Alexander Knebe (Universidad Autonoma de Madrid)

- origin
- CMB fluctuations
 - primary (created during inflation)
 - secondary (created after photon decoupling)

- origin
- CMB fluctuations
 - primary (created during inflation)
 - secondary (created after photon decoupling)

photon-to-baryon ratio (frozen in at BBNS)

$$\eta = \frac{n_b}{n_{\gamma}} = 10^{-10} \eta_{10} = 10^{-10} \cdot 274 \Omega_b h^2$$

photon-to-baryon ratio (frozen in at BBNS)

$$\eta = \frac{n_b}{n_{\gamma}} = 10^{-10} \,\eta_{10} = 10^{-10} \cdot 274 \Omega_b h^2$$

=> there are lots of photons in the Universe!

=> and even though their temperature dropped they should still be observable today!?

discovery

photons in thermal equilibrium

$$u(v)dv = \frac{8\pi hv^3}{c^3} \frac{1}{e^{hv/k_BT} - 1} dv \qquad \text{(Planck curve, spectra)}$$

al energy density $\rho_{\rm rad}$)

adiabatically expanding Universe (see FRW lecture)

 $T \propto R^{-1}$ $p \propto R^{-1} \Leftrightarrow v \propto R^{-1}$

discovery

photons in thermal equilibrium

$$u(v)dv = \frac{8\pi hv^3}{c^3} \frac{1}{e^{hv/k_BT} - 1} dv \qquad (Planck curve, spectral energy density \rho_{rad})$$

adiabatically expanding Universe (see FRW lecture)

$$T \propto R^{-1}$$
$$p \propto R^{-1} \Leftrightarrow v \propto R^{-1}$$

adiabatically expanding photons (exercise)

$$u(\tilde{v})d\tilde{v} = R^{-4} \frac{8\pi h\tilde{v}^3}{c^3} \frac{1}{e^{h\tilde{v}/k_B\tilde{T}} - 1} d\tilde{v} \qquad (\text{Planck curve with } \tilde{T} = T/R)$$

discovery

photons in thermal equilibrium

$$u(v)dv = \frac{8\pi hv^3}{c^3} \frac{1}{e^{hv/k_BT} - 1} dv \qquad (Planck curve, spectral energy density \rho_{rad})$$

adiabatically expanding Universe (see FRW lecture)

$$T \propto R^{-1}$$
$$p \propto R^{-1} \Leftrightarrow v \propto R^{-1}$$

adiabatically expanding photons

$$u(\tilde{v})d\tilde{v} = R^{-4} \frac{8\pi h\tilde{v}^3}{c^3} \frac{1}{e^{h\tilde{v}/k_B\tilde{T}} - 1} d\tilde{v} \qquad (\text{Planck curve with } \tilde{T} = T/R)$$

(in agreement with $\,
ho_{\scriptscriptstyle rad} \propto R^{-4}$ as seen in Thermal History lecture)

• 1964: A. Doroshkevich & Igor Novikov suggest to search for the CMB!

- 1960: Robert Dicke re-estimates $T \approx 40$ K
- 1964: A. Doroshkevich & Igor Novikov suggest to search for the CMB!
- 1965: discovered by Arno Penzias & Robert Wilson

- 1960: Robert Dicke re-estimates $T \approx 40$ K
- 1964: A. Doroshkevich & Igor Novikov suggest to search for the CMB!
- 1965: discovered by Arno Penzias & Robert Wilson ?

- discovered 1957 by Emile Le Roux
 - PhD student at Nancay Radio Observatory (France)
 - found near-isotropic background of 3K at $\lambda\text{=}33\text{cm}$

	Reproductio	on of page 50 of	(Lero	oux's thesis).	
	En résumé,	on a trois équations do	onnant To	:	
	v _o = 0	137 = 138 - 0,485 T	c•	$T_c = 2^{\circ} K$	
25)	v _o = 5	50 = 51,3 -0,485 T	c•	$T_{c} = 2, 7^{\circ} K$	
	v _o = - 3	215 = 218 - C,77 T	c	T _c = 3,9°K.	

En fait, on devrait déduire, de plusieurs équations de ce genre, les coefficients 1/k, p, p', p'' et T_c. Mais la bonne cobérence des valeurs obtenues pour T_c montre que les valeurs prises pour ces coefficients sont correctes avec une bonne approximation. Si on diminuait le coefficient 1/k on obtiendrait des valeurs négatives pour T_c, quelles que soient les valeurs prises pour p' et p'' qui interviennent de façon différente dans les 3 équations précédentes, le coefficient p' intervenant notamment de façon opposée dans les deux dernières équations. De même, une augmentation de 1/k de quelques pour cent donnerait des valeurs de T_c incohérentes. Enfin, un coefficient de réflection du sol non nul donnerait T_c ≤ 0 .

Il est difficile de déterminer l'erreur sur cette valeur de T_c , basée sur la cohérence de différentes mesures. Nous pensons que l'erreur absolue doit être de l'ordre de 2° K, en prenant :

$$C_c = 3^{\circ} K$$

- discovered 1957 by Emile Le Roux
 - PhD student at Nancay Radio Observatory (France)
 - found near-isotropic background of 3K at $\lambda\text{=}33\text{cm}$
 - removed from article following suggestion of her supervisor...

- (re-)discovered 1965 by Penzias & Wilson
- Nobel prize in 1978

419

not very spectacularly announced...

No. 1, 1965

LETTERS TO THE EDITOR

high pressure, such as the zero-mass scalar, capable of speeding the universe through the period of helium formation. To have a closed space, an energy density of 2×10^{-29} gm/cm³ is needed. Without a zero-mass scalar, or some other "hard" interaction, the energy could not be in the form of ordinary matter and may be presumed to be gravitational radiation (Wheeler 1958).

One other possibility for closing the universe, with matter providing the energy content of the universe, is the assumption that the universe contains a net electron-type neutrino abundance (in excess of antineutrinos) greatly larger than the nucleon abundance. In this case, if the neutrino abundance were so great that these neutrinos are degenerate, the degeneracy would have forced a negligible equilibrium neutron abundance in the early, highly contracted universe, thus removing the possibility of nuclear reactions leading to helium formation. However, the required ratio of lepton to baryon number must be $> 10^9$.

We deeply appreciate the helpfulness of Drs. Penzias and Wilson of the Bell Telephone Laboratories, Crawford Hill, Holmdel, New Jersev, in discussing with us the result of their measurements and in showing us their receiving system. We are also grateful for several helpful suggestions of Professor J. A. Wheeler.

> R. H. DICKE P. I. E. PEEBLES P. G. Roll D. T. WILKINSON

May 7, 1965 PALMER PHYSICAL LABORATORY PRINCETON, NEW JERSEY

REFERENCES

- Alpher, R. A, Bethe, H. A, and Gamow, G 1948, *Phys. Rev.*, **73**, 803 Alpher, R. A., Follin, J. W., and Herman, R. C. 1953, *Phys. Rev.*, **92**, 1347. Bondi, H, and Gold, T. 1948, *M.N.*, **108**, 252. Brans, C, and Dicke, R. H. 1961, *Phys. Rev.*, **124**, 925.
- Brans, C., and Dicke, R. H. 1961, Phys. Rev., 124, 925.
 Dicke, R. H. 1962, Phys. Rev., 125, 2163.
 Dicke, R. H., Beringer, R., Kyhl, R. L., and Vane, A. B. 1946, Phys. Rev., 70, 340
 Einstein, A., 1950, The Meaning of Relativity (3d ed.; Princeton, N.J.: Princeton University Press), p. 107.
 Hoyle, F. 1948, M. N., 108, 372.
 Hoyle, F. and Tayler, R. J. 1964, Nature, 203, 1108
 Liftshitz, E. M., and Khalatnikov, I. M. 1963, Adv. in Phys., 12, 185.
 Cort. J. H. 1958, In Structure at Prioritation 4: Private (11th Solvary Conf. [Brussels: Éditions Stoops]).

- Oort, J H 1958, La Structure et l'évolution de l'universe (11th Solvay Conf [Brussels: Éditions Stoops]), p. 163. Peebles, P J. E. 1965, *Phys. Rev.* (in press). Penzias, A. A., and Wilson, R. W. 1965, private communication.
- Wheeler, J. A., 1958, La Structure et l'évolution de l'universe (11th Solvay Conf. [Brussels: Éditions Stoops]), p. 112.

1964, in Relativity, Groups and Topology, ed C. DeWitt and B. DeWitt (New York: Gordon & Breach).

Zel'dovich, Ya. B. 1962, Soviet Phys.-J.E.T.P., 14, 1143.

A MEASUREMENT OF EXCESS ANTENNA TEMPERATURE AT 4080 Mc/s

Measurements of the effective zenith noise temperature of the 20-foot horn-reflector antenna (Crawford, Hogg, and Hunt 1961) at the Crawford Hill Laboratory, Holmdel, New Jersey, at 4080 Mc/s have yielded a value about 3.5° K higher than expected. This excess temperature is, within the limits of our observations, isotropic, unpolarized, and

419

interpretation in same Ap issue...

No. 1, 1965

LETTERS TO THE EDITOR

high pressure, such as the zero-mass scalar, capable of speeding the universe through the period of helium formation. To have a closed space, an energy density of 2×10^{-29} gm/cm³ is needed. Without a zero-mass scalar, or some other "hard" interaction, the energy could not be in the form of ordinary matter and may be presumed to be gravitational radiation (Wheeler 1958).

One other possibility for closing the universe, with matter providing the energy content of the universe, is the assumption that the universe contains a net electron-type neutrino abundance (in excess of antineutrinos) greatly larger than the nucleon abundance. In this case, if the neutrino abundance were so great that these neutrinos are degenerate, the degeneracy would have forced a negligible equilibrium neutron abundance in the early, highly contracted universe, thus removing the possibility of nuclear reactions leading to helium formation. However, the required ratio of lepton to baryon number must be $> 10^9$.

We deeply appreciate the helpfulness of Drs. Penzias and Wilson of the Bell Telephone Laboratories, Crawlord Hill, Holmdel, New Jersey, in discussing with us the result of their measurements and in showing us their receiving system. We are also grateful for several helpful suggestions of Professor J. A. Wheeler.

> R. H. DICKE P. I. E. PEEBLES P. G. Roll D. T. WILKINSON

May 7, 1965 PALMER PHYSICAL LABORATORY PRINCETON, NEW JERSEY

REFERENCES

- Alpher, R. A, Bethe, H. A, and Gamow, G 1948, *Phys. Rev.*, **73**, 803 Alpher, R. A., Follin, J. W., and Herman, R. C. 1953, *Phys. Rev.*, **92**, 1347. Bondi, H, and Gold, T. 1948, *M.N.*, **108**, 252. Brans, C, and Dicke, R. H. 1961, *Phys. Rev.*, **124**, 925.

- Brans, C., and Dicke, R. H. 1961, Phys. Rev., 124, 925.
 Dicke, R. H. 1962, Phys. Rev., 125, 2163.
 Dicke, R. H. 1962, Phys. Rev., 125, 2163.
 Dicke, R. H., Beringer, R., Kyhl, R. L., and Vane, A. B. 1946, Phys. Rev., 70, 340
 Einstein, A., 1950, The Meaning of Relativity (3d ed.; Princeton, N.J.: Princeton University Press), p. 107.
 Hoyle, F. 1948, M. N., 108, 372.
 Hoyle, F. and Tayler, R. J. 1964, Nature, 203, 1108
 Liittshitz, E. M., and Khalatnikov, I. M. 1963, Adv. in Phys., 12, 185.
 Cort. I. H. 1958, In Structure at Prioritation 4: Quatience (11th Solvary Conf. [Brussels: Éditions Stoops]).

- Oort, J H 1958, La Structure et l'évolution de l'universe (11th Solvay Conf [Brussels: Éditions Stoops]), p. 163. Peebles, P J. E. 1965, *Phys. Rev.* (in press). Penzias, A. A., and Wilson, R. W. 1965, private communication.

Wheeler, J. A, 1958, La Structure et Pévolution de Puniverse (11th Solvay Conf. [Brussels: Éditions Stoops]), p. 112.

1964, in Relativity, Groups and Topology, ed C. DeWitt and B. DeWitt (New York: Gordon & Breach).

Zel'dovich, Ya. B. 1962, Soviet Phys.-J.E.T.P., 14, 1143.

A MEASUREMENT OF EXCESS ANTENNA TEMPERATURE AT 4080 Mc/s

Measurements of the effective zenith noise temperature of the 20-foot horn-reflector antenna (Crawford, Hogg, and Hunt 1961) at the Crawford Hill Laboratory, Holmdel, New Jersey, at 4080 Mc/s have yielded a value about 3.5° K higher than expected. This excess temperature is, within the limits of our observations, isotropic, unpolarized, and

419

interpretation in same Ap issue...

... though dates back to ideas by Alpher, Bethe & Gamov in 1948

No. 1, 1965

LETTERS TO THE EDITOR

high pressure, such as the zero-mass scalar, capable of speeding the universe through the period of helium formation. To have a closed space, an energy density of 2×10^{-29} gm/cm³ is needed. Without a zero-mass scalar, or some other "hard" interaction, the energy could not be in the form of ordinary matter and may be presumed to be gravitational radiation (Wheeler 1958).

One other possibility for closing the universe, with matter providing the energy content of the universe, is the assumption that the universe contains a net electron-type neutrino abundance (in excess of antineutrinos) greatly larger than the nucleon abundance. In this case, if the neutrino abundance were so great that these neutrinos are degenerate, the degeneracy would have forced a negligible equilibrium neutron abundance in the early, highly contracted universe, thus removing the possibility of nuclear reactions leading to helium formation. However, the required ratio of lepton to baryon number must be $> 10^9$.

We deeply appreciate the helpfulness of Drs. Penzias and Wilson of the Bell Telephone Laboratories, Crawford Hill, Holmdel, New Jersev, in discussing with us the result of their measurements and in showing us their receiving system. We are also grateful for several helpful suggestions of Professor J. A. Wheeler.

> R. H. DICKE P. I. E. PEEBLES P. G. Roll D. T. WILKINSON

May 7, 1965 PALMER PHYSICAL LABORATORY PRINCETON, NEW JERSEY

Alpher, R. A, Bethe, H. A, and Gamow, G 1948, *Phys. Rev.*, **73**, 803 Alpher, R. A., Follin, J. W., and Herman, R. C. 1953, *Phys. Rev.*, **92**, 1347. Bondi, H. and Gold T. 1948, *M.*, 108, 252.

Brans. C . and Dicke, R. H 1961, Phys. Rev., 124, 925.

- Dicke, R. H. 1962, Phys. Rev., 125, 2163.
 Dicke, R. H. 1962, Phys. Rev., 125, 2163.
 Dicke, R. H. Beringer, R., Kyhl, R. L., and Vane, A. B. 1946, Phys. Rev., 70, 340
 Einstein, A., 1950, The Meaning of Relativity (3d ed.; Princeton, N.J.: Princeton University Press), p. 107.

- b. 107.
 Hoyle, F. 1948, M N, 108, 372.
 Hoyle, F, and Tayler, R J 1964, Nature, 203, 1108
 Liftshitz, E, M., and Khalatnikov, I. M 1963, Adv. in Phys., 12, 185.
- Oort, J H 1958, La Structure et l'évolution de l'universe (11th Solvay Conf [Brussels: Éditions Stoops]), p. 163. Peebles, P J. E. 1965, *Phys. Rev.* (in press). Penzias, A. A., and Wilson, R. W. 1965, private communication.

Wheeler, J. A, 1958, La Structure et Pévolution de Puniverse (11th Solvay Conf. [Brussels: Éditions

Stoops]), p. 112. 1964, in Relativity, Groups and Topology, ed C. DeWitt and B. DeWitt (New York: Gordon & Breach).

Zel'dovich, Ya. B. 1962, Soviet Phys.-J.E.T.P., 14, 1143.

A MEASUREMENT OF EXCESS ANTENNA TEMPERATURE AT 4080 Mc/s

Measurements of the effective zenith noise temperature of the 20-foot horn-reflector antenna (Crawford, Hogg, and Hunt 1961) at the Crawford Hill Laboratory, Holmdel, New Jersey, at 4080 Mc/s have yielded a value about 3.5° K higher than expected. This excess temperature is, within the limits of our observations, isotropic, unpolarized, and interpretation in same Ap issue...

... though dates back to ideas by Alpher, Bethe & Gamov in 1948:

Dicke, Peebles & Wilkinson were actually designing an experiment to search for the CMB...

... but eventually decided to publish jointly w/ Penzias & Wilson!*

LETTERS TO THE EDITOR

high pressure, such as the zero-mass scalar, capable of speeding the universe through the period of helium formation. To have a closed space, an energy density of 2×10^{-29} gm/cm³ is needed. Without a zero-mass scalar, or some other "hard" interaction, the energy could not be in the form of ordinary matter and may be presumed to be gravitational radiation (Wheeler 1958).

One other possibility for closing the universe, with matter providing the energy content of the universe, is the assumption that the universe contains a net electron-type neutrino abundance (in excess of antineutrinos) greatly larger than the nucleon abundance. In this case, if the neutrino abundance were so great that these neutrinos are degenerate, the degeneracy would have forced a negligible equilibrium neutron abundance in the early, highly contracted universe, thus removing the possibility of nuclear reactions leading to helium formation. However, the required ratio of lepton to baryon number must be $> 10^9$.

We deeply appreciate the helpfulness of Drs. Penzias and Wilson of the Bell Telephone Laboratories, Crawford Hill, Holmdel, New Jersev, in discussing with us the result of their measurements and in showing us their receiving system. We are also grateful for several helpful suggestions of Professor J. A. Wheeler.

> R. H. DICKE P. I. E. PEEBLES P. G. Roll D. T. WILKINSON

May 7, 1965 PALMER PHYSICAL LABORATORY PRINCETON, NEW JERSEY

REFERENCES

- Alpher, R. A., Bethe, H. A., and Gamow, G. 1948, Phys. Rev., 73, 803
 Alpher, R. A., Follin, J. W., and Herman, R. C. 1953, Phys. Rev., 72, 803
 Alpher, R. A., Follin, J. W., and Herman, R. C. 1953, Phys. Rev., 92, 1347.
 Bondi, H., and Gold, T. 1948, M. N., 108, 252.
 Brans, C., and Dicke, R. H. 1961, Phys. Rev., 124, 925.
 Dicke, R. H. 1962, Phys. Rev., 125, 2163.
 Dicke, R. H. 1960, The Meaning of Relativity (3d ed.; Princeton, N.J.: Princeton University Press), p. 107.
 Hoyle, F. 1948, M. N., 108, 372.
 Hoyle, F. 1948, M. N., 108, 372.
 Hoyle, F. and Tayler, R. J. 1964, Nature, 203, 1108
 Liftshitz, E. M., and Khalatnikov, I. M. 1963, Adv. in Phys., 12, 185.
 Oort, J. H. 1958, La Structure et l'évolution de l'universe (11th Solvay Conf. [Brussels: Éditions Stoops]), p. 163. p. 163. Peebles, P J. E. 1965, *Phys. Rev.* (in press). Penzias, A. A., and Wilson, R. W. 1965, private communication.
- Wheeler, J. A, 1958, La Structure et Pévolution de Puniverse (11th Solvay Conf. [Brussels: Éditions Stoops]), p. 112.

1964, in Relativity, Groups and Topology, ed C. DeWitt and B. DeWitt (New York: Gordon & Breach)

Zel'dovich, Ya. B. 1962, Soviet Phys.-J.E.T.P., 14, 1143.

A MEASUREMENT OF EXCESS ANTENNA TEMPERATURE AT 4080 Mc/s

Measurements of the effective zenith noise temperature of the 20-foot horn-reflector antenna (Crawford, Hogg, and Hunt 1961) at the Crawford Hill Laboratory, Holmdel, New Jersey, at 4080 Mc/s have yielded a value about 3.5° K higher than expected. This excess temperature is, within the limits of our observations, isotropic, unpolarized, and

*but the Nobel prize was only awarded for the discovery, not for the interpretation...

419

COBE satellite (1992):

COBE satellite (1992):

T = 2.725K

• measurements at various frequencies required!

COBE satellite (1992):

- measurements at various frequencies required
- the most accurate black-body spectrum imaginable:

■ dipole...

COBE satellite (1992):

∆T = 3.353mK

• dipole...

COBE satellite (1992):

∆T = 3.353mK

discovery

• caused by movement of Local Group towards the Great Attractor at ca. 627 km/s

discovery

• caused by movement of Local Group towards the Great Attractor at ca. 627 km/s

 \rightarrow a dipole has to exist unless MW is at rest with respects to CMB

discovery

	Table 1: CMB Dipole Measurements								
_ I • I		Reference		tude	Longi	$tude^{a}$	Latitu	$1 de^a$	Freq
	#		D(mK)	$\pm \sigma$	$\ell(\text{deg})$	$\pm \sigma$	b(deg)	$\pm \sigma$	(GHz)
	1	Penzias & Wilson(1965)	< 270						4
	2	Partridge & Wilkinson(1967)	0.8	2.2					9
	3	Wilkinson & Partridge(1969)	1.1	1.6					9
	4	Conklin(1969)	1.6	0.8	96	30	85	30	8
COBE satellite (1992)	5	Boughn et al. (1971)	7.6	11.6					37
· · · ·	6	Henry(1971)	3.3	0.7	270	30	24	25	10
	7	Conklin(1972)	> 2.28	0.92	195	30	66	10	8
	8	Corey & Wilkinson(1976)	2.4	0.6	306	28	38	20	19
	9	Muehler(1976)	2.0	1.8	207		-11		150
	10	Smoot et al. (1977)	3.5	0.6	248	15	56	10	33
	11	Corey(1978)	3.0	0.7	288	26	43	19	19
	12	Gorenstein(1978)	3.60	0.5	229	11	67	8	33
	13	Cheng et al. (1979)	2.99	0.34	287	9	61	6	30
	14	Smoot & Lubin(1979)	3.1	0.4	250.6	9	63.2	6	33
	15	Fabbri et al. (1980)	2.9	0.95	256.7	13.8	57.4	7.7	300
	16	Boughn et al. (1981)	3.78	0.30	275.4	3.9	46.8	4.5	46
	17	Cheng(1983)	3.8	0.3					30
	18	Fixsen et al. (1983)	3.18	0.17	265.7	3.0	47.3	1.5	25
	19	Lubin (1983)	3.4	0.2					90
	20	Strukov et al. (1984)	2.4	0.5					67
	21	Lubin et al. (1985)	3.44	0.17	264.3	1.9	49.2	1.3	90
	22	Cottingham(1987)	3.52	0.08	272.2	2.3	49.9	1.5	19
	23	Strukov et al. (1987)	3.16	0.07	266.4	2.3	48.5	1.6	67
	24	Halpern et al. (1988)	3.4	0.42	289.5	4.1	38.4	4.8	150
	25	Meyer et al. (1991)			249.9	4.5	47.7	3.0	170
	26	Smoot et al. (1991)	3.3	0.1	265	1	48	1	53
	27	Smoot et al. (1992)	3.36	0.1	264.7	0.8	48.2	0.5	53
	28	Ganga et al. (1993)			267.0	1.0	49.0	0.7	170
	29	Kogut et al. (1993)	3.365	0.027	264.4	0.3	48.4	0.5	53
	30	Fixsen et al. (1994)	3.347	0.008	265.6	0.75	48.3	0.5	300
	31	Bennett et al. (1994)	3.363	0.024	264.4	0.2	48.1	0.4	53
	32	Bennett et al. (1996)	3.353	0.024	264.26	0.33	48.22	0.13	53
	33	Fixsen et al. (1996)	3.372	0.005	264.14	0.17	48.26	0.16	300
	34	Lineweaver et al. (1996)	3.358	0.023	264.31	0.17	48.05	0.10	53

• ...had been subject of lots of experiment since 1965:

 \rightarrow a dipole has to exist unless MW is at rest with respects to CMB

discovery

Γ	Table 1: CMB Dipole Measurements								
I. I	Reference		Ampli	tude	Longi	$tude^a$	Latitu	ude ^a	Freq
	#		D(mK)	$\pm \sigma$	$\ell(\text{deg})$	$\pm \sigma$	b(deg)	$\pm \sigma$	(GHz)
dipole	1	Penzias & Wilson(1965)	< 270						4
	2	Partridge & Wilkinson(1967)	0.8	2.2					9
	3	Wilkinson & Partridge(1969)	1.1	1.6					9
	4	Conklin(1969)	1.6	0.8	96	30	85	30	8
COBE satellite (1992)	5	Boughn et al. (1971)	7.6	11.6					37
· · · · · · · · · · · · · · · · · · ·	6	Henry(1971)	3.3	0.7	270	30	24	25	10
	7	Conklin(1972)	> 2.28	0.92	195	30	66	10	8
	8	Corey & Wilkinson(1976)	2.4	0.6	306	28	38	20	19
n _o	9	Muchler(1976)	2.0	1.8	207		-11		150
(°in	10	Smoot et al. (1977)	3.5	0.6	248	15	56	10	33
(* F.	11	Corey(1978)	3.0	0.7	288	26	43	19	19
"h sy.	12	Gorenstein(1978)	3.60	0.5	229	11	67	8	33
10°	10	Charge (1070)	2.99	0.34	287	9	61	6	30
	14	Smoot & Lubin(1979)	3.1	0.4	250.6	9	63.2	6	33
	15	Fabbri et al. (1980)	2.9	0.95	256.7	13.8	57.4	7.7	300
	16	Boughn et al. (1981)	3.78	0.30	275.4	3.9	46.8	4.5	46
	17	Cheng(1983)	3.8	0.3		2010000	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		30
	18	Fixsen et al. (1983)	3.18	0.17	265.7	3.0	47.3	1.5	25
	19	Lubin (1983)	3.4	0.2					90
	20	Strukov et al. (1984)	2.4	0.5					67
	21	Lubin et al. (1985)	3.44	0.17	264.3	1.9	49.2	1.3	90
	22	Cottingham(1987)	3.52	0.08	272.2	2.3	49.9	1.5	19
	23	Strukov et al. (1987)	3.16	0.07	266.4	2.3	48.5	1.6	67
	24	Halpern et al. (1988)	3.4	0.42	289.5	4.1	38.4	4.8	150
	25	Meyer et al. (1991)			249.9	4.5	47.7	3.0	170
	26	Smoot et al. (1991)	3.3	0.1	265	1	48	1	53
	27	Smoot et al. (1992)	3.36	0.1	264.7	0.8	48.2	0.5	53
	28	Ganga et al. (1993)			267.0	1.0	49.0	0.7	170
	29	Kogut et al. (1993)	3.365	0.027	264.4	0.3	48.4	0.5	53
	30	Fixsen et al. (1994)	3.347	0.008	265.6	0.75	48.3	0.5	300
	31	Bennett et al. (1994)	3.363	0.024	264.4	0.2	48.1	0.4	53
	32	Bennett et al. (1996)	3.353	0.024	264.26	0.33	48.22	0.13	53
	33	Fixsen et al. (1996)	3.372	0.005	264.14	0.17	48.26	0.16	300
	34	Lineweaver et al. (1996)	3.358	0.023	264.31	0.17	48.05	0.10	53

• ...had been subject of lots of experiment since 1965:

 \rightarrow a dipole has to exist unless MW is at rest with respects to CMB

- Iist of selected CMB missions to measure anisotropies
 - 1990: launch of COBE satellite

- (Nobel prize in 2006 for discovery of $\Delta T/T$)
- 1999: BOOMERanG and Maxima balloon experiments
- 2001: launch of WMAP satellite
- 2002: DASI discovers polarisation
- 2009: launch of Planck satellite

- Iist of selected CMB missions to measure anisotropies
 - 1983: launch of Russian satellite RELIKT-1 (announced discovery of $\Delta T/T$ in 1992...)
 - 1990: launch of COBE satellite

- (Nobel prize in 2006 for discovery of $\Delta T/T$)
- 1999: BOOMERanG and Maxima balloon experiments
- 2001: launch of WMAP satellite
- 2002: DASI discovers polarisation
- 2009: launch of Planck satellite

- Iist of selected CMB missions to measure anisotropies
 - 1983: launch of Russian satellite RELIKT-1 (announced discovery of $\Delta T/T$ in 1992...)
 - 1990: launch of **COBE** satellite

- (Nobel prize in 2006 for discovery of $\Delta T/T$)
- 1999: BOOMERanG and Maxima balloon experiments
- 2001: launch of **WMAP** satellite
- 2002: DASI discovers polarisation
- 2009: launch of **Planck** satellite

improvement in accuracy!?

accuracies in comparison:

accuracies in comparison:

discovery

accuracies in comparison:

discovery

discovery

origin

- CMB fluctuations
 - primary (created during inflation)
 - secondary (created after photon decoupling)

CMBR origin

prior to recombination

- electrons and photons couple via Thomson scattering
- Universe is opaque for radiation

CMBR origin

prior to recombination

- electrons and photons couple via Thomson scattering
- Universe is opaque for radiation

after decoupling

- electrons are bound to protons
- photons are free to travel

 $e^- + p \Leftrightarrow H + \gamma$

 $e^- + p \Leftrightarrow H + \gamma$

we are interested in the fraction of free electrons:

those are the ones participating in the scattering with photons!

$$e^- + \gamma \leftrightarrow e^- + \gamma$$

$$e^- + p \Leftrightarrow H + \gamma$$

$$n_{e} = g_{e} \left(\frac{m_{e}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{e}-\mu_{e})c^{2}/kT}$$
$$n_{p} = g_{p} \left(\frac{m_{p}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{p}-\mu_{p})c^{2}/kT}$$
$$(m_{e}kT)^{3/2}$$

$$n_{H} = g_{H} \left(\frac{m_{H} kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{H} - \mu_{H})c^{2}/kT}$$

$$n_{\gamma} = \frac{2\zeta(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3$$

$$e^- + p \Leftrightarrow H + \gamma$$

$$n_{e} = g_{e} \left(\frac{m_{e} kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{e}-\mu_{e})c^{2}/kT}$$

$$n_{p} = g_{p} \left(\frac{m_{p} kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{p}-\mu_{p})c^{2}/kT}$$

$$n_{H} = g_{H} \left(\frac{m_{H} kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{H}-\mu_{H})c^{2}/kT}$$

$$n_{\gamma} = \frac{2\xi(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3$$

$$e^- + p \Leftrightarrow H + \gamma$$

$$n_{e} = g_{e} \left(\frac{m_{e}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{e}-\mu_{e})c^{2}/kT}$$

$$n_{p} = g_{p} \left(\frac{m_{p}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{p}-\mu_{p})c^{2}/kT}$$

$$n_{H} = g_{H} \left(\frac{m_{H}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{H}-\mu_{H})c^{2}/kT}$$

$$\mu_{e} + \mu_{p} = \mu_{H} ; \quad \mu_{\gamma} = 0$$

$$n_{\gamma} = \frac{2\zeta(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3$$

$$e^- + p \Leftrightarrow H + \gamma$$

$$n_{e} = g_{e} \left(\frac{m_{e}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{e}-\mu_{e})c^{2}/kT}$$

$$n_{p} = g_{p} \left(\frac{m_{p}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{p}-\mu_{p})c^{2}/kT}$$

$$(\frac{n_{H}}{n_{e}n_{p}}) = \frac{g_{H}}{g_{e}g_{p}} \left(\frac{m_{H}}{m_{e}m_{p}}\frac{2\pi\hbar^{2}}{kT}\right)^{3/2} e^{(m_{e}+m_{p}-m_{H})c^{2}/kT}$$

$$\mu_{e} + \mu_{p} = \mu_{H} ; \quad \mu_{\gamma} = 0$$

$$n_{\gamma} = \frac{2\zeta(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3$$

CMBR origin calculation – hydrogen recombination

$$e^- + p \Leftrightarrow H + \gamma$$

$$n_{e} = g_{e} \left(\frac{m_{e}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{e}-\mu_{e})c^{2}/kT}$$

$$n_{p} = g_{p} \left(\frac{m_{p}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{p}-\mu_{p})c^{2}/kT}$$

$$\left(\frac{n_{H}}{n_{e}n_{p}}\right) = \frac{g_{H}}{g_{e}g_{p}} \left(\frac{m_{H}}{m_{e}m_{p}}\frac{2\pi\hbar^{2}}{kT}\right)^{3/2} e^{\frac{(m_{e}+m_{p}-m_{H})c^{2}/kT}{B_{H}}}$$

$$n_{H} = g_{H} \left(\frac{m_{H}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{H}-\mu_{H})c^{2}/kT}$$

$$n_{\gamma} = \frac{2\zeta(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3$$

origin

$$e^- + p \Leftrightarrow H + \gamma$$

$$n_{e} = g_{e} \left(\frac{m_{e}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{e}-\mu_{e})c^{2}/kT}$$

$$n_{p} = g_{p} \left(\frac{m_{p}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{p}-\mu_{p})c^{2}/kT}$$

$$\left(\frac{n_{H}}{n_{e}n_{p}}\right) = \frac{g_{H}}{g_{e}g_{p}} \left(\frac{m_{H}}{m_{e}m_{p}}\frac{2\pi\hbar^{2}}{kT}\right)^{3/2} e^{B_{H}/kT}$$

$$n_{H} = g_{H} \left(\frac{m_{H}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{H}-\mu_{H})c^{2}/kT}$$

$$n_{\gamma} = \frac{2\xi(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3$$

$$e^- + p \Leftrightarrow H + \gamma$$

$$n_{e} = g_{e} \left(\frac{m_{e}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{e}-\mu_{e})c^{2}/kT}$$
$$n_{p} = g_{p} \left(\frac{m_{p}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{p}-\mu_{p})c^{2}/kT}$$

$$\left(\frac{n_H}{n_e n_p}\right) = \frac{g_H}{g_e g_p} \left(\frac{m_H}{m_e m_p} \frac{2\pi\hbar^2}{kT}\right)^{3/2} e^{B_H/kT}$$

$$n_{H} = g_{H} \left(\frac{m_{H}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{H}-\mu_{H})c^{2}/kT}$$

$$\begin{array}{ll} n_e = n_p & (\text{charge neutrality}) \\ m_H \approx m_p & (\text{only for pre-factor!}) \\ g_e = g_p = 2 & (\text{spin up/down}) \\ g_H = 4 & (e \text{ aligned/anti-aligned to } p) \end{array}$$

$$n_{\gamma} = \frac{2\xi(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3$$

$$e^- + p \Leftrightarrow H + \gamma$$

$$n_{e} = g_{e} \left(\frac{m_{e}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{e}-\mu_{e})c^{2}/kT}$$

$$n_{p} = g_{p} \left(\frac{m_{p}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{p}-\mu_{p})c^{2}/kT}$$

$$n_{H} = g_{H} \left(\frac{m_{H}kT}{2\pi\hbar^{2}}\right)^{3/2} e^{-(m_{H}-\mu_{H})c^{2}/kT}$$

$$n_{\gamma} = \frac{2\zeta(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3$$

 $e^- + p \Leftrightarrow H + \gamma$

$$\left(\frac{n_H}{n_e^2}\right) = \left(\frac{2\pi\hbar^2}{m_e kT}\right)^{3/2} e^{B_H/kT}$$

$$n_{\gamma} = \frac{2\zeta(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3$$

CMBR origin calculation – hydrogen recombination

 $e^- + p \Leftrightarrow H + \gamma$

fraction of free electrons:

$$X_e = \frac{n_e}{n_b}$$

$$n_{\gamma} = \frac{2\xi(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3$$

 $e^- + p \Leftrightarrow H + \gamma$

fraction of free electrons:

$$n_{\gamma} = \frac{2\zeta(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3$$

 $e^- + p \Leftrightarrow H + \gamma$

origin

 $e^- + p \Leftrightarrow H + \gamma$

fraction of free electrons:

$$\begin{aligned} X_e &= \frac{n_e}{n_b} \\ n_b &= \eta n_\gamma = \eta \frac{2\zeta(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3 \\ n_b &\approx n_p + n_H = n_e + n_H \end{aligned}$$

(ignoring all nuclei A>1 and assuming charge neutrality)

$$n_{\gamma} = \frac{2\zeta(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3$$

 $e^- + p \Leftrightarrow H + \gamma$

fraction of free electrons:

$$X_{e} = \frac{n_{e}}{n_{b}}$$

$$n_{b} = \eta n_{\gamma} = \eta \frac{2\zeta(3)}{\pi^{2}} \left(\frac{k}{\hbar c}\right)^{3} T^{3}$$

$$n_{b} \approx n_{p} + n_{H} = n_{e} + n_{H}$$

(ignoring all nuclei A>1 and assuming charge neutrality)

$$n_{\gamma} = \frac{2\zeta(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3$$

CMBR origin calculation – hydrogen recombination

 $e^- + p \Leftrightarrow H + \gamma$

 $\left(\frac{n_{H}}{n_{e}^{2}}\right) = \left(\frac{2\pi\hbar^{2}}{m_{e}kT}\right)^{3/2} e^{B_{H}/kT} \qquad X_{e} = \frac{n_{e}}{n_{b}}$ $n_{b} = \eta n_{\gamma} = \eta \frac{2\xi(3)}{\pi^{2}} \left(\frac{k}{\hbar c}\right)^{3} T^{3}$ $n_{b} \approx n_{p} + n_{H} = n_{e} + n_{H}$ $n_{H} = n_{e}^{2} \left(\frac{2\pi\hbar^{2}}{m_{e}kT}\right)^{3/2} e^{B_{H}/kT}$ $n_{\gamma} = \frac{2\xi(3)}{\pi^{2}} \left(\frac{k}{\hbar c}\right)^{3} T^{3}$

fraction of free electrons:

 $e^- + p \Leftrightarrow H + \gamma$

fraction of free electrons:

$$\begin{aligned} X_e &= \frac{n_e}{n_b} \\ n_b &= \eta n_\gamma = \eta \frac{2\xi(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3 = n_e \left(1 + n_e \left(\frac{2\pi\hbar^2}{m_e kT}\right)^{3/2} e^{B_H/kT}\right) \\ n_b &\approx n_p + n_H = n_e + n_H \\ n_H &= n_e^2 \left(\frac{2\pi\hbar^2}{m_e kT}\right)^{3/2} e^{B_H/kT} \end{aligned}$$

$$n_{\gamma} = \frac{2\xi(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3$$

CMBR origin calculation – hydrogen recombination

 $e^- + p \Leftrightarrow H + \gamma$

fraction of free electrons:

$$\frac{1-X_e}{X_e^2} = \frac{2\xi(3)}{\pi^2} \eta \left(\frac{2\pi kT}{c^2 m_e}\right)^{3/2} e^{B_H/kT}$$

(Saha equation)

CMBR origin calculation – hydrogen recombination

• fraction of free electrons (Saha equation):

$$\frac{1-X_e}{X_e^2} = \frac{2\zeta(3)}{\pi^2} \eta \left(\frac{2\pi kT}{c^2 m_e}\right)^{3/2} e^{B_H/kT}$$

CMBR origin calculation – hydrogen recombination

• fraction of free electrons (Saha equation):

CMBR origin calculation – hydrogen recombination

• fraction of free electrons (Saha equation):

CMBR origin calculation – hydrogen recombination

• fraction of free electrons (Saha equation):

CMBR origin calculation – hydrogen recombination

• fraction of free electrons (Saha equation):

CMBR origin calculation – hydrogen recombination

• fraction of free electrons (Saha equation):

- CMBR origin calculation hydrogen recombination
 - hydrogen recombination:
- $T_{\rm rec} = 0.31 {\rm eV}$ $z_{\rm rec} = 1330$
- (defined via $X_e=0.1$ and hence not instantaneous!)

- CMBR origin calculation hydrogen recombination
 - hydrogen recombination:
- $T_{\rm rec} = 0.31 {\rm eV}$ $z_{\rm rec} = 1330$
- (defined via $X_e=0.1$ and hence not instantaneous!)

- CMBR origin calculation photon decoupling
 - hydrogen recombination: $T_{rec} = 0.31 eV$ $z_{rec} = 1330$
 - photon decoupling: $e^- + \gamma \iff e^- + \gamma$

decoupling condition:

 $\Gamma/H < 1$

- CMBR origin calculation photon decoupling
 - hydrogen recombination: $T_{\rm rec} = 0.31 {\rm eV}$ $z_{\rm rec} = 1330$
 - photon decoupling: $e^- + \gamma \iff e^- + \gamma$

decoupling condition:

 $\Gamma/H < 1$

 $\Gamma_{\gamma} \approx n_e \ \sigma_T c$

- CMBR origin calculation photon decoupling
 - hydrogen recombination: $T_{rec} = 0.31 eV$ $z_{rec} = 1330$
 - photon decoupling: $e^- + \gamma \iff e^- + \gamma$

decoupling condition:

 $\Gamma/H < 1$

$$\Gamma_{\gamma} \approx n_e \ \sigma_T c = n_b X_e \ \sigma_T c$$

- CMBR origin calculation photon decoupling
 - hydrogen recombination: $T_{\rm rec} = 0.31 {\rm eV}$ $z_{\rm rec} = 1330$
 - photon decoupling: $e^- + \gamma \iff e^- + \gamma$

decoupling condition:

$$\Gamma/H < 1$$

$$\Gamma_{\gamma} \approx n_e \,\sigma_T c = n_b X_e \,\sigma_T c = \eta \frac{2\zeta(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3 \, X_e \sigma_T c$$

- CMBR origin calculation photon decoupling
 - hydrogen recombination: $T_{\rm rec} = 0.31 {\rm eV}$ $z_{\rm rec} = 1330$
 - photon decoupling: $e^- + \gamma \iff e^- + \gamma$

decoupling condition:

$$\Gamma_{\gamma} \approx n_e \ \sigma_T c = n_b X_e \ \sigma_T c = \eta \frac{2\zeta(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3 \ X_e \sigma_T c$$

 $\Gamma/H < 1$

 $H = \dots$

- CMBR origin calculation photon decoupling
 - hydrogen recombination: $T_{\rm rec} = 0.31 {\rm eV}$ $z_{\rm rec} = 1330$
 - photon decoupling: $e^- + \gamma \iff e^- + \gamma$

decoupling condition:

 $\Gamma/H < 1$

$$\Gamma_{\gamma} \approx n_e \ \sigma_T c = n_b X_e \ \sigma_T c = \eta \frac{2\zeta(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3 \ X_e \sigma_T c$$

$$H = \left(H_0^2 \Omega_{m,0} R^{-3}\right)^{1/2} \text{ matter domination (as } z_{\text{rec}} << z_{\text{eq}}):$$

- CMBR origin calculation photon decoupling
 - hydrogen recombination: $T_{\rm rec} = 0.31 {\rm eV}$ $z_{\rm rec} = 1330$
 - photon decoupling: $e^- + \gamma \iff e^- + \gamma$

decoupling condition:

 $\Gamma/H < 1$

$$\Gamma_{\gamma} \approx n_e \,\sigma_T c = n_b X_e \,\sigma_T c = \eta \frac{2\zeta(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3 \, X_e \sigma_T c$$

$$H = \left(H_0^2 \Omega_{m,0} R^{-3}\right)^{1/2} \text{ matter domination (as } z_{\text{rec}} << z_{\text{eq}}):$$

 $T \propto R^{-1}$ for photons

- CMBR origin calculation photon decoupling
 - hydrogen recombination: $T_{\rm rec} = 0.31 {\rm eV}$ $z_{\rm rec} = 1330$
 - photon decoupling: $e^- + \gamma \iff e^- + \gamma$

decoupling condition:

$$\Gamma/H < 1$$

$$\Gamma_{\gamma} \approx n_e \ \sigma_T c = n_b X_e \ \sigma_T c = \eta \frac{2\zeta(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T^3 \ X_e \sigma_T c$$

$$H = H_0 \sqrt{\Omega_{m,0}} \left(\frac{T}{T_0}\right)^{3/2}$$

(*T* is the temperature of the photons!)

- CMBR origin calculation photon decoupling
 - hydrogen recombination: $T_{\rm rec} = 0.31 {\rm eV}$ $z_{\rm rec} = 1330$
 - photon decoupling:

$$e^- + \gamma \iff e^- + \gamma$$

- CMBR origin calculation photon decoupling
 - hydrogen recombination: $T_{\rm rec} = 0.31 {\rm eV}$ $z_{\rm rec} = 1330$
 - photon decoupling: $e^- + \gamma \iff e^- + \gamma$

decoupling condition:

 $\Gamma/H < 1$

$$\eta \frac{2\zeta(3)}{\pi^2} \left(\frac{k}{\hbar c}\right)^3 T_{dec}^3 X_e \sigma_T c \approx H_0 \sqrt{\Omega_{m,0}} \left(\frac{T_{dec}}{T_0}\right)^{3/2}$$

• use Saha equation for $X_e(T_{dec})$

• solve for T_{dec}

- CMBR origin calculation photon decoupling
 - hydrogen recombination: $T_{rec} = 0.31 eV$ $z_{rec} = 1330$
 - photon decoupling:

$$T_{dec} = 0.27 eV$$
$$z_{dec} = 1090$$

- CMBR origin calculation photon decoupling
 - hydrogen recombination: $T_{\rm rec} = 0.31 {\rm eV}$ $z_{\rm rec} = 1330$
 - photon decoupling:

Iast scattering surface

discovery

origin

- primary
- secondary

discovery

origin

- primary (created during inflation)
- secondary (created after photon decoupling)

outline

discovery

origin

- primary (created during inflation)
- secondary (created after photon decoupling)

discovery

origin

- <u>primary</u> (created during inflation):
 - intrinsic fluctuations
 - how to quantify them?
 - what's their nature?
 - sensitivity to cosmological parameters?
- secondary (created after photon decoupling):
 - what's their nature?
 - what's their importance?

intrinsic fluctuations

intrinsic fluctuations

there must be some primordial matter(!) fluctuations

acting as seeds for all the structures in the Universe!?

- seed inhomogeneities and their relation to temperature fluctuations:
 - "inflation" of quantum fluctuations

inflation

intrinsic fluctuations

- seed inhomogeneities and their relation to temperature fluctuations:
 - "inflation" of quantum fluctuations lead to ...
 - primordial matter perturbations*

*Note: we are not dealing with dark matter perturbations here as they decoupled after inflation, but long before 'last scattering'

intrinsic fluctuations

- seed inhomogeneities and their relation to temperature fluctuations:
 - "inflation" of quantum fluctuations lead to ...
 - primordial matter perturbations

intrinsic fluctuations

- seed inhomogeneities and their relation to temperature fluctuations:
 - primordial matter perturbations are amplified via gravity
 - intrinsic fluctuations in CMB are conserved

intrinsic fluctuations

- seed inhomogeneities and their relation to temperature fluctuations:
 - primordial matter perturbations are amplified via gravity
 - intrinsic fluctuations in CMB are conserved

intrinsic fluctuations

- seed inhomogeneities and their relation to temperature fluctuations:
 - primordial matter perturbations are amplified via gravity
 - intrinsic fluctuations in CMB are conserved

intrinsic fluctuations

• (seed) inhomogeneities and their relation to temperature fluctuations:

observed ($\Delta
ho_{m}/
ho_{m}$) $_{0}$

intrinsic fluctuations

• (seed) inhomogeneities and their relation to temperature fluctuations:

observed ($\Delta
ho_{m}/
ho_{m}$) $_{0}$

 $(\Delta \rho_m / \rho_m)_{\rm dec}$

theoretical structure formation

Cosmic Microwave Background intrinsic fluctuations • (seed) inhomogeneities and their relation to temperature fluctuations: observed $(\Delta
ho_m /
ho_m)_0$ theoretical structure formation $(\Delta \rho_m / \rho_m)_{\rm dec}$ → predicted $(\Delta T/T)_{dec}$

some relation

$$\Delta T/T = k \Delta \rho_m / \rho_m$$

theoretical structure formation (see "LSS" lecture)

$$\ddot{\delta}_m + 2H\dot{\delta}_m = 4\pi G\rho_m \delta_m \qquad \text{with} \quad \delta_m = \frac{\Delta\rho_m}{\rho_m}$$

theoretical structure formation (see "LSS" lecture)

$$\ddot{\delta}_m + 2H\dot{\delta}_m = 4\pi G\rho_m \delta_m \qquad \text{with} \quad \delta_m = \frac{\Delta\rho_m}{\rho_m}$$

• solution*: $\delta_{m,0} = \delta_{m,dec} a$

*for matter dominated Universe with $\Omega_m \approx 1$

theoretical structure formation (see "LSS" lecture)

$$\ddot{\delta}_m + 2H\dot{\delta}_m = 4\pi G\rho_m \delta_m$$
 with $\delta_m = \frac{\Delta\rho_m}{\rho_m}$

- solution: $\delta_{m,0} = \delta_{m,\text{dec}} a$
- today (lower limit!):

$$\delta_{m,0} \ge 1$$

theoretical structure formation (see "LSS" lecture)

$$\ddot{\delta}_m + 2H\dot{\delta}_m = 4\pi G\rho_m \delta_m$$
 with $\delta_m = \frac{\Delta\rho_m}{\rho_m}$

- solution: $\delta_{m,0} = \delta_{m,\text{dec}} a$
- today (lower limit!):

$$\delta_{m,0} \ge 1$$

• decoupling: $z_{dec} \approx 1100$

a) relation of $\Delta
ho_{\it m}/
ho_{\it m}$ to $\Delta
ho_{\it r}/
ho_{\it r}$

a) relation of $\Delta
ho_{\it m}/
ho_{\it m}$ to $\Delta
ho_{\it r}/
ho_{\it r}$

b) relation of $\Delta \rho_r / \rho_r$ to $\Delta T / T$

a) relation of $\Delta \rho_m / \rho_m$ to $\Delta \rho_r / \rho_r$ $\rho_m \propto R^{-3}$

 $ho_r \propto R^{-4}$

a) relation of $\Delta \rho_m / \rho_m$ to $\Delta \rho_r / \rho_r$ $\rho_m \propto R^{-3} \Rightarrow \Delta \rho_m \propto -3R^{-2}\Delta R$ $\rho_r \propto R^{-4} \Rightarrow \Delta \rho_r \propto -4R^{-3}\Delta R$

(right) at (t_1, x) equal conditions in the (homogeneous) background universe (left) at some time $t_1 + \delta t(\boldsymbol{x})$.

a) relation of
$$\Delta \rho_m / \rho_m$$
 to $\Delta \rho_r / \rho_r$
 $\rho_m \propto R^{-3} \Rightarrow \Delta \rho_m \propto -3R^{-2}\Delta R = -3\rho_m \frac{\Delta R}{R}$
 $\rho_r \propto R^{-4} \Rightarrow \Delta \rho_r \propto -4R^{-3}\Delta R = -4\rho_r \frac{\Delta R}{R}$

a) relation of
$$\Delta \rho_m / \rho_m$$
 to $\Delta \rho_r / \rho_r$
 $\rho_m \propto R^{-3} \Rightarrow \Delta \rho_m \propto -3R^{-2}\Delta R = -3\rho_m \frac{\Delta R}{R} \Rightarrow \frac{\Delta \rho_m}{\rho_m} = -3\frac{\Delta R}{R}$
 $\rho_r \propto R^{-4} \Rightarrow \Delta \rho_r \propto -4R^{-3}\Delta R = -4\rho_r \frac{\Delta R}{R} \Rightarrow \frac{\Delta \rho_r}{\rho_r} = -4\frac{\Delta R}{R}$

a) relation of $\Delta \rho_m / \rho_m$ to $\Delta \rho_r / \rho_r$

$$\frac{\Delta \rho_m}{\rho_m} = -3\frac{\Delta R}{R}$$
$$\frac{\Delta \rho_r}{\rho_r} = -4\frac{\Delta R}{R}$$

a) adiabatic perturbations: $\Delta \rho_m / \rho_m = (3/4) \Delta \rho_r / \rho_r$

a) adiabatic? perturbations: $\Delta \rho_m / \rho_m = (3/4) \Delta \rho_r / \rho_r$

a) adiabatic perturbations: $\Delta \rho_m / \rho_m = (3/4) \Delta \rho_r / \rho_r$

b) relation of $\Delta \rho_r / \rho_r$ to $\Delta T / T$

a) adiabatic perturbations: $\Delta \rho_m / \rho_m = (3/4) \Delta \rho_r / \rho_r$

b) relation of $\Delta \rho_r / \rho_r$ to $\Delta T / T$

radiation density: $ho_r \propto T^4$

a) adiabatic perturbations: $\Delta \rho_m / \rho_m = (3/4) \Delta \rho_r / \rho_r$

b) relation of $\Delta \rho_r / \rho_r$ to $\Delta T / T$

radiation density:
$$\rho_r \propto T^4 \Rightarrow \Delta \rho_r \propto 4T^3 \Delta T = 4 \frac{\rho_r}{T} \Delta T \Rightarrow \frac{\Delta \rho_r}{\rho_r} = 4 \frac{\Delta T}{T}$$

a) adiabatic perturbations: $\Delta \rho_m / \rho_m = (3/4) \Delta \rho_r / \rho_r$

b) relation $\Delta \rho_r / \rho_r = 4 \Delta T / T$

a) adiabatic perturbations: $\Delta \rho_m / \rho_m = (3/4) \Delta \rho_r / \rho_r$ b) relation $\Delta \rho_r / \rho_r = 4 \Delta T / T$ b) relation $\Delta \rho_r / \rho_r = 4 \Delta T / T$

b) relation $\Delta \rho_r / \rho_r = 4 \Delta T / T$

putting all together again...

intrinsic fluctuations

intrinsic fluctuations

discovery

origin

CMB fluctuations

- <u>primary</u> (created during inflation):
 - intrinsic fluctuations
 - how to quantify them?
 - what's their nature?
 - sensitivity to cosmological parameters?
- secondary (created after photon decoupling):
 - what's their nature?
 - what's their importance?

quantifying fluctuations on a sphere?

quantifying fluctuations on a sphere

$$\frac{\Delta T}{T}(\vartheta,\varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} a_{lm} Y_{lm}(\vartheta,\varphi)$$

 $Y_{lm}(\vartheta, \varphi)$: spherical harmonics

(complete orthonormal set of functions on the surface of a sphere)

quantifying fluctuations on a sphere

 C_l : power spectrum of temperature fluctuations

discovery

origin

CMB fluctuations

- <u>primary</u> (created during inflation):
 - intrinsic fluctuations
 - how to quantify them?
 - what's their nature?
 - sensitivity to cosmological parameters?
- secondary (created after photon decoupling):
 - what's their nature?
 - what's their importance?

- nature of fluctuations
 - baryonic matter was coupled to radiation prior to $z_{rec} \sim 1330$

- nature of fluctuations
 - baryonic matter was coupled to radiation prior to $z_{rec} \sim 1330$

existence of perturbations

baryonic acoustic oscillations

- baryonic acoustic oscillations
 - gravity vs. radiation pressure

- baryonic acoustic oscillations
 - gravity vs. radiation pressure → oscillations

- baryonic acoustic oscillations
 - gravity vs. radiation pressure → oscillations

- baryonic acoustic oscillations
 - gravity vs. radiation pressure → oscillations

- baryonic acoustic oscillations
 - gravity vs. radiation pressure → oscillations

- baryonic acoustic oscillations
 - gravity vs. radiation pressure \rightarrow oscillations

decoupling:

• oscillations are frozen

• photons are caught at extremes \rightarrow translation into temperature fluctuations

- baryonic acoustic oscillations
 - gravity vs. radiation pressure \rightarrow oscillations \rightarrow sound waves $c_s = \sqrt{\frac{\partial p}{\partial \rho}} \approx \frac{c}{\sqrt{3}}$
 - overdensity in DM, neutrinos, gas & photons

- baryonic acoustic oscillations
 - gravity vs. radiation pressure \rightarrow oscillations \rightarrow sound waves $c_s = \sqrt{\frac{\partial p}{\partial \rho}} \approx \frac{c}{\sqrt{3}}$
 - overdensity in DM, neutrinos, gas & photons:
 - DM is decoupled and hence able to gravitationally collapse right away
 - neutrinos about to decouple and free stream out of overdensity
 - gas & photons remain coupled until photon decoupling
 - \rightarrow overdensity/overpressured region travels outwards as sound wave

- baryonic acoustic oscillations
 - gravity vs. radiation pressure \rightarrow oscillations \rightarrow sound waves

- baryonic acoustic oscillations
 - gravity vs. radiation pressure \rightarrow oscillations \rightarrow sound waves

Eisenstein et al. (2007)
- baryonic acoustic oscillations
 - gravity vs. radiation pressure \rightarrow oscillations \rightarrow sound waves

- baryonic acoustic oscillations
 - gravity vs. radiation pressure \rightarrow oscillations \rightarrow sound waves

- baryonic acoustic oscillations
 - gravity vs. radiation pressure \rightarrow oscillations \rightarrow sound waves

- baryonic acoustic oscillations
 - gravity vs. radiation pressure \rightarrow oscillations \rightarrow sound waves

- baryonic acoustic oscillations
 - gravity vs. radiation pressure \rightarrow oscillations \rightarrow sound waves

- baryonic acoustic oscillations
 - gravity vs. radiation pressure \rightarrow oscillations \rightarrow sound waves

- baryonic acoustic oscillations
 - gravity vs. radiation pressure \rightarrow oscillations \rightarrow sound waves

- baryonic acoustic oscillations
 - gravity vs. radiation pressure \rightarrow oscillations \rightarrow sound waves

- baryonic acoustic oscillations
 - gravity vs. radiation pressure \rightarrow oscillations \rightarrow sound waves

- baryonic acoustic oscillations
 - gravity vs. radiation pressure \rightarrow oscillations \rightarrow sound waves

- baryonic acoustic oscillations
 - gravity vs. radiation pressure \rightarrow oscillations \rightarrow sound waves

Intrinsic fluctuations – where do they come from?

Cosmic Microwave Background

nature of fluctuations

Intrinsic fluctuations – where do they come from?

$$\frac{\delta T}{T} = \frac{1}{3} \frac{\delta \rho_m}{\rho_m}$$

(adiabatic fluctuations)

nature of fluctuations

intrinsic fluctuations – where do they come from?

$$\frac{\delta T}{T} = \frac{1}{3} \frac{\delta \rho_m}{\rho_m}$$

(adiabatic fluctuations)

- more detailed calculations:
 - Sachs-Wolfe effect
 - Doppler effect
 - Silk damping

- Sachs-Wolfe effect
 - variations in gravitational potential lead to temperature fluctuations

- Sachs-Wolfe effect
 - variations in gravitational potential lead to temperature fluctuations

- Doppler effect
 - last-scattering electrons have finite velocity

- Silk damping
 - photon diffusion from high to low-density regions
 - electrons are dragged along via Compton interactions
 - protons also follow due to Coulomb coupling to electrons

 \rightarrow baryonic density fluctuations are damped! ($\Delta \theta << 1^{\circ}$)

- Silk damping
 - photon diffusion from high to low-density regions
 - electrons are dragged along via Compton interactions
 - protons also follow due to Coulomb coupling to electrons
 - \rightarrow baryonic density fluctuations are damped!

discovery

origin

CMB fluctuations

- <u>primary</u> (created during inflation):
 - intrinsic fluctuations
 - how to quantify them?
 - what's their nature?

– sensitivity to cosmological parameters?

- secondary (created after photon decoupling):
 - what's their nature?
 - what's their importance?

sensitivity to cosmic parameters

the shape of the power spectrum of the intrinsic temperature fluctuations in the CMB depends sensitively on the cosmological parameters!

discovery

origin

CMB fluctuations

- primary (created during inflation):
 - intrinsic fluctuations
 - how to quantify them?
 - what's their nature?
 - sensitivity to cosmological parameters?
- <u>secondary</u> (created after photon decoupling):

– what's their nature?

- what's their importance?

interactions of CMB photons with matter inbetween z_{dec} and z=0

Cosmic Microwave Background

- secondary fluctuations where do they come from?
 - integrated Sachs-Wolfe effect
 - Rees-Sciama effect
 - Sunyaev-Zeldovich effect (thermal & kinematic)
 - Ostriker-Vishniac effect
 - patchy reionisation of the Universe
 - gravitational lensing

Cosmic Microwave Background secondary effects integrated Sachs-Wolfe (ISW) effect • fluctuations due to **global** (time-varying) gravitational potential • caused by time-varying linear perturbations (e.g. superclusters) Photon entering The photon starts the potential well of at a certain energy. a supercluster of galaxies As the photon travels Photon nearing the through the potential well, minimum point of the it gains a little energy. potential well of a supercluster At the same time, of galaxies dark energy causes the supercluster to expand, and the potential well loses some depth.

> Photon exiting the potential well of a supercluster of galaxies When the photon climbs out of the potential well, it looses some energy; however, the well is less deep, so the photon exits with more energy than it entered.

Cosmic Microwave Background secondary effects integrated Sachs-Wolfe (ISW) effect • fluctuations due to **global** (time-varying) gravitational potential • caused by time-varying linear perturbations (e.g. superclusters) Photon entering The photon starts the potential well of at a certain energy. a supercluster of galaxies As the photon travels Photon nearing the through the potential well, minimum point of the it gains a little energy. potential well of a supercluster At the same time, of galaxies dark energy causes the supercluster to expand, and the potential well loses some depth. crossing time ca. 3mio. years The supercluster continues to expand. Photon exiting the potential well of a supercluster When the photon climbs of galaxies out of the potential well, it looses some energy; owever, the well is less deep so the photon exits with more energy than it entered.

- Rees-Sciama (RS) effect
 - fluctuations due to **local** (time-varying) gravitational potential
 - caused by time-varying non-linear perturbations (e.g. haloes)

secondary effects

Sunyaev-Zeldovich (SZ) effect

- Sunyaev-Zeldovich (SZ) effect
 - thermal: CMB photons scatter off the hot intra-cluster gas
 - kinetic: the cluster gas has a bulk motion with respects to the CMB and hence induces a Doppler shift

- Sunyaev-Zeldovich (SZ) effect
 - thermal: CMB photons scatter off the hot intra-cluster gas
 - kinetic: the cluster gas has a bulk motion with respects to the CMB and hence induces a Doppler shift

the SZ effect is used to study galaxy clusters:

- Ostriker-Vishniac (OV) effect
 - higher order coupling between bulk flow of electrons and their density perturbations (outside virialized objects)

Cosmic Microwave Background

secondary effects

energy input from first objects

Cosmic Microwave Background

secondary effects

secondary effects

gravitational lensing

discovery

origin

CMB fluctuations

- primary (created during inflation):
 - intrinsic fluctuations
 - how to quantify them?
 - what's their nature?
 - sensitivity to cosmological parameters?
- <u>secondary</u> (created after photon decoupling):
 - what's their nature?
 - what's their importance?

relevance of secondary effects

discovery

origin

CMB fluctuations

- primary (created during inflation)
- secondary (created after photon decoupling)
- polarisation

- Thomson scattering
 - the scattered wave is polarised perpendicular to the incidence direction
 - light cannot be polarised along direction of motion: \rightarrow only one linear polarisation state gets scattered

- Thomson scattering
 - the scattered wave is polarised perpendicular to the incidence direction
 - incidence directions are isotropic \rightarrow no net polarisation

- Thomson scattering
 - the scattered wave is polarised perpendicular to the incidence direction
 - incidence directions has quadrupole \rightarrow net polarisation

- CMB polarisation
 - quadrupole anisotropy in photon flux due to...
 - scalar perturbations (density)
 - vector perturbations (vorticity)
 - tensor perturbations (grav. waves)

polarisation

hot spot cold spot

hot spot

- CMB polarisation
 - quadrupole anisotropy in photon flux due to...

cold spot

- scalar perturbations (density)
 - E-mode polarisation
- tensor perturbations (grav. waves)
 - B-mode polarisation

CMB polarisation

Next: Introduction

http://background.uchicago.edu/~whu/polar/webversion/polar.html

experimental data and prospects for the future detection of CMB polarization.

		http://la	ambda gefo	nasa gou/too	lhov/th camb	form ofm		
		псср.//те	inibua.ysic.	11a5a.y0v/ 000		_101111.01111		
000				lambda.gsfc.nasa.gov	,	Ċ		<u> </u>
	Wunschzettel Dict-EN	Dict-ES Astro ~ UAM	✓ MAD ✓ Lifestyle ✓	Mac 🗸 Mail 🗸 Bankir	ng 🗸 Misc 🗸 Movies 🗸	Newspaper ~ Music ~	Shopping ~ Anja ~ A	K
Astr	ronomy Picture of the Day	Wayne Hu's	Tutorials	LAMBDA - CAMB Web Inter	face LAMBDA	A - CMB Tools	www.class-code.net	
	NASA	National Aeronauti Goddard Space Flight Sciences and Exploration	ics and Space Ad Center	dministration		G Markan ABC	Go Search Site Follow @NASA_LAMBDA ABOUT LAMBDA	
	Home	Data	Tools	Papers	Education	Links	News	
	LAMBDA - Tools							
	Tools	Footprint	САМВ	WMAPViewer	Conversions	Calculators		
			C	CAMB Web Inter	ace			
	Most of the configu	uration documentation	is provided in the	sample parameter file	provided with the ap	plication.		
			Sup	ports the April 2014	Release			
	This form us compor	ses JavaScript to enab nents. If either of these	le certain layout fe e features are not s	atures, and it uses Ca supported or enabled I	scading Style Sheets by your browser, this	to control the layout form will NOT display	of all the form correctly.	
	Descriptive inform	ation for the CAMB pa	rameters can be fo	und at: http://cosmol	ogist.info/notes/CAME	3.pdf		
	Actions to Perfo	rm						
	✓ Scalar C _l 's		Lensing		Matter Dower (UALO	None	>	
	 Vector C_l's Tensor C_l's 	U Irai		 Non-linear Non-linear Non-linear 	CMB Lensing (HALOF Matter Power and CM	IT) Sky Map Ou IT) IB	itput	