of the
three point correlation function using the HAM on the Big-

MultiDark simulation with the observed data. The 3PCF
provides a description of the probability of finding three ob-
jects in three di↵erent volumes. In the same manner as the
2PCF, the 3PCF is defined as:

⇣(r12, r23, r31) = h�(r1)�(r2)�(r3)i, (21)

where �(r) is the dimensionless overdensity at the position
r and rij = ri � rj . We use the Szapudi & Szalay estimator
(Szapudi & Szalay 1998),

⇣ =
DDD � 3DDR + 3DRR � RRR

RRR
. (22)

Figure 12 displays our prediction compared with the
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Figure 12. Top panel: BOSS-CMASS DR12 three point corre-
lation function compared with the model prediction of this work.
Shaded area shows 1-� uncertainties, with limits r1 = 10h�1Mpc
and r2 = 20h�1Mpc. Bottom panel: Ratio between BigMD-

BOSS light-cone predictions and observed data. The BigMD-
BOSS light-cone can reproduce almost all scales between 2-� er-
rors.

BOSS-CMASS data. We see the results for one kind of tri-
angles, where, r1 = 10h�1Mpc, r2 = 20h�1Mpc, and ✓ is
the angle between r1 and r2.

A good agreement in the shape of the 3PCF is seen in
figure 12 between our prediction and the data. Most of points
are in agreement within 2-� errors. However, the BigMD-
BOSS light-cone is underestimating the 3PCF for ✓ ⇠ 0 and
✓ ⇠ ⇡

5.3 Halo to stellar mass relation

Weak lensing measurements can provide important con-
strains in the way we populate dark matter halos with galax-
ies on the halo mass to stellar mass ratio where there is the
weak lensing component. In order to ensure the convergence
of the halos in our prediction, we select halos with masses
larger than 5.2⇥1012M�. This limit is 150 dark matter parti-
cles which give convergence for subhalos (Klypin et al. 2015).
Figure 13 shows the halo to stellar mass relation predicted
by the BigMD-BOSS light-cone and measurements in the
CFHT Stripe 82 Survey (Shan et al. 2015).

Predictions of the abundance matching are in agree-
ments with the weak lensing data. In figure 13, shaded blue
area shows the intrinsic scatter measured. The dependency
between scatter and stellar mass is clear. It is also shown in
the abundance matching (e.g., Trujillo-Gomez et al. 2011;
Reddick et al. 2013). However, our HAM model uses a con-
stant scatter to reproduce the clustering. This approxima-
tion can generate the disagreement in the scatter between
data and mock. The red area in figure 13 indicates the re-
sults from Behroozi et al. (2013c). We modify Behroozi et al.
(2013c) in order to use the same definition of halo mass
and implement the Planck cosmology in the analysis. The
SMF assumptions can be one of the origins for the disagree-
ment between both predictions. While we use the BOSS
DR12 stellar mass catalogues to estimate the SMF, used
the PRIMUS SMF (Moustakas et al. 2013). The di↵erence
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Astronomers!create!publicly!available!Virtual!Universe!
!
The!Universe!is!filled!with!an!immeasurable!number!of!galaxies!that!themselves!are!accumulations!
of!billions!of!stars.!Understanding!how!these!'islands!in!the!universe’!formed!and!evolved!and!how!
they!are!distributed!throughout!the!Universe!is!central!to!the!field!of!Cosmology.!Luckily,!we!now!
live! in! an! era! where! both! ground@! and! space@based! telescopes! are! being! designed! to! study! the!
Universe!out!to!unprecedented!distances,!peering!back!billions!of!years!to!when!the!Universe!was!
an! infant.!But! the! interpretation!of! these!data! requires! theoretical!models.!As! such,! astronomers!
generate! model! universes,! where! galaxies! are! simulated,! which! may! act! as! a! test! bed! for! the!
assessment! of! theories.! However,! such! virtual! universes! are! computationally! expensive,!
numerically!challenging,!and!often!lack!the!sheer!number!and!details!of!the!galaxies!we!observe.!
!
Now,! an! international! team! led! by! Prof.! Alexander! Knebe! from! the! Universidad! Autonoma! de!
Madrid! and! Prof.! Francisco! Prada! from! the! Instituto! de! Astrofisica! Andalusia! (bringing! together!
experts!from!South!America,!the!USA,!Europe,!and!Australia)!has!created!one!of!the!largest!publicly!
available!virtual!universe,!known!as!the!“MultiDark@Galaxies”.!What!is!provided!to!the!community!
are! galaxy! catalogues! based! upon! three! distinct! models! that! all! include! the! physical! processes!
relevant! for! galaxy! formation! and! evolution,! conforming! to! and! reproducing! specific! empirical!
observations.!!
!
All! data! is! available! via! the! database! www.cosmosim.org! (hosted! at! the! Leibniz@Institut! for!
Astrophysics!Potsdam!in!Germany)!and!a!selected!set!of!properties!via!www.skiesanduniverses.org!
(hosted!at!NMSU! in! the!US!and! the! Instituto!de!Astofísica!de!Andalucía!CSIC! in!Spain).!The!more!
than!100!million!virtual!galaxies!per!model!cover!a!cosmological!volume!comparable!to!that!probed!
by!on@going!and!future!observational!campaigns.!They!therefore!equip!researchers!in!the!field!with!
an! unparalleled! opportunity! to! better! understand! existing! observations! and! to! even! make!
predictions!for!upcoming!missions.!More!information!is!available!in!the!accompanying!paper!that!
has!just!been!accepted!by!MNRAS!and!can!be!found!on!the!arxiv:!1710.08150.!
!
!

Visualisa'on*of*the*model*galaxies* in*the*Virtual*Universe."The$ le&$
panel" shows" a" slice" of" thickness" 4.7" million" lightyears" through" the"
whole"simula7on"that" itself"has"a"sidelength"of"4.8"billion"lightyears."
Each"galaxy"is"represented"by"a"yellow"dot;"the"background"indicates"
the"underlying"ma?er"density."The$ right$panel" zooms" into"a" smaller"
region."Here"the"dark"ma?er"haloes"hos7ng"the"galaxies"are"visible"as"
circles," colourDcoded" according" to" the" projected" density" and" sizes"
propor7onal"to"their"masses"(images"courtesy"K."Riebe,"AIP)."
"

“MultiDark Galaxies” (Knebe et al. 2018)
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§ simulations vs. observations

• galaxy redshift surveys cover Gpc3 volumes

• simulations cannot follow full set of physics in such large volumes

• but simulations are nevertheless quite spectacular…

galaxy formation simulations (incl. baryonic physics):
Illustris: https://www.youtube.com/watch?v=NjSFR40SY58
Eagle: https://www.youtube.com/watch?v=5F6bDRcy-mA
CLUES: https://www.cosmosim.org/cms/images-and-movies

LSS simulations (DM only):
Horizon: http://www.horizon-simulation.org/movies/horizonAGN-all.avi
DEUS: https://www.youtube.com/watch?v=kJ1r5NG5YGs
MultiDark: https://www.cosmosim.org/cms/images-and-movies/

non-linear structure formation
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