
THE ORIGIN OF DENSITY PERTURBATIONS

If cosmological inflation made the universe so extremely flat and ho-

mogeneous, where did the galaxies and clusters of galaxies come from?

One of the most astonishing predictions of inflation, one that was not

even expected, is that quantum fluctuations of the inflaton field are

stretched by the exponential expansion and generate large-scale per-

turbations in the metric. Inflaton fluctuations are small wave packets

of energy that, according to general relativity, modify the space-time

fabric, creating a whole spectrum of curvature perturbations. The use

of the word spectrum here is closely related to the case of light waves

propagating in a medium: a spectrum characterizes the amplitude of

each given wavelength. In the case of inflation, the inflaton fluctua-

tions induce waves in the space-time metric that can be decomposed

into different wavelengths, all with approximately the same amplitude,

that is, corresponding to a scale-invariant spectrum. These patterns

of perturbations in the metric are like fingerprints that unequivocally

characterize a period of inflation. When matter fell in the troughs of

these waves, it created density perturbations that collapsed gravita-

tionally to form galaxies, clusters and superclusters of galaxies, with a

spectrum that is also scale invariant. Such a type of spectrum was pro-

posed in the early 1970s (before inflation) by Harrison and Zel’dovich,

to explain the distribution of galaxies and clusters of galaxies on very

large scales in our observable universe. Perhaps the most interesting

aspect of structure formation is the possibility that the detailed knowl-

edge of what seeded galaxies and clusters of galaxies will allow us to

test the idea of inflation.
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Reparametrization invariant perturbation theory

Until now we have considered only the unperturbed FRW metric de-

scribed by a scale factor a(t) and a homogeneous scalar field φ(t),

ds2 = a2(η)[− dη2 + γij dx
idxj] , (1)

φ = φ(η) , (2)

where η =
∫
dt/a(t) is the conformal time, under which the back-

ground equations of motion can be written as

H2 =
κ2

3

(
1

2
φ′

2
+ a2V (φ)

)
, (3)

H′ −H2 = − κ
2

2
φ′

2
, (4)

φ′′ + 2Hφ′ + a2V ′(φ) = 0 , (5)

where H = aH and φ′ = aφ̇.

During inflation, the quantum fluctuations of the scalar field will

induce metric perturbations which will backreact on the scalar field.

Let us consider, in linear perturbation theory, the most general line

element with both scalar and tensor metric perturbations,1 together

with the scalar field perturbations

ds2 = a2(η)
[
− (1 + 2A) dη2 + 2B|i dx

idη

+
{

(1 + 2R)γij + 2E|ij + 2hij

}
dxidxj

]
, (6)

φ = φ(η) + δφ(η, xi) . (7)

The indices {i, j} label the three-dimensional spatial coordinates with

metric γij, and the |i denotes covariant derivative with respect to that

metric. The gauge invariant tensor perturbation hij corresponds to
1Note that inflation cannot generate, to linear order, a vector perturbation.
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a transverse traceless gravitational wave, ∇ihij = hii = 0. The four

scalar perturbations (A,B,R, E) are gauge dependent functions of

(η, xi). Under a general coordinate (gauge) transformation

η̃ = η + ξ0(η, xi) , (8)

x̃i = xi + γijξ|j(η, x
i) , (9)

with arbitrary functions (ξ0, ξ), the scalar and tensor perturbations

transform, to linear order, as

Ã = A− ξ0′ −Hξ0 , B̃ = B + ξ0 − ξ′ , (10)

R̃ = R−Hξ0 , Ẽ = E − ξ , (11)

h̃ij = hij , (12)

where a prime denotes derivative with respect to conformal time. It is

possible to construct, however, two gauge-invariant gravitational po-

tentials,

Φ = A + (B − E ′)′ +H(B − E ′) , (13)

Ψ = R +H(B − E ′) , (14)

which are related through the perturbed Einstein equations,

Φ = Ψ , (15)

k2 − 3K

a2
Ψ =

κ2

2
δρ , (16)

where δρ is the gauge-invariant density perturbation, and the latter

expression is nothing but the Poisson equation for the gravitational

potential, written in relativistic form.

During inflation, the energy density is given in terms of a scalar

field, and thus the gauge-invariant equations for the perturbations on

3



comoving hypersurfaces (constant energy density hypersurfaces) are

Φ′′ + 3HΦ′ + (H′ + 2H2)Φ =
κ2

2
[φ′δφ′ − a2V ′(φ)δφ] , (17)

−∇2Φ + 3HΦ′ + (H′ + 2H2)Φ = −κ
2

2
[φ′δφ′ + a2V ′(φ)δφ] , (18)

Φ′ +HΦ =
κ2

2
φ′δφ , (19)

δφ′′ + 2Hδφ′ −∇2δφ = 4φ′Φ′ − 2a2V ′(φ)Φ− a2V ′′(φ)δφ .(20)

This system of equations seem too difficult to solve at first sight.

However, there is a gauge invariant combination of variables that allows

one to find exact solutions. Let us define

u ≡ aδφ + zΦ , (21)

z ≡ a
φ′

H
. (22)

Under this redefinition, the above equations simplify enormously to

just three independent equations,

u′′ −∇2u− z′′

z
u = 0 , (23)

∇2Φ =
κ2

2

H
a2

(zu′ − z′u) , (24)(a2Φ

H

)′
=
κ2

2
zu . (25)

From Equation (23) we can find a solution u(z), which substituted into

(25) can be integrated to give Φ(z), and together with u(z) allow us

to obtain δφ(z).

Quantum Mechanics in curved space-time

Until now we have treated the perturbations as classical, but we should

in fact consider the perturbations Φ and δφ as quantum fields. Note
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that the perturbed action for the scalar mode u can be written as

δS =
1

2

∫
d3x dη

[
(u′)2 − (∇u)2 +

z′′

z
u2
]
. (26)

In order to quantize the field u in the curved background defined by

the metric (1), we can write the operator

û(η,x) =

∫
d3k

(2π)3/2

[
uk(η) âk e

ik·x + u∗k(η) â†k e
−ik·x

]
, (27)

where the creation and annihilation operators satisfy the commutation

relation of bosonic fields, and the scalar field’s Fock space is defined

through the vacuum condition,

[âk, â
†
k′] = δ3(k− k′) , (28)

âk|0〉 = 0 . (29)

Note that we are not assuming that the inflaton is a fundamental scalar

field, but that is can be written as a quantum field with its commutation

relations (as much as a pion can be described as a quantum field).

The equations of motion for each mode uk(η) are decoupled in linear

perturbation theory,

u′′k +
(
k2 − z′′

z

)
uk = 0 . (30)

The ratio z′′/z acts like a time-dependent potential for this Schrödinger

like equation. In order to find exact solutions to the mode equation,

we will use the slow-roll parameters,

ε = 1− H
′

H2
=
κ2

2

z2

a2
, (31)

δ = 1− φ′′

Hφ′
= 1 + ε− z′

Hz
, (32)

ξ = −
(

2− ε− 3δ + δ2 − φ′′′

H2φ′

)
. (33)
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In terms of these parameters, the conformal time and the effective

potential for the uk mode can be written as

η =
−1

H
+

∫
εda

aH
, (34)

z′′

z
= H2

[
(1 + ε− δ)(2− δ) +H−1(ε′ − δ′)

]
. (35)

Note that the slow-roll parameters, (31) and (32), can be taken as

constant,2 to order ε2,

ε′ = 2H
(
ε2 − εδ

)
= O(ε2) ,

δ′ = H
(
εδ − ξ

)
= O(ε2) .

(36)

In that case, for constant slow-roll parameters, we can write

η =
−1

H
1

1− ε
, (37)

z′′

z
=

1

η2

(
ν2 − 1

4

)
, where ν =

1 + ε− δ
1− ε

+
1

2
. (38)

We are now going to search for approximate solutions of the mode

equation (30), where the effective potential (35) is of order z′′/z ' 2H2

in the slow-roll approximation. In quasi-de Sitter there is a character-

istic scale given by the (event) horizon size or Hubble scale during

inflation, H−1. There will be modes uk with physical wavelengths

much smaller than this scale, k/a � H , that are well within the de

Sitter horizon and therefore do not feel the curvature of space-time. On

the other hand, there will be modes with physical wavelengths much

greater than the Hubble scale, k/a � H . In these two asymptotic

regimes, the solutions can be written as

uk =
1√
2k
e−ikη k � aH , (39)

uk = C1 z k � aH . (40)
2For instance, there are models of inflation, like power-law inflation, a(t) ∼ tp, where ε = δ = 1/p < 1, that

give constant slow-roll parameters.
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In the limit k � aH the modes behave like ordinary quantum modes in

Minkowsky space-time, appropriately normalized, while in the opposite

limit, u/z becomes constant on superhorizon scales. For approximately

constant slow-roll parameters one can find exact solutions to (30), with

the effective potential given by (38), that interpolate between the two

asymptotic solutions,

uk(η) =

√
π

2
ei(ν+1

2)π2 (−η)1/2H (1)
ν (−kη) , (41)

where H (1)
ν (z) is the Hankel function of the first kind, and ν is given

by (38) in terms of the slow-roll parameters. In the limit kη → 0, the

solution becomes

|uk| =
2ν−

3
2

√
2k

Γ(ν)

Γ(3
2)

(−kη)
1
2−ν ≡ C(ν)√

2k

( k

aH

)1
2−ν

, (42)

C(ν) = 2ν−
3
2

Γ(ν)

Γ(3
2)

(1− ε)ν−
1
2 ' 1 for ε, δ � 1 . (43)

We can now compute Φ and δφ from the super-Hubble-scale mode

solution (40), for k � aH . Substituting into Eq. (25), we find

Φ = C1

(
1− H

a2

∫
a2dη

)
+ C2

H
a2
, (44)

δφ =
C1

a2

∫
a2dη − C2

a2
. (45)

The term proportional to C1 corresponds to the growing solution, while

that proportional toC2 corresponds to the decaying solution, which can

soon be ignored. These quantities are gauge invariant but evolve with

time outside the horizon, during inflation, and before entering again the

horizon during the radiation or matter eras. We would like to write an

expression for a gauge invariant quantity that is also constant for su-

perhorizon modes. Fortunately, in the case of adiabatic perturbations,
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there is such a quantity:

ζ ≡ Φ +
1

εH
(Φ′ +HΦ) =

u

z
, (46)

which is constant, see Eq. (40), for k � aH . In fact, this quantity

ζ is identical, for superhorizon modes, to the gauge invariant curva-

ture metric perturbation Rc on comoving (constant energy density)

hypersurfaces,

ζ = Rc +
1

εH2
∇2Φ . (47)

Using Eq. (24) we can write the evolution equation for ζ = u
z as ζ ′ =

1
εH∇

2Φ, which confirms that ζ is constant for (adiabatic3) superhorizon

modes, k � aH . Therefore, we can evaluate the Newtonian potential

Φk when the perturbation reenters the horizon during radiation/matter

eras in terms of the curvature perturbation Rk when it left the Hubble

scale during inflation,

Φk =
(

1−H
a2

∫
a2dη

)
Rk =

3 + 3ω

5 + 3ω
Rk =

{
2
3Rk radiation era ,

3
5Rk matter era .

(48)

Let us now compute the tensor or gravitational wave metric pertur-

bations generated during inflation. The perturbed action for the tensor

mode can be written as

δS =
1

2

∫
d3x dη

a2

2κ2

[
(h′ij)

2 − (∇hij)2
]
, (49)

with the tensor field hij considered as a quantum field,

ĥij(η,x) =

∫
d3k

(2π)3/2

∑
λ=1,2

[
hk(η) eij(k, λ) âk,λ e

ik·x + h.c.
]
, (50)

where eij(k, λ) are the two polarization tensors, satisfying symmetric,
3This conservation fails for entropy or isocurvature perturbations
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transverse and traceless conditions

eij = eji , kieij = 0 , eii = 0 , (51)

eij(−k, λ) = e∗ij(k, λ) ,
∑
λ

e∗ij(k, λ)eij(k, λ) = 4 , (52)

while the creation and annihilation operators satisfy the usual commu-

tation relation of bosonic fields, Eq. (28). We can now redefine our

gauge invariant tensor amplitude as

vk(η) =
a√
2κ
hk(η) , (53)

which satisfies the following evolution equation, decoupled for each

mode vk(η) in linear perturbation theory,

v′′k +
(
k2 − a′′

a

)
vk = 0 . (54)

The ratio a′′/a acts like a time-dependent potential for this Schrödinger

like equation, analogous to the term z′′/z for the scalar metric pertur-

bation. For constant slow-roll parameters, the potential becomes

a′′

a
= 2H2

(
1− ε

2

)
=

1

η2

(
µ2 − 1

4

)
, (55)

µ =
1

1− ε
+

1

2
. (56)

We can solve equation (54) in the two asymptotic regimes,

vk =
1√
2k
e−ikη k � aH , (57)

vk = C a k � aH . (58)

In the limit k � aH the modes behave like ordinary quantum modes in

Minkowsky space-time, appropriately normalized, while in the opposite

limit, the metric perturbation hk becomes constant on superhorizon

scales. For constant slow-roll parameters one can find exact solutions
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to (54), with effective potential given by (55), that interpolate between

the two asymptotic solutions. These are identical to Eq. (41) except

for the substitution ν → µ. In the limit kη → 0, the solution becomes

|vk| =
C(µ)√

2k

( k

aH

)1
2−µ

. (59)

Since the mode hk becomes constant on superhorizon scales, we can

evaluate the tensor metric perturbation when it reentered during the

radiation or matter era directly in terms of its value during inflation.

Power spectrum of scalar and tensor metric perturbations

Not only do we expect to measure the amplitude of the metric pertur-

bations generated during inflation and responsible for the anisotropies

in the CMB and density fluctuations in LSS, but we should also be

able to measure its power spectrum, or two-point correlation function

in Fourier space. Let us consider first the scalar metric perturbations

Rk, which enter the horizon at a = k/H . Its correlator is given by

〈0|R∗kRk′|0〉 =
|uk|2

z2
δ3(k− k′) ≡ PR(k)

4πk3
(2π)3 δ3(k− k′) , (60)

PR(k) =
k3

2π2

|uk|2

z2
=
κ2

2ε

(H
2π

)2 ( k

aH

)3−2ν

≡ A2
S

( k

aH

)ns−1

,(61)

where we have used Rk = ζk = uk
z and Eq. (42). This last equation

determines the power spectrum in terms of its amplitude at horizon-

crossing, AS, and a tilt,

ns − 1 ≡ d lnPR(k)

d ln k
= 3− 2ν = 2

(δ − 2ε

1− ε

)
' 2ηV − 6εV . (62)

Note that it is possible, in principle, to obtain from inflation a scalar

tilt which is either positive (n > 1) or negative (n < 1). Furthermore,

depending on the particular inflationary model, we can have significant

departures from scale invariance.
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Note that at horizon entry kη = −1, and thus we can alternatively

evaluate the tilt as

ns − 1 ≡ − d lnPR
d ln η

= −2ηH
[
(1− ε)− (ε− δ)− 1

]
= 2

(δ − 2ε

1− ε

)
' 2ηV − 6εV , (63)

and the running of the tilt

dns
d ln k

= − dns
d ln η

= −ηH
(

2ξ + 8ε2− 10εδ
)
' 2ξV + 24ε2

V − 16ηV εV ,

(64)

where we have used Eqs. (36).

Let us consider now the tensor (gravitational wave) metric pertur-

bation, which enter the horizon at a = k/H ,∑
λ

〈0|h∗k,λhk′,λ|0〉 =
8κ2

a2
|vk|2δ3(k− k′) ≡ Pg(k)

4πk3
(2π)3 δ3(k− k′) ,

Pg(k) = 8κ2
(H

2π

)2 ( k

aH

)3−2µ

≡ A2
T

( k

aH

)nT
, (65)

where we have used Eqs. (53) and (59). Therefore, the power spectrum

can be approximated by a power-law expression, with amplitude AT

and tilt

nT ≡
d lnPg(k)

d ln k
= 3− 2µ =

−2ε

1− ε
' −2εV < 0 , (66)

which is always negative. In the slow-roll approximation, ε � 1, the

tensor power spectrum is scale invariant.

Alternatively, we can evaluate the tensor tilt by

nT ≡ −
d lnPg
d ln η

= −2ηH
[
(1− ε)− 1

]
=
−2ε

1− ε
' −2εV , (67)

and its running by

dnT
d ln k

= − dnT
d ln η

= −ηH
(

4ε2 − 4εδ
)
' 8ε2

V − 4ηV εV , (68)
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where we have used Eqs. (36).

Massless minimally coupled scalar field fluc-
tuations

The fluctuations of a massless minimally-coupled scalar field φ during

inflation (quasi de Sitter) are quantum fields in a curved background.

We will redefine y(x, t) = a(t) δφ(x, t), whose action is

S =

∫
d4xL(y, y′) =

1

2

∫
d3x dη

[
(y′)2 − (∇y)2 +

a′′

a
y2

]
, (69)

where primes denote derivatives w.r.t. conformal time η =
∫
dt/a(t) =

−1/(aH), withH the constant rate of expansion during inflation. Now

using the identity (y′)2 + a′′

a y
2 = (y′ − a′

a y)2 + (a
′

a y
2)′, which gives a

total derivative in the Lagrangian, we can define the conjugate momen-

tum as p = ∂L
∂y′ = y′ − a′

a y, and write the corresponding Hamiltonian

as

H = p y′ − L(y, y′) =
1

2

[
p2 + (∇y)2 + 2

a′

a
p y

]
. (70)

We can now Fourier transform: Φ(k, η) =

∫
d3x

(2π)3/2
Φ(x, η) e−ix·k

all the fields and momenta. Since the scalar field is assumed real, we

have: y(k, η) = y†(−k, η) and p(k, η) = p†(−k, η), and the Hamilto-

nian becomes

H =
1

2

[
p(k, η) p†(k, η) + k2 y(k, η) y†(k, η) (71)

+
a′

a

(
y(k, η) p†(k, η) + p(k, η) y†(k, η)

)]
. (72)

As we will see later, it is the last term, proportional to a′/a, which is

responsible for squeezing.
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The Euler-Lagrange equations for this field can be written in terms

of the field eigenmodes as a series of uncoupled oscillator equations,

p′ = −i [p,H] = −k2 y − a′

a
p

y′ = −i [y,H] = p +
a′

a
y .

 y′′(k, η)+

(
k2 − a′′

a

)
y(k, η) = 0 ,

(73)

where we have used the commutation relation (~ = 1)[
y(k, η), p†(k, η)

]
= i δ3(k− k′) . (74)

Heisenberg picture: The field operators

We can now treat each mode as a quantum oscillator, and introduce

the corresponding creation and annihilation operators:

a(k, η) =

√
k

2
y(k, η) + i

1√
2k
p(k, η) , (75)

a†(−k, η) =

√
k

2
y(k, η)− i 1√

2k
p(k, η) , (76)

which can be inverted to give

y(k, η) =
1√
2k

[
a(k, η) + a†(−k, η)

]
, (77)

p(k, η) = −i
√
k

2

[
a(k, η)− a†(−k, η)

]
. (78)

The usual equal-time commutation relations for fields (~ = 1 here

and throughout), [
y(x, η), p(x′, η)

]
= i δ3(x− x′) , (79)
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becomes a commutation relation for the creation and annihilation op-

erators,[
y(k, η), p†(k′, η)

]
= i δ3(k−k′)⇒

[
a(k, η), a†(k′, η)

]
= δ3(k−k′) .

(80)

In terms of these operators, the Hamiltonian becomes:

H =
1

2

[
k
(
a(k, η) a†(k, η) + a†(−k, η) a(−k, η)

)
(81)

+i
a′

a

(
a†(−k, η) a†(k, η)− a(k, η) a(−k, η)

)]
. (82)

It is the last (non-diagonal) term which is responsible for squeezing.

The evolution equations, a′ = −i[a,H], can be written as(
a′(k)

a†
′
(−k)

)
=

(
−ik a′

a

a′

a ik

)(
a(k)

a†(−k)

)
, (83)

whose general solution is, in terms of the initial conditions a(k, η0),

a(k, η) = uk(η) a(k, η0) + vk(η) a†(−k, η0) , (84)

a†(−k, η) = u∗k(η) a†(−k, η0) + v∗k(η) a(k, η0) , (85)

which correspond to a Bogoliubov transformation of the creation and

annihilation operators, and characterizes the time evolution of the sys-

tem of harmonic oscillators in the Heisenberg representation.

The commutation relation (80) is preserved under the unitary evo-

lution if

|uk(η)|2 − |vk(η)|2 = 1 , (86)

which gives a normalization condition for these functions.

We can write the quantum fields y and p in terms of these as,

y(k, η) = fk(η) a(k, η0) + f ∗k (η) a†(−k, η0) , (87)

p(k, η) = −i
[
gk(η) a(k, η0)− g∗k(η) a†(−k, η0)

]
, (88)
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where the functions

fk(η) =
1√
2k

[uk(η) + v∗k(η)] , (89)

gk(η) =

√
k

2
[uk(η)− v∗k(η)] , (90)

are the field and momentum modes, respectively, satisfying the follow-

ing equations and initial conditions,

f ′′k +

(
k2 − a′′

a

)
fk = 0 , fk(η0) = 1√

2k
, (91)

gk = i

(
f ′k −

a′

a
fk

)
, gk(η0) =

√
k
2 , (92)

as well as the Wronskian condition,

i (f ′k f
∗
k − f ′k

∗
fk) = gk f

∗
k + g∗k fk = 1 . (93)

Squeezing parameters

Since we have two complex functions, fk and gk, plus a constraint (93),

we can write these in terms of three real functions in the standard

parametrization for squeezed states,

uk(η) = e−i θk(η) cosh rk(η) , (94)

vk(η) = ei θk(η)+2i φk(η) sinh rk(η) , (95)

where rk is the squeezing parameter, φk the squeezing angle, and θk
the phase.

We can also write its relation to the usual Bogoliubov formalism in

terms of the functions {αk, βk},

uk = αk e
−ikη , v∗k = βk e

ikη , (96)
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which is useful for the adiabatic expansion, and allows one to write the

average number of particles and other quantities,

nk = |βk|2 = |vk|2 =
1

2k

∣∣∣gk − k fk∣∣∣2 = sinh2 rk , (97)

σk = 2Re
(
α∗kβk e

2ikη
)

= 2Re (u∗k v
∗
k) = cos 2φk sinh 2rk , (98)

τk = 2Im
(
α∗kβk e

2ikη
)

= 2Im (u∗k v
∗
k) = − sin 2φk sinh 2rk . (99)

We can invert these expressions to give (rk, θk, φk) as a function of

uk and vk,

sinh rk =
√

Rev2
k + Imv2

k , cosh rk =
√

Reu2
k + Imu2

k , (100)

tan θk = − Imuk
Reuk

, tan 2φk =
ImvkReuk + ImukRevk
RevkReuk − ImukImvk

.(101)

We can now write Eqs. (87) and (88) in terms of the initial values,

y(k, η) =
√

2k fk1(η) y(k, η0)−
√

2

k
fk2(η) p(k, η0) , (102)

p(k, η) =

√
2

k
gk1(η) p(k, η0) +

√
2k gk2(η) y(k, η0) , (103)

where subindices 1 and 2 correspond to real and imaginary parts, fk1 ≡
Re fk and fk2 ≡ Im fk, and similarly for the momentum mode gk.

The squeezing formalism

Let us now use the squeezing formalism to describe the evolution of the

wave function. The equations of motion for the squeezing parameters
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follow from those of the field and momentum modes,

r′k =
a′

a
cos 2φk , (104)

φ′k = −k − a′

a
coth 2rk sin 2φk , (105)

θ′k = k +
a′

a
tanh 2rk sin 2φk . (106)

As we will see, the evolution is driven towards large rk ∝ N � 1, the

number of e-folds during inflation. Thus, in that limit,

(θk + φk)
′ = −a

′

a

sin 2φk
sinh 2rk

→ 0 ,

and therefore θk + φk → const. We can always choose this constant

to be zero, so that the real and imaginary components of the field and

momentum modes become

fk1 =
1√
2k
erk cosφk , fk2 =

1√
2k
e−rk sinφk , (107)

gk1 =

√
k

2
e−rk cosφk , gk2 =

√
k

2
erk sinφk . (108)

It is clear that, in the limit of large squeezing (rk → ∞), the field

mode fk becomes purely real, while the momentum mode gk becomes

pure imaginary.

This means that the field (102) and momentum (103) operators be-

come, in that limit,

ŷ(k, η) →
√

2k fk1(η) ŷ(k, η0)

p̂(k, η) →
√

2k gk2(η) ŷ(k, η0)

}
⇒ p̂(k, η) ' gk2(η)

fk1(η)
ŷ(k, η) .

(109)

As a consequence of this squeezing, information about the initial mo-

mentum p̂0 distribution is lost, and the positions (or field amplitudes)

17



at different times commute,[
ŷ(k, η1), ŷ(k, η2)

]
' 1

2
e−2rk cos2 φk ≈ 0 . (110)

This result defines what is known as a quantum non-demolition (QND)

variable, which means that one can perform succesive measurements

of this variable with arbitrary precision without modifying the wave

function. Note that y = aδφ is the amplitude of fluctuations produced

during inflation, so what we have found is: first, that the amplitude is

distributed as a classical Gaussian random field with probability (115);

and second that we can measure its amplitude at any time, and as

much as we like, without modifying the distribution function.

In a sense, this problem is similar to that of a free non-relativistic

quantum particle, described initially by a minimum wave packet, with

initial expectation values 〈x〉0 = x0 and 〈p〉0 = p0, which becomes

broader by its unitary evolution, and at late times (t� mx0/p0) this

Gaussian state becomes an exact WKB state,

Ψ(x) = Ω
−1/2
R exp(−Ωx2/2),

with ImΩ� ReΩ (i.e. high squeezing limit). In that limit, [x̂, p̂] ≈ 0,

and we have lost information about the initial position x0 (instead of

the initial momentum like in the inflationary case), x̂(t) ' p̂(t) t/m =

p0 t/m and p̂(t) = p0. Therefore, not only [p̂(t1), p̂(t2)] = 0, but

also, at late times, [x̂(t1), x̂(t2)] ≈ 0. This explains why we can make

subsequent measurements of a particle’s position and momentum in a

particle physics detector (e.g. a bubble chamber) and still retain all its

quantum properties like spin, etc.
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The Schrödinger picture: The vacuum wave
function

Let us go now from the Heisenberg to the Schrödinger picture, and

compute the initial state vacuum eigenfunction Ψ0(η = η0). The initial

vacuum state |0, η0〉 is defined through the condition

∀k , â(k, η0)|0, η0〉 =

[√
k

2
ŷk(η0) + i

1√
2k
p̂k(η0)

]
|0, η0〉 = 0 ,[

y0
k +

1

k

∂

∂y0
k
∗

]
Ψ0

(
y0
k, y

0
k
∗
, η0

)
= 0 ⇒ Ψ0

(
y0
k, y

0
k
∗
, η0

)
= N0 e

−k |y0
k|

2

where we have used the position representation, ŷk(η0) = y0
k , p̂k(η0) =

−i ∂
∂y0
k
∗ , and N0 gives the corresponding normalization.

We will now study the time evolution of this initial wave function

using the unitary evolution operator S = S(η, η0), i.e. the state evolves

in the Schrödinger picture as |0, η〉 = S|0, η0〉. Now, inverting (87) and

(88)

â(k, η0) = g∗k(η) ŷ(k, η) + i f ∗k (η) p̂(k, η) , (111)

which, acting on the initial state becomes, ∀k ,∀η,

S

[
ŷ(k, η) + i

f ∗k (η)

g∗k(η)
p̂(k, η)

]
S−1S|0, η0〉 = 0

⇒
[
ŷk(η0) + i

f ∗k (η)

g∗k(η)
p̂k(η0)

]
|0, η〉 = 0 ,

⇒ Ψ0

(
y0
k, y

0
k
∗
, η
)

=
1√

π |fk(η)|
e−Ωk(η) |y0

k|
2
, (112)

where

Ωk(η) =
g∗k(η)

f ∗k (η)
= k

u∗k − vk
u∗k + vk

=
1− 2i Fk(η)

2|fk(η)|2
, (113)

Fk(η) = Im(f ∗k gk) = Im(uk vk) =
1

2
sin 2φk sinh 2rk . (114)
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We see that the unitary evolution preserves the Gaussian form of the

wave functional. The wave function (112) is called a 2-mode squeezed

state.

The normalized probability distribution,

P0 (y(k, η0), y(−k, η0), η) =
1

π |fk(η)|2
exp

(
−|y(k, η0)|2

|fk(η)|2

)
, (115)

is a Gaussian distribution, with dispersion given by |fk|2.

In fact, we can compute the vacum expectation values,

〈∆y(k, η) ∆y†(k′, η)〉 ≡ ∆y2(k) δ3(k− k′) = |fk|2 δ3(k− k′) ,(116)

〈∆p(k, η) ∆p†(k′, η)〉 ≡ ∆p2(k) δ3(k− k′) = |gk|2 δ3(k− k′) ,(117)

and therefore the Heisenberg uncertainty principle reads

∆y2(k) ∆p2(k) = |fk|2 |gk|2 = F 2
k (η) +

1

4
≥ 1

4
. (118)

It is clear that for η = η0, Ωk(η0) = k and Fk(η0) = 0, and thus we

have initially a minimum wave packet, ∆y∆p = 1
2. However, through

its unitary evolution, the function Fk grows exponentially, see (114),

and we quickly find ∆y∆p � 1
2, corresponding to the semiclassical

regime, as we will soon demonstrate rigorously.

The Wigner function

The Wigner function is the best candidate for a probability density

of a quantum mechanical system in phase-space. Of course, we know

from QM that such a probability distribution function cannot exist,

but the Wigner function is just a good approximation to that distribu-

tion. Furthermore, for a Gaussian state, this function is in fact positive

definite.
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Consider a quantum state described by a density matrix ρ̂. Then

the Wigner function can be written as

W (y0
k, y

0
k
∗
, p0

k, p
0
k
∗
) =

∫ ∫
dx1 dx2

(2π)2
e−i(p1 x1+p2 x2)

〈
y − x

2
, η
∣∣∣ ρ̂ ∣∣∣y +

x

2
, η
〉
.

If we substitute for the state our vacuum initial condition ρ̂ = |Ψ0〉〈Ψ0|,
with Ψ0 given by (112), we can perform the integration explicitly to

obtain

W0(y0
k, y

0
k
∗
, p0

k, p
0
k
∗
) =

1

π2
exp

(
− |y|

2

|fk|2
− 4|fk|2

∣∣∣∣p− Fk
|fk|2

y

∣∣∣∣2
)

≡ Φ(y1, p1) Φ(y2, p2) (119)

Φ(y1, p1) =
1

π
exp

{
−
(
y2

1

|fk|2
+ 4|fk|2 p̄2

1

)}
, (120)

p̄1 ≡ p1 −
Fk
|fk|2

y1 .

In general, W0 describes an asymmetric Gaussian in phase space,

whose 2σ contours satisfy

y2
1

|fk|2
+ 4|fk|2 p̄2

1 ≤ 1 . (121)

For instance, at time η = η0, we have y0
1 = 1√

2k
= |fk(η0)| , p0

1 =√
k
2 = 1/2|fk(η0)|, and Fk(η0) = 0, so that p̄0

1 = p0
1, and the 2σ

contours become
y2

1

y0
1

2 +
p2

1

p0
1
2 ≤ 1 ,

which is a circle in phase space.

On the other hand, for time η � η0, we have

|fk| →
1√
2k
erk ∼ y0

k e
N , growing mode , (122)

1

2|fk|
→
√
k

2
e−rk ∼ p0

k e
−N , decaying mode , (123)
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so that the ellipse (121) becomes highly “squeezed”.

Note that Liouville’s theorem implies that the volume of phase space

is conserved under Hamiltonian (unitary) evolution, so that the area

within the ellipse should be conserved. As the probability distribution

compresses (squeezes) along the p-direction, it expands along the y-

direction. At late times, the Wigner function is highly concentrated

around the region

p̄2 =

(
p− Fk
|fk|2

y

)2

<
1

4|fk|2
∼ e−2N � 1 . (124)

We can thus take the above squeezing limit in the Wigner function

(119) and write the exponential term as a Dirac delta function,

W0(y, p)
rk→∞−→ 1

π2
exp

{
− |y|

2

|fk|2

}
δ

(
p− Fk
|fk|2

y

)
. (125)

In this limit we have

p̂k(η) =
Fk
|fk|2

ŷk(η) ' gk2(η)

fk1(η)
ŷk(η) , (126)

so we recover the previous result (109). This explains why we can

treat the system as a classical Gaussian random field: the amplitude

of the field y is uncertain with probability distribution (115), but once

a measurement of y is performed, we can automatically asign to it a

definite value of the momentum, according to (109).

Note that the condition F 2
k � 1 is actually a condition between

operators and their commutators/anticommutators. The Heisenberg

uncertainty principle states that

∆ΨA∆ΨB ≥
1

2

∣∣∣〈Ψ|[A, B]|Ψ〉
∣∣∣,

for any two hermitian operators (observables) in the Hilbert space of

the wave function Ψ. In our case, and in Fourier space, this corresponds
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to (118)

∆y2(k) ∆p2(k) = F 2
k (η) +

1

4
≥ 1

4

∣∣∣〈Ψ|[yk(η), p†k(η)]|Ψ〉
∣∣∣2 , (127)

with |Ψ〉 = |0, η〉 the evolved wave function.

On the other hand, the phase Fk can be written as

Fk = − i

2
(gk f

∗
k − fk g∗k) = − i

2

(
gk
fk
|fk|2 − |fk|2

g∗k
f ∗k

)
=

=
1

2
〈Ψ|p(k, η) y†(k, η) + y(k, η) p†(k, η)|Ψ〉 , (128)

and we have used that, in the semiclassical limit, we can write

〈Ψ||yk(η)|2|Ψ〉 = |fk|2, as well as p(k, η) = − i gkfk y(k, η), see (109).

The above relation just indicates that, for any state Ψ, the condition

of classicality (Fk � 1) is satisfied whenever, for that state,

{yk(η), p†k(η)} � |[yk(η), p†k(η)]| = ~ ,

which is an interesting condition.

Massless scalar field fluctuations on super-
horizon scales

The gauge invariant tensor fluctuations (gravitational waves) act as

a minimally-coupled massless scalar field during inflation, so we will

study here the generation of its fluctuations during quasi de Sitter.

Let us consider here the exact solutions to the equation of motion of

a minimally-coupled massless scalar field during inflation or quasi de
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Sitter, with scale factor a = −1/Hη,

fk =
1√
2k
e−ikη

(
1− i

kη

)
, (129)

gk = i

(
f ′k −

a′

a
fk

)
=

√
k

2
e−ikη , (130)

which satisfy the Wronskian condition, gk f
∗
k + g∗k fk = 1. The eigen-

modes become

uk = e−ikη
(

1− i

2kη

)
= e−ikη−iδk cosh rk , (131)

vk = eikη
i

2kη
= eikη+iπ2 sinh rk , (132)

which comparing with (94) and (95) provides the squeezing parameter,

the angle and the phase, as inflation proceeds towards kη → 0−,

sinh rk = tan δk =
1

2kη
→ −∞ , (133)

θk = kη + arctan
1

2kη
→ −π

2
, φk =

π

4
− 1

2
arctan

1

2kη
→ π

2
,(134)

while the imaginary part of the phase of the wave function becomes

Fk(η) =
1

2
sin 2φk sinh 2rk =

1

2kη
→ −∞ . (135)

The number of scalar field particles produced during inflation grow

exponentially, nk = |βk|2 = sinh2 rk = (2kη)−2 →∞.

Thus, through unitary evolution, the fluctuations will very soon enter

the semiclasical regime due to a highly squeezed wave function. The

question which remains is when do fluctuations become classical?

Hubble crossing

As we will see, the field fluctuation modes will become semiclassical

as their wavelength becomes larger than the only physical scale in the
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problem, the de Sitter horizon scale, λphys = 2πa/k � H−1.

Therefore, let us consider the general solution to Eq. (91) for the

superhorizon modes (k � aH),

fk(η) = C1(k) a+C2(k) a

∫ η dη′

a2(η′)
= C1(k) a−C2(k)

1

a2H
. (136)

We can always choose C1(k) to be real, while C2(k) will be complex

in general. The first term corresponds to the growing mode, while the

second term is the decaying mode.

Integrating out gk from (92), one finds

gk(η) = i C2(k)
1

a
− i C1(k) k2 1

a

∫
a2 dη = i C2(k)

1

a
− i C1(k)

k2

H
,

(137)

where we have added a k2 term for completeness. To second order in

k2, the Wronskian becomes

C1(k) ImC2(k)

(
1 +

k2

a2H2

)
' C1(k) ImC2(k) = −1

2
. (138)

Comparing with the exact solutions (129), we find, to first order,

C1(k) =
Hk√
2k3

, C2(k) = − i k3/2

√
2Hk

, (139)

where Hk is the Hubble rate at horizon crossing, kη = −1, i.e. when

the perturbation’s physical wavelength becomes of the same order as

the de Sitter horizon size, k = aH = H.

We are now prepared to answer the question of classicality of the

modes. Let us compute the wave function phase shift

|Fk| = |Im(f ∗k gk)| =

∣∣∣∣C2
1(k)

k2a

H
+ |C2(k)|2 1

a3H
(140)

− C1(k) ReC2(k)

(
1 +

k2

a2H2

)∣∣∣∣ . (141)
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Since only the first term remains after kη → 0, we see that |Fk| � 1

whenever

C2
1(k) =

H2
k

2k3
� H

k2a
⇒ λphys =

2πa

k
� λHC =

2π

Hk
. (142)

Therefore, we confirm that modes that start as Minkowski vacuum well

inside the de Sitter horizon are stretched by the expansion and become

semiclassical soon after horizon crossing, and their amplitude can be

described as a classical Gaussian random variable.

Furthermore, the fact that the momentum is immediately defined

once the amplitude for a given wavelength is known, implies that

there is a fixed temporal phase coherence for all perturbations with

the same wavelength. As we know, this implies that inflationary per-

turbations will induce coherent acoustic oscillations in the plasma just

before decoupling, which should be seen in the microwave background

anisotropies as acoustic peaks in the angular power spectrum.
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