
THE INFLATIONARY PARADIGM

The hot Big Bang theory is nowadays a very robust edifice, with many

independent observational checks: the expansion of the universe; the

abundance of light elements; the cosmic microwave background; a pre-

dicted age of the universe compatible with the age of the oldest objects

in it, and the formation of structure via gravitational collapse of ini-

tially small inhomogeneities. Today, these observations are confirmed

to within a few percent accuracy, and have helped establish the hot Big

Bang as the preferred model of the universe. All the physics involved in

the above observations is routinely tested in the laboratory (atomic and

nuclear physics experiments) or in the solar system (general relativity).

However, this theory leaves a range of crucial questions unanswered,

most of which are initial conditions’ problems. There is the reason-

able assumption that these cosmological problems will be solved or

explained by new physical principles at high energies, in the early

universe. This assumption leads to the natural conclusion that accu-

rate observations of the present state of the universe may shed light

onto processes and physical laws at energies above those reachable by

particle accelerators, present or future. We will see that this is a very

optimistic approach indeed, and that there are many unresolved issues

related to those problems. However, there might be in the near future

reasons to be optimistic.

Shortcomings of Big Bang Cosmology

The Big Bang theory could not explain the origin of matter and struc-

ture in the universe; that is, the origin of the matter–antimatter asym-

metry, without which the universe today would be filled by a uniform

radiation continuosly expanding and cooling, with no traces of matter,
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and thus without the possibility to form gravitationally bound systems

like galaxies, stars and planets that could sustain life. Moreover, the

standard Big Bang theory assumes, but cannot explain, the origin of

the extraordinary smoothness and flatness of the universe on the very

large scales seen by the microwave background probes and the largest

galaxy catalogs. It cannot explain the origin of the primordial density

perturbations that gave rise to cosmic structures like galaxies, clusters

and superclusters, via gravitational collapse; the quantity and nature

of the dark matter that we believe holds the universe together; nor the

origin of the Big Bang itself.

A summary of the problems that the Big Bang theory cannot explain

is:

• The global structure of the universe.

- Why is the universe so close to spatial flatness?

- Why is matter so homogeneously distributed on large scales?

• The origin of structure in the universe.

- How did the primordial spectrum of density perturbations origi-

nate?

• The origin of matter and radiation.

- Where does all the energy in the universe come from?

- What is the nature of the dark matter in the universe?

- How did the matter-antimatter asymmetry arise?

• The initial singularity.

- Did the universe have a beginning?

- What is the global structure of the universe beyond our observable

patch?

Let me discuss one by one the different issues:
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The Flatness Problem

The Big Bang theory assumes but cannot explain the extraordinary

spatial flatness of our local patch of the universe. In the general FRW

metric the parameter K that characterizes spatial curvature is a free

parameter. There is nothing in the theory that determines this parame-

ter a priori. However, it is directly related, via the Friedmann equation,

to the dynamics, and thus the matter content, of the universe,

K =
8πG

3
ρa2 −H2a2 =

8πG

3
ρa2
(Ω− 1

Ω

)
. (1)

We can therefore define a new variable,

x ≡ Ω− 1

Ω
=

const.

ρa2
, (2)

whose time evolution is given by

x′ =
dx

dN
= (1 + 3ω)x , (3)

where N = ln(a/ai) characterizes the number of e-folds of universe

expansion (dN = Hdt) and where we have used the evolution of the

total energy density, ρa3, which only depends on the barotropic ratio

ω. It is clear from Eq. (3) that the phase-space diagram (x, x′) presents

an unstable critical (saddle) point at x = 0 for ω > −1/3, i.e. for the

radiation (ω = 1/3) and matter (ω = 0) eras. A small perturbation

from x = 0 will drive the system towards x = ±∞. Since we know the

universe went through both the radiation era (because of primordial

nucleosynthesis) and the matter era (because of structure formation),

tiny deviations from Ω = 1 would have grown since then, such that

today

x0 =
Ω0 − 1

Ω0
= xin

(Tin

Teq

)2

(1 + zeq) . (4)

In order that today’s value be in the range

Ω0 = 0.9992± 0.0040 ,
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or x0 ≈ 10−3, it is required that at, say, primordial nucleosynthesis

(T
NS
' 106 Teq) its value be

Ω(t
NS

) = 1± 10−18 , (5)

which represents a tremendous finetuning. Perhaps the universe indeed

started with such a peculiar initial condition, but it is epistemologically

more satisfying if we give a fundamental dynamical reason for the uni-

verse to have started so close to spatial flatness. These arguments

were first used by Robert Dicke in the 1960s, much before inflation.

He argued that the most natural initial condition for the spatial cur-

vature should have been the Planck scale curvature, (3)R = 6K/l2P,

where the Planck length is lP = (~G/c3)1/2 = 1.62×10−33 cm, that is,

60 orders of magnitude smaller than the present size of the universe,

a0 = 1.38 × 1028 cm. A universe with this immense curvature would

have collapsed within a Planck time, tP = (~G/c5)1/2 = 5.39×10−44 s,

again 60 orders of magnitude smaller than the present age of the uni-

verse, t0 = 4.1× 1017 s. Therefore, the flatness problem is also related

to the Age Problem, why is it that the universe is so old and flat when,

under ordinary circumstances (based on the fundamental scale of grav-

ity) it should have lasted only a Planck time and reached a size of order

the Planck length? As we will see, inflation gives a dynamical reason

to such a peculiar initial condition.

The Homogeneity Problem

An expanding universe has particle horizons, that is, spatial regions

beyond which causal communication cannot occur. The horizon dis-

tance can be defined as the maximum distance that light could have

travelled since the origin of the universe,

dH(t) ≡ a(t)

∫ t

0

dt′

a(t′)
∼ H−1(t) , (6)

4



T1 T1 = T2

T2

Tdec = 0.3 eV

Our Hubble 
radius at 

decoupling

T0 = 3 K

Universe 
expansion 
(z = 1100)

Our 
observable 

universe 
today

Figure 1: Perhaps the most acute problem of the Big Bang theory is explaining the extraordi-
nary homogeneity and isotropy of the microwave background. At the time of decoupling, the
volume that gave rise to our present universe contained many causally disconnected regions
(top figure). Today we observe a blackbody spectrum of photons coming from those regions
and they appear to have the same temperature, T1 = T2, to one part in 105. Why is the universe
so homogeneous? This constitutes the so-called horizon problem, which is spectacularly solved
by inflation.

which is proportional to the Hubble scale.1 For instance, at the be-

ginning of nucleosynthesis the horizon distance is a few light-seconds,

but grows linearly with time and by the end of nucleosynthesis it is

a few light-minutes, i.e. a factor 100 larger, while the scale factor has

increased only a factor of 10. The fact that the causal horizon increases

faster, dH ∼ t, than the scale factor, a ∼ t1/2, implies that at any given

time the universe contains regions within itself that, according to the

Big Bang theory, were never in causal contact before. For instance, the
1For the radiation era, the horizon distance is equal to the Hubble scale. For the matter era it is twice the

Hubble scale.
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number of causally disconnected regions at a given redshift z present

in our causal volume today, dH(t0) ≡ a0, is

NCD(z) ∼
(
a(t)

dH(t)

)3

' (1 + z)3/2 , (7)

which, for the time of decoupling, is of order NCD(zdec) ∼ 105 � 1.

This phenomenon is particularly acute in the case of the observed mi-

crowave background. Information cannot travel faster than the speed

of light, so the causal region at the time of photon decoupling could

not be larger than dH(tdec) ∼ 3 × 105 light years across, or about 1◦

projected in the sky today. So why should regions that are separated

by more than 1◦ in the sky today have exactly the same temperature,

to within 10 ppm, when the photons that come from those two distant

regions could not have been in causal contact when they were emitted?

This constitutes the so-called horizon problem, see Fig. 1, and was first

discussed by Robert Dicke in the 1970s as a profound inconsistency of

the Big Bang theory.

Cosmological Inflation

In the 1980s, a new paradigm, deeply rooted in fundamental physics,

was put forward by Alan H. Guth, Andrei D. Linde and others, to

address these fundamental questions. According to the inflationary

paradigm, the early universe went through a period of exponential

expansion, driven by the approximately constant energy density of a

scalar field called the inflaton. In modern physics, elementary particles

are represented by quantum fields, which resemble the familiar electric,

magnetic and gravitational fields. A field is simply a function of space

and time whose quantum oscillations are interpreted as particles. In our

case, the inflaton field has, associated with it, a large potential energy

density, which drives the exponential expansion during inflation. We
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know from general relativity that the density of matter determines

the expansion of the universe, but a constant energy density acts in a

very peculiar way: as a repulsive force that makes any two points in

space separate at exponentially large speeds. (This does not violate

the laws of causality because there is no information carried along in

the expansion, it is simply the stretching of space-time.)

Figure 2: The inflaton field can be represented as a ball rolling down a hill. During inflation,
the energy density is approximately constant, driving the tremendous expansion of the universe.
When the ball starts to oscillate around the bottom of the hill, inflation ends and the inflaton
energy decays into particles. In certain cases, the coherent oscillations of the inflaton could
generate a resonant production of particles which soon thermalize, reheating the universe.

This superluminal expansion is capable of explaining the large scale

homogeneity of our observable universe and, in particular, why the

microwave background looks so isotropic: regions separated today by

more than 1◦ in the sky were, in fact, in causal contact before infla-

tion, but were stretched to cosmological distances by the expansion.
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Any inhomogeneities present before the tremendous expansion would

be washed out. This explains why photons from supposedly causally

disconneted regions have actually the same spectral distribution with

the same temperature, see Fig. 1.

Moreover, in the usual Big Bang scenario a flat universe, one in which

the gravitational attraction of matter is exactly balanced by the cos-

mic expansion, is unstable under perturbations: a small deviation from

flatness is amplified and soon produces either an empty universe or a

collapsed one. As we discussed above, for the universe to be nearly flat

today, it must have been extremely flat at nucleosynthesis, deviations

not exceeding more than one part in 1015. This extreme fine tuning

of initial conditions was also solved by the inflationary paradigm, see

Fig. 3. Thus inflation is an extremely elegant hypothesis that explains

how a region much, much greater that our own observable universe

could have become smooth and flat without recourse to ad hoc ini-

tial conditions. Furthermore, inflation dilutes away any “unwanted”

relic species that could have remained from early universe phase transi-

tions, like monopoles, cosmic strings, etc., which are predicted in grand

unified theories and whose energy density could be so large that the

universe would have become unstable, and collapsed, long ago. These

relics are diluted by the superluminal expansion, which leaves at most

one of these particles per causal horizon, making them harmless to the

subsequent evolution of the universe.

The only thing we know about this peculiar scalar field, the inflaton,

is that it has a mass and a self-interaction potential V (φ) but we ignore

everything else, even the scale at which its dynamics determines the

superluminal expansion. In particular, we still do not know the nature

of the inflaton field itself, is it some new fundamental scalar field in

the electroweak symmetry breaking sector, or is it just some effective

description of a more fundamental high energy interaction? Hopefully,
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Figure 3: The exponential expansion during inflation made the radius of curvature of the uni-
verse so large that our observable patch of the universe today appears essentialy flat, analogous
(in three dimensions) to how the surface of a balloon appears flatter and flatter as we inflate it
to enormous sizes. This is a crucial prediction of cosmological inflation that will be tested to
extraordinary accuracy in the next few years.

in the near future, experiments in particle physics might give us a

clue to its nature. Inflation had its original inspiration in the Higgs

field, the scalar field responsible for the masses of elementary particles

(quarks and leptons) and the breaking of the electroweak symmetry. Its

discovery at the large hadron collider at CERN opened the possibility

of exploring its effects in the early universe. In particular, if the Higgs

has some non-minimal coupling to gravity, it could actually be the

inflaton. Such a possibility is for the moment perfectly in agreement

with CMB observations by the Planck satellite.
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Homogeneous scalar field dynamics

In this subsection I will describe the theoretical basis for the phe-

nomenon of inflation. Consider a scalar field φ, a singlet under any

given interaction, with an effective potential V (φ). The Lagrangian

for such a field in a curved background is

Linf =
1

2
gµν∂µφ∂νφ− V (φ) , (8)

whose evolution equation in a Friedmann-Robertson-Walker metric and

for a homogeneous field φ(t) is given by

φ̈ + 3Hφ̇ + V ′(φ) = 0 , (9)

where H is the rate of expansion, together with the Einstein equations,

H2 =
κ2

3

(1

2
φ̇2 + V (φ)

)
, (10)

Ḣ = −κ
2

2
φ̇2 , (11)

where κ2 ≡ 8πG. The dynamics of inflation can be described as a

perfect fluid with a time dependent pressure and energy density given

by

ρ =
1

2
φ̇2 + V (φ) , (12)

p =
1

2
φ̇2 − V (φ) . (13)

The field evolution equation (9) can then be written as the energy

conservation equation,

ρ̇ + 3H(ρ + p) = 0 . (14)

If the potential energy density of the scalar field dominates the kinetic

energy, V (φ)� φ̇2, then we see that

p ' −ρ ⇒ ρ ' const. ⇒ H(φ) ' const. , (15)
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which leads to the solution

a(t) ∼ exp(Ht) ⇒ ä

a
> 0 accelerated expansion . (16)

Using the definition of the number of e-folds, N = ln(a/ai), we see that

the scale factor grows exponentially, a(N) = ai exp(N). This solution

of the Einstein equations solves immediately the flatness problem. Re-

call that the problem with the radiation and matter eras is that Ω = 1

(x = 0) is an unstable critical point in phase-space. However, dur-

ing inflation, with p ' −ρ ⇒ ω ' −1, we have that 1 + 3ω ≥ 0

and therefore x = 0 is a stable attractor of the equations of motion,

see Eq. (3). As a consequence, what seemed an ad hoc initial condi-

tion, becomes a natural prediction of inflation. Suppose that during

inflation the scale factor increased N e-folds, then

x0 = xin e
−2N

(Trh

Teq

)2

(1 + zeq) ' e−2N 1056 ≤ 1 ⇒ N ≥ 65 ,

(17)

where we have assumed that inflation ended at the scale ρinf , and the

transfer of the inflaton energy density to thermal radiation at reheating

occurred almost instantaneously2 at the temperature Trh ∼ ρ
1/4
inf ∼

1015 GeV. Note that we can now have initial conditions with a large

uncertainty, xin ' 1, and still have today x0 ' 1, thanks to the

inflationary attractor towards Ω = 1. This can be understood very

easily by realizing that the three curvature evolves during inflation as

(3)R =
6K

a2
= (3)Rin e

−2N −→ 0 , for N � 1 . (18)

Therefore, if cosmological inflation lasted over 65 e-folds, as most mod-

els predict, then today the universe (or at least our local patch) should

be exactly flat, a prediction that can be tested with great accuracy in

the near future and for which already seems to be some evidence from

observations of the microwave background.
2There could be a small delay in thermalization, due to the intrinsic inefficiency of reheating, but this does

not change significantly the required number of e-folds.
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Furthermore, inflation also solves the homogeneity problem in a spec-

tacular way. First of all, due to the superluminal expansion, any inho-

mogeneity existing prior to inflation will be washed out,

δk ∼
(
k

aH

)2

Φk ∝ e−2N −→ 0 , for N � 1 . (19)

Moreover, since the scale factor grows exponentially, while the horizon

distance remains essentially constant, dH(t) ' H−1 = const., any scale

within the horizon during inflation will be stretched by the superlumi-

nal expansion to enormous distances, in such a way that at photon

decoupling all the causally disconnected regions that encompass our

present horizon actually come from a single region during inflation,

about 65 e-folds before the end. This is the reason why two points sep-

arated more than 1◦ in the sky have the same backbody temperature,

as observed by the COBE satellite: they were actually in causal con-

tact during inflation. There is at present no other proposal known that

could solve the homogeneity problem without invoquing an acausal

mechanism like inflation.

Finally, any relic particle species (relativistic or not) existing prior

to inflation will be diluted by the expansion,

ρM ∝ a−3 ∼ e−3N −→ 0 , for N � 1 , (20)

ρR ∝ a−4 ∼ e−4N −→ 0 , for N � 1 . (21)

Note that the vacuum energy density ρv remains constant under the

expansion, and therefore, very soon it is the only energy density re-

maining to drive the expansion of the universe.

The slow-roll approximation

In order to simplify the evolution equations during inflation, we will

consider the slow-roll approximation (SRA). Suppose that, during in-
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flation, the scalar field evolves very slowly down its effective potential,

then we can define the slow-roll parameters,

ε ≡ − Ḣ

H2
=

κ2

2

φ̇2

H2
� 1 , (22)

δ ≡ − φ̈

Hφ̇
� 1 , (23)

ξ ≡
...

φ

H2φ̇
− δ2 � 1 . (24)

It is easy to see that the condition

ε < 1 ⇐⇒ ä

a
> 0 (25)

characterizes inflation: it is all you need for superluminal expansion,

i.e. for the horizon distance to grow more slowly than the scale factor,

in order to solve the homogeneity problem, as well as for the spatial

curvature to decay faster than usual, in order to solve the flatness

problem.

The number of e-folds during inflation can be written with the help

of Eq. (22) as

N = ln
aend

ai
=

∫ te

ti

Hdt =

∫ φe

φi

κdφ√
2ε(φ)

, (26)

which is an exact expression in terms of ε(φ).

In the limit given by Eqs. (22), the evolution equations (9) and (10)

become

H2
(

1− ε

3

)
' H2 =

κ2

3
V (φ) , (27)

3Hφ̇
(

1− δ

3

)
' 3Hφ̇ = −V ′(φ) . (28)

Note that this corresponds to a reduction of the dimensionality of

phase-space from two to one dimensions, H(φ, φ̇) → H(φ). In fact,
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it is possible to prove a theorem, for single-field inflation, which states

that the slow-roll approximation is an attractor of the equations of

motion, and thus we can always evaluate the inflationary trajectory in

phase-space within the SRA, therefore reducing the number of initial

conditions to just one, the initial value of the scalar field. If H(φ) only

depends on φ, then H ′(φ) = −κ2φ̇/2 and we can rewrite the slow-roll

parameters as

ε =
2

κ2

(
H ′(φ)

H(φ)

)2

' 1

2κ2

(
V ′(φ)

V (φ)

)2

≡ εV � 1 , (29)

δ =
2

κ2

H ′′(φ)

H(φ)
' 1

κ2

V ′′(φ)

V (φ)
− 1

2κ2

(
V ′(φ)

V (φ)

)2

≡ ηV − εV � 1 , (30)

ξ =
4

κ4

H ′(φ)H ′′′(φ)

H2(φ)
' 1

κ4

V ′(φ)V ′′′(φ)

V 2(φ)
− 3

2κ4

V ′′(φ)

V (φ)

(
V ′(φ)

V (φ)

)2

+
3

4κ4

(
V ′(φ)

V (φ)

)4

≡ ξV − 3ηV εV + 3ε2
V � 1 . (31)

These expressions define the new slow-roll parameters εV , ηV and ξV .

The number of e-folds can also be rewritten in this approximation as

N '
∫ φe

φi

κdφ√
2εV (φ)

= κ2

∫ φe

φi

V (φ) dφ

V ′(φ)
, (32)

a very useful expression for evaluating N for a given effective scalar

potential V (φ).

The origin of density perturbations

If cosmological inflation made the universe so extremely flat and ho-

mogeneous, where did the galaxies and clusters of galaxies come from?

One of the most astonishing predictions of inflation, one that was not

even expected, is that quantum fluctuations of the inflaton field are
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stretched by the exponential expansion and generate large-scale per-

turbations in the metric. Inflaton fluctuations are small wave packets

of energy that, according to general relativity, modify the space-time

fabric, creating a whole spectrum of curvature perturbations. The use

of the word spectrum here is closely related to the case of light waves

propagating in a medium: a spectrum characterizes the amplitude of

each given wavelength. In the case of inflation, the inflaton fluctua-

tions induce waves in the space-time metric that can be decomposed

into different wavelengths, all with approximately the same amplitude,

that is, corresponding to a scale-invariant spectrum. These patterns

of perturbations in the metric are like fingerprints that unequivocally

characterize a period of inflation. When matter fell in the troughs of

these waves, it created density perturbations that collapsed gravita-

tionally to form galaxies, clusters and superclusters of galaxies, with a

spectrum that is also scale invariant. Such a type of spectrum was pro-

posed in the early 1970s (before inflation) by Harrison and Zel’dovich,

to explain the distribution of galaxies and clusters of galaxies on very

large scales in our observable universe. Perhaps the most interesting

aspect of structure formation is the possibility that the detailed knowl-

edge of what seeded galaxies and clusters of galaxies will allow us to

test the idea of inflation.

Reparametrization invariant perturbation theory

Until now we have considered only the unperturbed FRW metric de-

scribed by a scale factor a(t) and a homogeneous scalar field φ(t),

ds2 = a2(η)
[
− dη2 + γij dx

idxj
]
, (33)

φ = φ(η) , (34)
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where η =
∫
dt/a(t) is the conformal time, under which the back-

ground equations of motion can be written as

H2 =
κ2

3

[
1

2
φ′

2
+ a2V (φ)

]
, (35)

H′ −H2 = − κ
2

2
φ′

2
, (36)

φ′′ + 2Hφ′ + a2V ′(φ) = 0 , (37)

where H = aH and φ′ = aφ̇.

During inflation, the quantum fluctuations of the scalar field will

induce metric perturbations which will backreact on the scalar field.

Let us consider, in linear perturbation theory, the most general line

element with both scalar and tensor metric perturbations,3 together

with the scalar field perturbations

ds2 = a2(η)
[
− (1 + 2A) dη2 + 2B|i dx

idη

+
{

(1 + 2R)γij + 2E|ij + 2hij

}
dxidxj

]
, (38)

φ = φ(η) + δφ(η, xi) . (39)

The indices {i, j} label the three-dimensional spatial coordinates with

metric γij, and the |i denotes covariant derivative with respect to that

metric. The gauge invariant tensor perturbation hij corresponds to

a transverse traceless gravitational wave, ∇ihij = hii = 0. The four

scalar perturbations (A,B,R, E) are gauge dependent functions of

(η, xi). Under a general coordinate (gauge) transformation

η̃ = η + ξ0(η, xi) , (40)

x̃i = xi + γijξ|j(η, x
i) , (41)

with arbitrary functions (ξ0, ξ), the scalar and tensor perturbations
3Note that inflation cannot generate, to linear order, a vector perturbation.
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transform, to linear order, as

Ã = A− ξ0′ −Hξ0 , B̃ = B + ξ0 − ξ′ , (42)

R̃ = R−Hξ0 , Ẽ = E − ξ , (43)

h̃ij = hij , (44)

where a prime denotes derivative with respect to conformal time. It is

possible to construct, however, two gauge-invariant gravitational po-

tentials,

Φ = A + (B − E ′)′ +H(B − E ′) , (45)

Ψ = R +H(B − E ′) , (46)

which are related through the perturbed Einstein equations,

Φ = Ψ , (47)

k2 − 3K

a2
Ψ =

κ2

2
δρ , (48)

where δρ is the gauge-invariant density perturbation, and the latter

expression is nothing but the Poisson equation for the gravitational

potential, written in relativistic form.

During inflation, the energy density is given in terms of a scalar

field, and thus the gauge-invariant equations for the perturbations on

comoving hypersurfaces (constant energy density hypersurfaces) are

Φ′′ + 3HΦ′ + (H′ + 2H2)Φ =
κ2

2
[φ′δφ′ − a2V ′(φ)δφ] , (49)

−∇2Φ + 3HΦ′ + (H′ + 2H2)Φ = −κ
2

2
[φ′δφ′ + a2V ′(φ)δφ] , (50)

Φ′ +HΦ =
κ2

2
φ′δφ , (51)

δφ′′ + 2Hδφ′ −∇2δφ = 4φ′Φ′ − 2a2V ′(φ)Φ− a2V ′′(φ)δφ .(52)
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This system of equations seem too difficult to solve at first sight.

However, there is a gauge invariant combination of variables that allows

one to find exact solutions. Let us define

u ≡ aδφ + zΦ , (53)

z ≡ a
φ′

H
. (54)

Under this redefinition, the above equations simplify enormously to

just three independent equations,

u′′ −∇2u− z′′

z
u = 0 , (55)

∇2Φ =
κ2

2

H
a2

(zu′ − z′u) , (56)(a2Φ

H

)′
=
κ2

2
zu . (57)

From Equation (55) we can find a solution u(z), which substituted into

(57) can be integrated to give Φ(z), and together with u(z) allow us

to obtain δφ(z).

Quantum Mechanics in curved space-time

Until now we have treated the perturbations as classical, but we should

in fact consider the perturbations Φ and δφ as quantum fields. Note

that the perturbed action for the scalar mode u can be written as

δS =
1

2

∫
d3x dη

[
(u′)2 − (∇u)2 +

z′′

z
u2
]
. (58)

In order to quantize the field u in the curved background defined by

the metric (33), we can write the operator

û(η,x) =

∫
d3k

(2π)3/2

[
uk(η) âk e

ik·x + u∗k(η) â†k e
−ik·x

]
, (59)
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where the creation and annihilation operators satisfy the commutation

relation of bosonic fields, and the scalar field’s Fock space is defined

through the vacuum condition,

[âk, â
†
k′] = δ3(k− k′) , (60)

âk|0〉 = 0 . (61)

Note that we are not assuming that the inflaton is a fundamental scalar

field, but that is can be written as a quantum field with its commutation

relations (as much as a pion can be described as a quantum field).

The equations of motion for each mode uk(η) are decoupled in linear

perturbation theory,

u′′k +
(
k2 − z′′

z

)
uk = 0 . (62)

The ratio z′′/z acts like a time-dependent potential for this Schrödinger

like equation. In order to find exact solutions to the mode equation,

we will use the slow-roll parameters (22),

ε = 1− H
′

H2
=
κ2

2

z2

a2
, (63)

δ = 1− φ′′

Hφ′
= 1 + ε− z′

Hz
, (64)

ξ = −
(

2− ε− 3δ + δ2 − φ′′′

H2φ′

)
. (65)

In terms of these parameters, the conformal time and the effective

potential for the uk mode can be written as

η =
−1

H
+

∫
εda

aH
, (66)

z′′

z
= H2

[
(1 + ε− δ)(2− δ) +H−1(ε′ − δ′)

]
. (67)

Note that the slow-roll parameters, (63) and (64), can be taken as
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constant,4 to order ε2,

ε′ = 2H
(
ε2 − εδ

)
= O(ε2) ,

δ′ = H
(
εδ − ξ

)
= O(ε2) .

(68)

In that case, for constant slow-roll parameters, we can write

η =
−1

H
1

1− ε
, (69)

z′′

z
=

1

η2

(
ν2 − 1

4

)
, where ν =

1 + ε− δ
1− ε

+
1

2
. (70)

We are now going to search for approximate solutions of the mode

equation (62), where the effective potential (67) is of order z′′/z ' 2H2

in the slow-roll approximation. In quasi-de Sitter there is a character-

istic scale given by the (event) horizon size or Hubble scale during

inflation, H−1. There will be modes uk with physical wavelengths

much smaller than this scale, k/a � H , that are well within the de

Sitter horizon and therefore do not feel the curvature of space-time. On

the other hand, there will be modes with physical wavelengths much

greater than the Hubble scale, k/a � H . In these two asymptotic

regimes, the solutions can be written as

uk =
1√
2k
e−ikη k � aH , (71)

uk = C1 z k � aH . (72)

In the limit k � aH the modes behave like ordinary quantum modes in

Minkowsky space-time, appropriately normalized, while in the opposite

limit, u/z becomes constant on superhorizon scales. For approximately

constant slow-roll parameters one can find exact solutions to (62), with

the effective potential given by (70), that interpolate between the two
4For instance, there are models of inflation, like power-law inflation, a(t) ∼ tp, where ε = δ = 1/p < 1, that

give constant slow-roll parameters.
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asymptotic solutions,

uk(η) =

√
π

2
ei(ν+1

2)π2 (−η)1/2H (1)
ν (−kη) , (73)

where H (1)
ν (z) is the Hankel function of the first kind, and ν is given

by (70) in terms of the slow-roll parameters. In the limit kη → 0, the

solution becomes

|uk| =
2ν−

3
2

√
2k

Γ(ν)

Γ(3
2)

(−kη)
1
2−ν ≡ C(ν)√

2k

( k

aH

)1
2−ν

, (74)

C(ν) = 2ν−
3
2

Γ(ν)

Γ(3
2)

(1− ε)ν−
1
2 ' 1 for ε, δ � 1 . (75)

We can now compute Φ and δφ from the super-Hubble-scale mode

solution (72), for k � aH . Substituting into Eq. (57), we find

Φ = C1

(
1− H

a2

∫
a2dη

)
+ C2

H
a2
, (76)

δφ =
C1

a2

∫
a2dη − C2

a2
. (77)

The term proportional to C1 corresponds to the growing solution, while

that proportional toC2 corresponds to the decaying solution, which can

soon be ignored. These quantities are gauge invariant but evolve with

time outside the horizon, during inflation, and before entering again the

horizon during the radiation or matter eras. We would like to write an

expression for a gauge invariant quantity that is also constant for su-

perhorizon modes. Fortunately, in the case of adiabatic perturbations,

there is such a quantity:

ζ ≡ Φ +
1

εH
(Φ′ +HΦ) =

u

z
, (78)

which is constant, see Eq. (72), for k � aH . In fact, this quantity

ζ is identical, for superhorizon modes, to the gauge invariant curva-

ture metric perturbation Rc on comoving (constant energy density)
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hypersurfaces,

ζ = Rc +
1

εH2
∇2Φ . (79)

Using Eq. (56) we can write the evolution equation for ζ = u
z as ζ ′ =

1
εH∇

2Φ, which confirms that ζ is constant for (adiabatic5) superhorizon

modes, k � aH . Therefore, we can evaluate the Newtonian potential

Φk when the perturbation reenters the horizon during radiation/matter

eras in terms of the curvature perturbation Rk when it left the Hubble

scale during inflation,

Φk =
(

1−H
a2

∫
a2dη

)
Rk =

3 + 3ω

5 + 3ω
Rk =

{
2
3Rk radiation era ,

3
5Rk matter era .

(80)

Let us now compute the tensor or gravitational wave metric pertur-

bations generated during inflation. The perturbed action for the tensor

mode can be written as

δS =
1

2

∫
d3x dη

a2

2κ2

[
(h′ij)

2 − (∇hij)2
]
, (81)

with the tensor field hij considered as a quantum field,

ĥij(η,x) =

∫
d3k

(2π)3/2

∑
λ=1,2

[
hk(η) eij(k, λ) âk,λ e

ik·x + h.c.
]
, (82)

where eij(k, λ) are the two polarization tensors, satisfying symmetric,

transverse and traceless conditions

eij = eji , kieij = 0 , eii = 0 , (83)

eij(−k, λ) = e∗ij(k, λ) ,
∑
λ

e∗ij(k, λ)eij(k, λ) = 4 , (84)

while the creation and annihilation operators satisfy the usual commu-

tation relation of bosonic fields, Eq. (60). We can now redefine our
5This conservation fails for entropy or isocurvature perturbations
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gauge invariant tensor amplitude as

vk(η) =
a√
2κ
hk(η) , (85)

which satisfies the following evolution equation, decoupled for each

mode vk(η) in linear perturbation theory,

v′′k +
(
k2 − a′′

a

)
vk = 0 . (86)

The ratio a′′/a acts like a time-dependent potential for this Schrödinger

like equation, analogous to the term z′′/z for the scalar metric pertur-

bation. For constant slow-roll parameters, the potential becomes

a′′

a
= 2H2

(
1− ε

2

)
=

1

η2

(
µ2 − 1

4

)
, (87)

µ =
1

1− ε
+

1

2
. (88)

We can solve equation (86) in the two asymptotic regimes,

vk =
1√
2k
e−ikη k � aH , (89)

vk = C a k � aH . (90)

In the limit k � aH the modes behave like ordinary quantum modes in

Minkowsky space-time, appropriately normalized, while in the opposite

limit, the metric perturbation hk becomes constant on superhorizon

scales. For constant slow-roll parameters one can find exact solutions

to (86), with effective potential given by (87), that interpolate between

the two asymptotic solutions. These are identical to Eq. (73) except

for the substitution ν → µ. In the limit kη → 0, the solution becomes

|vk| =
C(µ)√

2k

( k

aH

)1
2−µ

. (91)

Since the mode hk becomes constant on superhorizon scales, we can

evaluate the tensor metric perturbation when it reentered during the

radiation or matter era directly in terms of its value during inflation.
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Power spectrum of scalar and tensor metric perturbations

Not only do we expect to measure the amplitude of the metric pertur-

bations generated during inflation and responsible for the anisotropies

in the CMB and density fluctuations in LSS, but we should also be

able to measure its power spectrum, or two-point correlation function

in Fourier space. Let us consider first the scalar metric perturbations

Rk, which enter the horizon at a = k/H . Its correlator is given by

〈0|R∗kRk′|0〉 =
|uk|2

z2
δ3(k− k′) ≡ PR(k)

4πk3
(2π)3 δ3(k− k′) , (92)

PR(k) =
k3

2π2

|uk|2

z2
=
κ2

2ε

(H
2π

)2 ( k

aH

)3−2ν

≡ A2
S

( k

aH

)ns−1

,(93)

where we have used Rk = ζk = uk
z and Eq. (74). This last equation

determines the power spectrum in terms of its amplitude at horizon-

crossing, AS, and a tilt,

ns − 1 ≡ d lnPR(k)

d ln k
= 3− 2ν = 2

(δ − 2ε

1− ε

)
' 2ηV − 6εV , (94)

see Eqs. (29), (30). Note from this equation that it is possible, in

principle, to obtain from inflation a scalar tilt which is either positive

(n > 1) or negative (n < 1). Furthermore, depending on the partic-

ular inflationary model, we can have significant departures from scale

invariance.

Note that at horizon entry kη = −1, and thus we can alternatively

evaluate the tilt as

ns − 1 ≡ − d lnPR
d ln η

= −2ηH
[
(1− ε)− (ε− δ)− 1

]
= 2

(δ − 2ε

1− ε

)
' 2ηV − 6εV , (95)
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and the running of the tilt

dns
d ln k

= − dns
d ln η

= −ηH
(

2ξ + 8ε2− 10εδ
)
' 2ξV + 24ε2

V − 16ηV εV ,

(96)

where we have used Eqs. (68).

Let us consider now the tensor (gravitational wave) metric pertur-

bation, which enter the horizon at a = k/H ,∑
λ

〈0|h∗k,λhk′,λ|0〉 =
8κ2

a2
|vk|2δ3(k− k′) ≡ Pg(k)

4πk3
(2π)3 δ3(k− k′) ,

Pg(k) = 8κ2
(H

2π

)2 ( k

aH

)3−2µ

≡ A2
T

( k

aH

)nT
, (97)

where we have used Eqs. (85) and (91). Therefore, the power spectrum

can be approximated by a power-law expression, with amplitude AT

and tilt

nT ≡
d lnPg(k)

d ln k
= 3− 2µ =

−2ε

1− ε
' −2εV < 0 , (98)

which is always negative. In the slow-roll approximation, ε � 1, the

tensor power spectrum is scale invariant.

Alternatively, we can evaluate the tensor tilt by

nT ≡ −
d lnPg
d ln η

= −2ηH
[
(1− ε)− 1

]
=
−2ε

1− ε
' −2εV , (99)

and its running by

dnT
d ln k

= − dnT
d ln η

= −ηH
(

4ε2 − 4εδ
)
' 8ε2

V − 4ηV εV , (100)

where we have used Eqs. (68).

The anisotropies of the microwave background

The metric fluctuations generated during inflation are not only respon-

sible for the density perturbations that gave rise to galaxies via grav-
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itational collapse, but one should also expect to see such ripples in

the metric as temperature anisotropies in the cosmic microwave back-

ground, that is, minute deviations in the temperature of the black-

body spectrum when we look at different directions in the sky. Such

anisotropies had been looked for ever since Penzias and Wilson’s dis-

covery of the CMB, but had eluded all detection, until COBE satellite

discovered them in 1992. The reason why they took so long to be dis-

covered was that they appear as perturbations in temperature of only

one part in 105. Soon after COBE, other groups quickly confirmed

the detection of temperature anisotropies at around 30µK, at higher

multipole numbers or smaller angular scales.

The Sachs-Wolfe effect

The anisotropies corresponding to large angular scales are only gener-

ated via gravitational red-shift and density perturbations through the

Einstein equations, δρ/ρ = −2Φ for adiabatic perturbations; we can

ignore the Doppler contribution, since the perturbation is non-causal.

In that case, the temperature anisotropy in the sky today is given by

δT

T
(θ, φ) =

1

3
Φ(ηLS)Q(η0, θ, φ) + 2

∫ η0

ηLS

drΦ′(η0 − r)Q(r, θ, φ) ,

(101)

where η0 is the coordinate distance to the last scattering surface, i.e.

the present conformal time, while ηLS ' 0 determines that comoving

hypersurface. The above expression is known as the Sachs-Wolfe effect,

and contains two parts, the intrinsic and the Integrated Sachs-Wolfe

(ISW) effect, due to integration along the line of sight of time variations

in the gravitational potential.

In linear perturbation theory, the scalar metric perturbations can

be separated into Φ(η,x) ≡ Φ(η)Q(x), where Q(x) are the scalar
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harmonics, eigenfunctions of the Laplacian in three dimensions,

∇2Qklm(r, θ, φ) = −k2Qklm(r, θ, φ) .

These functions have the general form

Qklm(r, θ, φ) = Πkl(r)Ylm(θ, φ) , (102)

where Ylm(θ, φ) are the usual spherical harmonics.

In order to compute the temperature anisotropy associated with

the Sachs-Wolfe effect, we have to know the evolution of the metric

perturbation during the matter era,

Φ′′ + 3HΦ′ + a2Λ Φ− 2K Φ = 0 . (103)

In the case of a flat universe without cosmological constant, the New-

tonian potential remains constant during the matter era and only the

intrinsic SW effect contributes to δT/T . In case of a non-vanishing

Λ, since its contribution is negligible in the past, most of the photon’s

trajectory towards us is unperturbed, and the only difference with re-

spect to the Λ = 0 case is an overall factor. We will consider here the

approximation Φ = constant during the matter era and ignore that

factor.

In a flat universe, the radial part of the eigenfunctions (102) can be

written as

Πkl(r) =

√
2

π
k jl(kr) , (104)

where jl(z) are the spherical Bessel functions. The growing mode so-

lution of the metric perturbation that left the Hubble scale during

inflation contributes to the temperature anisotropies on large scales

(101) as

δT

T
(θ, φ) =

1

3
Φ(ηLS)Q =

1

5
RQ(η0, θ, φ) ≡

∞∑
l=2

l∑
m=−l

alm Ylm(θ, φ) ,

(105)
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where we have used the fact that at reentry (at the surface of last

scattering) the gauge invariant Newtonian potential Φ is related to

the curvature perturbation R at Hubble-crossing during inflation, see

Eq. (80); and we have expanded δT/T in spherical harmonics.

We can now compute the two-point correlation function or angular

power spectrum, C(θ), of the CMB anisotropies on large scales, defined

as an expansion in multipole number,

C(θ) =

〈
δT

T

∗
(n)

δT

T
(n′)

〉
n·n′=cos θ

=
1

4π

∞∑
l=2

(2l + 1)Cl Pl(cos θ) ,

(106)

where Pl(z) are the Legendre polynomials, and we have averaged over

different universe realizations. Since the coefficients alm are isotropic

(to first order), we can compute the Cl = 〈|alm|2〉 as

C
(S)
l =

4π

25

∫ ∞
0

dk

k
PR(k) j2

l (kη0) , (107)

where we have used Eqs. (105) and (92). In the case of scalar metric

perturbation produced during inflation, the scalar power spectrum at

reentry is given by PR(k) = A2
S(kη0)n−1, in the power-law approxima-

tion, see Eq. (93). In that case, one can integrate (107) to give

C
(S)
l =

2π

25
A2
S

Γ[3
2] Γ[1− n−1

2 ] Γ[l + n−1
2 ]

Γ[3
2 −

n−1
2 ] Γ[l + 2− n−1

2 ]
, (108)

l(l + 1)C
(S)
l

2π
=
A2
S

25
= constant , for n = 1 . (109)

This last expression corresponds to what is known as the Sachs-Wolfe

plateau, and is the reason why the coefficients Cl are always plotted

multiplied by l(l + 1).

Tensor metric perturbations also contribute with an approximately

constant angular power spectrum, l(l + 1)Cl. The Sachs-Wolfe effect
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for a gauge invariant tensor perturbation is given by

δT

T
(θ, φ) =

∫ η0

ηLS

dr h′(η0 − r)Qrr(r, θ, φ) , (110)

where Qrr is the rr-component of the tensor harmonic along the line

of sight. The tensor perturbation h during the matter era satisfies the

following evolution equation

h′′k + 3H h′k + (k2 + 2K)hk = 0 , (111)

which depends on the wavenumber k, contrary to what happens with

the scalar modes, see Eq. (103). For a flat (K = 0) universe, the solu-

tion to this equation is hk(η) = hGk(η), where h is the constant tensor

metric perturbation at horizon crossing and Gk(η) = 3 j1(kη)/kη, nor-

malized so that Gk(0) = 1 at the surface of last scattering. The radial

part of the tensor harmonic Qrr in a flat universe can be written as

Qrr
kl(r) =

[
(l − 1)l(l + 1)(l + 2)

πk2

]1/2
jl(kr)

r2
. (112)

The tensor angular power spectrum can finally be expressed as

C
(T )
l =

9π

4
(l − 1)l(l + 1)(l + 2)

∫ ∞
0

dk

k
Pg(k) I2

kl , (113)

Ikl =

∫ x0

0

dx
j2(x0 − x)jl(x)

(x0 − x)x2
, (114)

where x ≡ kη, and Pg(k) is the primordial tensor spectrum (97). For

a scale invariant spectrum, nT = 0, we can integrate (113) to give

l(l + 1)C
(T )
l =

π

36

(
1 +

48π2

385

)
A2
T Bl , (115)

with Bl = (1.1184, 0.8789, . . . , 1.00) for l = 2, 3, . . . , 30. Therefore,

l(l + 1)C
(T )
l also becomes constant for large l. Beyond l ∼ 30, the

Sachs-Wolfe expression is not a good approximation and the tensor

angular power spectrum decays very quickly at large l.

29



The consistency relation

In spite of the success of inflation in predicting a homogeneous and

isotropic background on which to imprint a scale-invariant spectrum

of inhomogeneities, it is difficult to test the idea of inflation. A CMB

cosmologist before the 1980s would have argued that ad hoc initial con-

ditions could have been at the origin of the homogeneity and flatness

of the universe on large scales, while a LSS cosmologist would have

agreed with Harrison and Zel’dovich that the most natural spectrum

needed to explain the formation of structure was a scale-invariant spec-

trum. The surprise was that inflation incorporated an understanding of

both the globally homogeneous and spatially flat background, and the

approximately scale-invariant spectrum of perturbations in the same

formalism. But that could have been just a coincidence.

What is unique to inflation is the fact that inflation determines

not just one but two primordial spectra, corresponding to the scalar

(density) and tensor (gravitational waves) metric perturbations, from a

single continuous function, the inflaton potential V (φ). In the slow-roll

approximation, one determines, from V (φ), two continuous functions,

PR(k) and Pg(k), that in the power-law approximation reduces to

two amplitudes, AS and AT , and two tilts, n and nT . It is clear

that there must be a relation between the four parameters. Indeed,

one can see from Eqs. (115) and (109) that the ratio of the tensor to

scalar contribution to the angular power spectrum is proportional to

the tensor tilt,

r ≡ A2
T

A2
S

= 16ε ' −8nT . (116)

This is a unique prediction of inflation, which could not have been

postulated a priori by any cosmologist. If we finally observe a tensor

spectrum of anisotropies in the CMB, or a stochastic gravitational wave

background in laser interferometers like LIGO or LISA, with sufficient
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accuracy to determine their spectral tilt, one might have some chance

to test the idea of inflation, via the consistency relation (116). For

the moment, observations of the microwave background anisotropies

suggest that the Sachs-Wolfe plateau exists, see but it is still premature

to determine the tensor contribution. Perhaps in the near future, from

the analysis of CMB polarization as well as temperature anisotropies,

with the COrE+ or Litebird satellites, we might have a chance of

determining the validity of the consistency relation.

Assuming that the scalar contribution dominates over the tensor

on large scales, i.e. r � 1, one can actually give a measure of the

amplitude of the scalar metric perturbation from the observations of

the Sachs-Wolfe plateau in the angular power spectrum,[
l(l + 1)C

(S)
l

2π

]1/2

=
AS

5
= (0.926± 0.0106)× 10−5 , (117)

n = 0.9667± 0.0040 , (118)

dn

d ln k
= −0.002± 0.013 . (119)

These measurements can be used to normalize the primordial spectrum

and determine the parameters of the model of inflation. In the near

future these parameters will be determined with much better accuracy.

The acoustic peaks

The Sachs-Wolfe plateau is a distinctive feature of Fig. 24. These

observations confirm the existence of a primordial spectrum of scalar

(density) perturbations on all scales, otherwise the power spectrum

would have started from zero at l = 2. However, we see that the

spectrum starts to rise around l = 20 towards the first acoustic peak,

where the SW approximation breaks down and the above formulae are
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no longer valid.

As mentioned above, the first peak in the photon distribution cor-

responds to overdensities that have undergone half an oscillation, that

is, a compression, and appear at a scale associated with the size of the

horizon at last scattering, about 1◦ projected in the sky today. Since

photons scatter off baryons, they will also feel the acoustic wave and

create a peak in the correlation function. The height of the peak is

proportional to the amount of baryons: the larger the baryon content

of the universe, the higher the peak. The position of the peak in the

power spectrum depends on the geometrical size of the particle horizon

at last scattering. Since photons travel along geodesics, the projected

size of the causal horizon at decoupling depends on whether the uni-

verse is flat, open or closed. In a flat universe the geodesics are straight

lines and, by looking at the angular scale of the first acoustic peak, we

would be measuring the actual size of the horizon at last scattering.

In an open universe, the geodesics are inward-curved trajectories, and

therefore the projected size on the sky appears smaller. In this case, the

first acoustic peak should occur at higher multipoles or smaller angular

scales. On the other hand, for a closed universe, the first peak occurs

at smaller multipoles or larger angular scales. The dependence of the

position of the first acoustic peak on the spatial curvature can be ap-

proximately given by lpeak ' 220 Ω
−1/2
0 , where Ω0 = ΩM+ΩΛ = 1−ΩK .

Past observations from the balloon experiment BOOMERANG, sug-

gested clearly a few years ago that the first peak was between l = 180

and 250 at 95% c.l., with an amplitude δT = 80±10 µK, and therefore

the universe was most probably flat. However, with the high precision

Planck data we can now pinpoint the spatial curvature to less than a

tenth of a percent,

Ω0 = 0.9992± 0.0040 (95% c.l.) (120)

Therefore, the universe is spatially flat (i.e. Euclidean), within 0.1%
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uncertainty, which is much better than we could ever do before, and is

one the most robust predictions of inflation.

With WMAP and specially with Planck, we have now evidence of

at least nine distinct acoustic peaks. These peaks should occur at har-

monics of the first one, but are typically much lower because of Silk

damping. Since the amplitude and position of the primary and sec-

ondary peaks are directly determined by the sound speed (and, hence,

the equation of state) and by the geometry and expansion of the uni-

verse, they can be used as a powerful test of the density of baryons and

dark matter, and other cosmological parameters.

By looking at these patterns in the anisotropies of the microwave

background, cosmologists can determine not only the cosmological pa-

rameters, but also the primordial spectrum of density perturbations

produced during inflation. It turns out that the observed tempera-

ture anisotropies are compatible with a scale-invariant spectrum, see

Eq. (118), as predicted by inflation. This is remarkable, and gives very

strong support to the idea that inflation may indeed be responsible for

both the CMB anisotropies and the large-scale structure of the uni-

verse. Different models of inflation have different specific predictions

for the fine details associated with the spectrum generated during in-

flation. It is these minute differences that will allow cosmologists to

differentiate between alternative models of inflation and discard those

that do not agree with observations. However, most importantly, per-

haps, the pattern of anisotropies predicted by inflation is completely

different from those predicted by alternative models of structure for-

mation, like cosmic defects: strings, vortices, textures, etc. These are

complicated networks of energy density concentrations left over from

an early universe phase transition, analogous to the defects formed in

the laboratory in certain kinds of liquid crystals when they go through

a phase transition. The cosmological defects have spectral properties
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very different from those generated by inflation. That is why it is so im-

portant to launch more sensitive instruments, and with better angular

resolution, to determine the properties of the CMB anisotropies.

ARNOWITT-DESER-MISNER FORMALISM

So far we have given a broad brush account of inflationary models and

issues like initial conditions for inflation and the large scale structure

of the Universe cannot be described without a complete mathematical

formalism. In particular, the character of the slow-roll attractor that

I will discuss in the next section cannot be understood without the

ADM formalism.

The level of this part of the lectures goes beyond that of the main

course, and is intended here only as a guide for those students more

mathematically inclined that feel that the interplay between gravitation

and inflation in the early universe described in the previous sections was

too naive. This section will therefore not be compulsory for passing.

Those students that feel they have enough material already may

want to go on with the notes until the section on “Inflationary Model

Building”.

The Arnowitt–Deser–Misner formalism gives a (3+1)-splitting of

space-time, a foliation in which the four dimensional metric gµν is

parametrized by the three-metric hij and the lapse and shift func-
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tions, N and N i, which describe the evolution of time-like hypersur-

faces, with proper interval ds, between xα = (t, xi) and xα + dxα =

(t+dt, xi+dxi), given by ds2 = −(Ndt)2+hij(dx
i+N idt)(dxj+N jdt).

The components of the metric thus become

g00 = −N 2 + hijNiNj, g0i = gi0 = Ni, gij = hij, (121)

and inverse metric

g00 = −N−2, g0i = gi0 = N−2N i, gij = hij −N−2N iN j, (122)

where the 3-metric is used to raise and lower spatial indices, N i =

hijNj, with hikhkj = δij. This splitting corresponds to a 3-hypersurface

Σ and a timelike unit vector normal to it, with components

nα = (−N, 0) , nα = (N−1,−N−1N i) ,

satisfying nαn
α = −1. We can then define an intrinsic curvature to

the 3-surface, (3)Rij, written in terms of the 3-metric hij, as well as an

extrinsic curvature, related to the normal vector,

Kij = −ni|j = −NΓ0
ij =

1

2N

(
2N(i|j) − ∂0hij

)
, (123)

where bars denote 3-space covariant derivatives with connections de-

rived from hij, and subindices in parenthesis denote symmetrization,

2A(ij) = Aij + Aji, while brakets denote antisymmetrization, 2A[ij] =

Aij − Aji. The traceless part of a tensor is denoted by an overbar. In

particular, the trace and traceless parts of the extrinsic curvature are

K̄ij = Kij −
1

3
Khij, K = K i

i =
1

N

[
Ni|i− ∂0 ln

√
h
]
. (124)

The trace K is a generalization of the Hubble parameter, as will be

shown below.

Instead of the coordinate basis (e0 = ∂0 , ei = ∂i), with 1-forms

(dt ,dxi), we will use a basis with the normal 3-vector n instead of the
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time vector,

vectors 1− forms

en =
1

N
(∂0 −N i∂i) wn = (n · n)n = Ndt (125)

ei = ∂i wi = dxi + N idt . (126)

In this case, for instance, the kinetic term of a scalar field is written as

− ∂µφ∂µφ = (Πφ)2 − (∂iφ)2 , (127)

where Πφ is the scalar-field’s conjugate momentum

Πφ =
1

N
(φ̇−N iφ|i) . (128)

The gravitational Lagrangian can be written as

LG =
√
−gR = N

√
h
(

(3)R + KijK
ij −K2

)
(129)

from which we can obtain the conjugate momentum of the metric

Πij =
∂LG
∂ḣij

= −
√
h(K ij −Khij), (130)

with trace and traceless parts given by

Π = 2
√
hK , Π̄ij = −

√
h K̄ ij . (131)

After some algebra it can be shown that the gravitational Lagrangian

(129) can be written as

LG = N
√
h(3)R +

N√
h

(
ΠijΠ

ij − 1

2
Π2
)

= Πijḣij −NH−NiHi − 2∇i(Π
ijNj) , (132)

where the lapse and shift functions appear as Lagrange multipliers, and

H(hij, Πij) = −
√
h(3)R +

1√
h

(
ΠijΠ

ij − 1

2
Π2
)
, (133)

Hi(hij, Πij) = −2Πij
|j , (134)
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The gravitational Hamiltonian then becomes

HG = Πijḣij −LG = −N
√
h(3)R+

N√
h

(
ΠijΠ

ij − 1

2
Π2
)

+ 2ΠijN(i|j) .

(135)

and the Hamiltonian and momentum constraints,

δHG

δN
= H = 0 , (136)

δHG

δNi
= Hi = 0 . (137)

While the Hamiltonian evolution equations for the independent vari-

ables hij and Πij can be written as

ḣij =
δHG

δΠij
= −2N Kij + 2N(i|j) , (138)

Π̇ij = − δHG

δhij
= −N

√
h
(

(3)Rij − 1

2
(3)Rhij

)
+
N

2
√
h
hij
(

ΠklΠ
kl − 1

2
Π2
)

−2N√
h

(
ΠikΠ j

k −
1

2
Π Πij

)
+
√
h
(
N |ij − hijN |k|k

)
+
(
NkΠij

)
|k
− 2Πk(iN

j)
|k . (139)

With these equations we can evaluate the derivative of the trace Π,

Π̇ = Π̇ij hij + Πij ḣij =
1

2
N
√
h (3)R +

3

2
N
√
h(KijK

ij −K2)

−2
√
hN

|i
|i + 2

√
h(KN i)|i (140)

while from (131) we have

Π̇ = 2
√
hK̇ +

√
hK hijḣij = 2

√
hK̇ − 2N

√
hK2 + 2

√
hK N i

|i ,
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and therefore the derivate of the trace of the extrinsic curvature is

K̇ −N iK|i = −N |i|i + N
(1

4
(3)R +

3

4
K̄ijK̄

ij +
1

2
K2
)
. (141)

Now we can evaluate the derivative of the traceless part Π̄ij. Using

the identity
2N√
h

(
ΠikΠ j

k −
1

2
Π Πij

)
= 2N

√
h
(
K̄ ikK̄ j

k −
1

3
K K̄ ij − 2

9
K2hij

)
,

and

2NK̄ ikK̄ j
k = K̄ ik

(
N j
|k + N

|j
k

)
−
(2

3
NK K̄ ij + K̄ ikhklḣ

lj
)
,

we have, after some algebra,

˙̄Πij = Π̇ij − 1

3
Π̇hij − 1

3
Π ḣij = −N

√
h(3)R̄ij − 2N

√
hK̄ ikK̄ j

k

−2

3
NK K̄ ij +

√
h
(
N |ij − 1

3
N
|k
|k h

ij
)

−
√
hNk K̄ ij

|k −
√
hK̄ ijNk

|k + 2
√
hK̄k(iN

j)
|k . (142)

Also, from Π̄ij = −
√
h K̄ ij, we obtain

˙̄Πij = −
√
h ˙̄K ij + N

√
hK K̄ ij −

√
hK̄ ijNk

|k (143)

and therefore, comparing the two expressions, we deduce
˙̄K i
j −NkK̄ i

j|k + N i
|kK̄

k
j −Nk

|jK̄
i
k =

= −N |i|j +
1

3
N
|k
|k δ

i
j + N

(
(3)R̄i

j + K K̄ i
j

)
. (144)

Let us consider now the matter content and write the gravitational

action for a scalar field with potential V (φ) in the ADM formalism as

S =

∫
d4x
√
−g
[ 1

2κ2
R− 1

2
(∂φ)2 − V (φ)

]
=

∫
d4xN

√
h
[ 1

2κ2

(
(3)R + K̄ijK̄

ij − 2

3
K2
)

+

+
1

2

[
(Πφ)2 − φ|iφ|i

]
− V (φ)

]
, (145)
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Variation of the action with respect to N and N i yields the energy and

momentum constraint equations respectively

−(3)R + K̄ijK̄
ij − 2

3
K2 + 2κ2 T00 = 0 , (146)

K̄j
i|j −

2

3
K|i + κ2 T 0

i = 0 . (147)

Variation with respect to hij gives the dynamical gravitational field

equations, which can be separated into the trace and traceless parts

K̇−N iK|i = − N |i|i +N

(
1

4
(3)R +

3

4
K̄ijK̄

ij +
1

2
K2 +

κ2

2
T

)
, (148)

˙̄K i
j −NkK̄ i

j|k + N i
|kK̄

k
j −Nk

|jK̄
i
k = (149)

= −N |i|j +
1

3
N
|k
|k δ

i
j + N

(
(3)R̄i

j + K K̄ i
j − κ2T̄ ij

)
.

The matter energy-momentum tensor is

T00 =
1

2
(Πφ)2 +

1

2
φ|kφ

|k + V (φ) , (150)

T 0
i = Πφφ|i , (151)

T ij = φ|iφ|j + δij

[1

2
(Πφ)2 − 1

2
φ|kφ

|k − V (φ)
]
, (152)

T̄ ij = φ|iφ|j −
1

3
φ|kφ

|kδij , (153)

T =
3

2
(Πφ)2 − 1

2
φ|kφ

|k − 3V (φ) (154)

Variation with respect to φ gives the scalar-field’s equation of motion

1

N
(Π̇φ −N iΠφ

|i)− KΠφ − 1

N
N|iφ

|i − φ |i|i +
∂V

∂φ
= 0 . (155)

It is extremely difficult to solve these highly nonlinear coupled equa-

tions in a cosmological scenario without making some approximations.
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The usual approach is to assume homogeneity of the fields to give a

background solution and then linearize the equations to study devi-

ations from spatial uniformity. The smallness of cosmic microwave

background anisotropies gives some justification for this perturbative

approach at least in our local part of the Universe. However, there is

no reason to believe it will be valid on much larger scales. In fact, the

stochastic approach to inflation suggests that the Universe is extremely

inhomogeneous on very large scales. Fortunately, in this framework one

can coarse-grain over a horizon distance and separate the short- from

the long-distance behavior of the fields, where the former communi-

cates with the latter through stochastic forces. The equations for the

long-wavelength background fields are obtained by neglecting large-

scale gradients, leading to a self-consistent set of equations, as we will

discuss in the next section.
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Spatial gradient expansion

It is reasonable to expand in spatial gradients whenever the forces aris-

ing from time variations of the fields are much larger than forces from

spatial gradients. In linear perturbation theory one solves the pertur-

bation equations for evolution outside of the horizon: a typical time

scale is the Hubble time H−1, which is assumed to exceed the gradient

scale a/k, where k is the comoving wave number of the perturbation.

Since we are interested in structures on scales larger than the horizon,

it is reasonable to expand in k/(aH). In particular, for inflation this is

an appropriate parameter of expansion since spatial gradients become

exponentially negligible after a few e-folds of expansion beyond horizon

crossing, k = aH .

It is therefore useful to split the field φ into coarse-grained long-

wavelength background fields φ(t, xj) and residual short-wavelength

fluctuating fields δφ(t, xj). There is a preferred timelike hypersurface

within the stochastic inflation approach in which the splitting can be

made consistently, but the definition of the background field will de-

pend on the choice of hypersurface, i.e. the smoothing is not gauge

invariant. For stochastic inflation the natural smoothing scale is the

comoving Hubble length (aH)−1 and the natural hypersurfaces are

those on which aH is constant. In that case a fundamental difference

between between φ and δφ is that the short-wavelength components

are essentially uncorrelated at different times, while long-wavelength

components are deterministically correlated through the equations of

motion.

In order to solve the equations for the background fields, we will

have to make suitable approximations. The idea is to expand in the

spatial gradients of φ and to treat the terms that depend on the fluc-

tuating fields as stochastic forces describing the connection between
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short- and long-wavelength components. In this Section we will ne-

glect the stochastic forces due to quantum fluctuations of the scalar

fields and will derive the approximate equation of motion for the back-

ground fields. We retain only those terms that are at most first order

in spatial gradients, neglecting such terms as φ
|i
|i , φ|iφ

|i, (3)R, (3)R̄i
j,

and T̄ ij.

We will also choose the simplifying gauge N i = 0 [Note that for

the evolution during inflation this is a consequence of the rapid expan-

sion, more than a gauge choice]. The evolution equation (149) for the

traceless part of the extrinsic curvature is then ˙̄K i
j = NKK̄ i

j. Using

NK = −∂t ln
√
h from (124), we find the solution K̄ i

j ∝ h−1/2, where

h is the determinant of hij. During inflation h−1/2 ≡ a−3, with a the

overall expansion factor, therefore K̄ i
j decays extremely rapidly and

can be set to zero in the approximate equations. The most general

form of the three-metric with vanishing K̄ i
j is

hij = a2(t, xk) γij(x
k), a(t, xk) ≡ eα(t,xk), (156)

where the time-dependent conformal factor is interpreted as a space-

dependent expansion factor. The time-independent three-metric γij,

of unit determinant, describes the three-geometry of the conformally

transformed space. Since a(t, xk) is interpreted as a scale factor, we

can substitute the trace K of the extrinsic curvature for the local space-

dependent Hubble parameter

H(t, xi) ≡ 1

N(t, xi)
α̇(t, xi) = −1

3
K(t, xi). (157)

The energy and momentum constraint equations, (146) and (147),

can now be written as
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Hamiltonian and momentum constraint equations

H2 =
κ2

3

[
1

2
(Πφ)2 + V (φ)

]
, (158)

H|i = −κ
2

2
Πφφ|i , (159)

together with the evolution equation (148)

− 1

N
Ḣ =

3

2
H2 +

κ2

6
T =

κ2

2
(Πφ)2 , (160)

Evolution equations

Ḣ = −κ
2

2
(Πφ)2 , (161)

where T = 3
2(Πφ)2 − 3V (φ).

In general, H is a function of the scalar field and time, H(t, xi) ≡
H(φ(t, xi), t). From the momentum constraint (159) we find that the

scalar-field’s momentum must obey

Πφ = − 2

κ2

(
∂H

∂φ

)
t

. (162)

Scalar Field Dynamics

Comparing Eq. (161) with the time derivative of H(φ, t),

1

N

(
∂H

∂t

)
x

= Πφ

(
∂H

∂φ

)
t

+
1

N

(
∂H

∂t

)
φ

= −κ
2

2
(Πφ)2 +

1

N

(
∂H

∂t

)
φ

,

(163)

we find

(
∂H

∂t

)
φ

= 0. In fact, we should not be surprised since this is

actually a consequence of the general covariance of the theory.
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On the other hand, the scalar field’s equation (155) can be written

to first order in spatial gradients as

1

N
Π̇φ + 3HΠφ +

∂V

∂φ
= 0 . (164)

Π̇φ + 3HΠφ +
∂V

∂φ
= 0 . (165)

We can also show that the conjugate momentum Πφ does not depend

explicitly on time, its only dependence comes through φ. For this,

differentiate Eq. (158) w.r.t. φ to obtain

Πφ

(
∂Πφ

∂φ

)
t

+ 3H Πφ +
∂V

∂φ
= 0

and compare with (165), where

1

N
Π̇φ = Πφ

(
∂Πφ

∂φ

)
t

+

(
∂Πφ

∂t

)
φ

, (166)

which implies

(
∂Πφ

∂t

)
φ

= 0.
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Hamilton-Jacobi formalism

We can now summarise what we have learned. The evolution of a

general foliation of space-time in the presence of a scalar field fluid can

be described solely in terms of the rate of expansion, which is a function

of the scalar field only, H ≡ H(φ(t, xi)), satisfying the Hamiltonian

constraint equation:

3H2(φ) =
2

κ2

(
∂H

∂φ

)2

+ κ2 V (φ) , (167)

together with the momentum constraint and the evolution of the scale

factor,

φ̇ = − 2

κ2

(
∂H

∂φ

)
= Πφ ,

ȧ

a
= H(φ) , (168)

1

N
φ̇ = − 2

κ2

(
∂H

∂φ

)
= Πφ (169)

1

N
α̇ = H(φ) , (170)

as well as the dynamical gravitational and scalar field evolution equa-

tions

Ḣ = − 2

κ2

(
∂H

∂φ

)2

= − κ
2

2
(Πφ)2 , (171)

Π̇φ = − 3H Πφ − V ′(φ) . (172)

Therefore, H(φ) is all you need to specify (to second order in field

gradients) the evolution of the scale factor and the scalar field during

inflation.

These equations are still too complicated to solve for arbitrary po-

tentials V (φ). In the next section we will find solutions to them in the

slow-roll approximation.
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Slow-roll approximation and attractor

Given the complete set of constraints (158)-(159) and evolution equa-

tions (161)-(165), we can construct the following parameters,

ε ≡ − Ḣ

H2
=

2

κ2

(
H ′(φ)

H(φ)

)2

= − ∂ lnH

∂ ln a
, (173)

δ ≡ − φ̈

Hφ̇
=

2

κ2

(
H ′′(φ)

H(φ)

)
= − ∂ lnH ′

∂ ln a
, (174)

in terms of which we can define the number of e-folds Ne as

Ne ≡ ln
aend

a(t)
=

∫ tend

t

Hdt = −κ
2

2

∫ φend

φ

H(φ)dφ

H ′(φ)
. (175)

In order for inflation to be predictive, you need to ensure that in-

flation is independent of initial conditions. That is, one should ensure

that there is an attractor solution to the dynamics, such that differences

between solutions corresponding to different initial conditions rapidly

vanish.

Let H0(φ) be an exact, particular, solution of the constraint equa-

tion (167), either inflationary or not. Add to it a homogeneous linear

perturbation δH(φ),

H(φ) = H0(φ) + δH(φ)

and substitute into (167).

The linear perturbation equation reads

H ′0(φ) δH ′(φ) = (3κ2/2)H0δH ,

whose general solution is

δH(φ) = δH(φi) exp

(
3κ2

2

∫ φ

φi

H0(φ)dφ

H ′0(φ)

)
= δH(φi) exp(−3∆N) ,
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where ∆N = Ni−N > 0, and we have used (175) with the particular

solution H0(φ). This means that any deviation from the attractor dies

away exponentially fast. This ensures that we can effectively reduce

our two-dimensional space (φ,Πφ) to just a single trajectory in phase

space.

As a consequence, regardless of the initial condition, the attractor

behaviour implies that late-time solutions are the same up to a con-

stant time shift, which cannot be measured.

An example: Power-Law Inflation

An exponential potential is a particular case where the attractor can be

found explicitly and one can study the approach to it, for an arbitrary

initial condition. Consider the inflationary potential

V (φ) = V0 e
−βκφ , (176)

with β � 1 for inflation to proceed. A particular solution to the

Hamiltonian constraint equation (167) is

Hatt(φ) = H0 e
−1

2βκφ , (177)

H2
0 =

κ2

3
V0

(
1− β2

6

)−1

. (178)

This model corresponds to an inflationary universe with a scale factor

that grows like

a(t) ∼ tp , p =
2

β2
� 1 . (179)
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The slow-roll parameters are both constant,

ε =
2

κ2

(
H ′(φ)

H(φ)

)2

=
β2

2
=

1

p
� 1 , (180)

δ =
2

κ2

(
H ′′(φ)

H(φ)

)
=
β2

2
=

1

p
� 1 , (181)

ξ =
4

κ4

(
H ′H ′′′(φ)

H2(φ)

)
=
β4

4
=

1

p2
� 1 . (182)

All trajectories tend to the attractor (177), while we can also write

down the solution corresponding to the slow-roll approximation, ε =

δ = 0,

H2
SR(φ) =

κ2

3
V0 e

−βκφ , (183)

which differs from the actual attractor by a tiny constant factor, 3p/(3p−
1) ' 1, responsible for a constant time-shift which cannot be measured.

INFLATIONARY MODEL BUILDING

For the moment, observations of the microwave background anisotro-

pies suggest that the Sachs-Wolfe plateau exists, but it is still premature

to determine the tensor contribution. Perhaps in the near future, from

the analysis of polarization as well as temperature anisotropies, with

the CMB satellites WMAP and Planck, we might have a chance of

determining the validity of the consistency relation. Assuming that

the scalar contribution dominates over the tensor on large scales, i.e.

r � 1, one can actually give a measure of the amplitude of the scalar

metric perturbation from the observations of the Sachs-Wolfe plateau
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in the angular power spectrum,[
l(l + 1)C

(S)
l

2π

]1/2

=
AS

5
= (0.926± 0.0106)× 10−5 , (184)

r < 0.11 , n = 0.9667± 0.0040 , (185)

dn

d ln k
= −0.002± 0.013 . (186)

These measurements can be used to normalize the primordial spectrum

and determine the parameters of a particular model of inflation. In

the near future these parameters will be determined with much better

accuracy, to less than a percent.

In the next sections we will consider specific models of inflation. The

formulae we will be using are

ε =
1

2κ2

(
V ′

V

)2

, η =
1

κ2

(
V ′′

V

)
, (187)

ξ =
1

κ4

(
V ′V ′′′

V 2

)
, N =

∫ φ

φend

κdφ√
2ε
, (188)

together with the formula for the amplitude and tilt of scalar and tensor

anisotropies

AS =
κ√
2 ε

H

2π
, ns = 1 + 2η − 6ε ,

d ns
d ln k

= 2ξ + 24ε2 − 16εη ,

AT = 2
√

2κ
H

2π
, nT = −2ε , r = 16ε = −8nT .
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Power-law inflation

V (φ) = V0e
−βκφ β � 1 for inflation

3H2(φ) =
2

κ2

(
∂H

∂φ

)2

+ κ2V (φ) , βH = κφ̇

H(φ) = H0e
−1

2βκφ ⇒ 1

H

∂H

∂φ
= − 1

2
βκ = const

H2
0 =

κ2

3
V0

(
1− β2

6

)−1

where V0 ≡M 4 (189)

ε =
2

κ2

(
H ′

H

)2

=
1

2
β2 < 1 (190)

δ =
2

κ2

(
H ′′

H

)2

=
1

2
β2 < 1 (191)

ξ =
1

κ4

(
H ′H ′′′

H2

)
=

1

4
β4 < 1 (192)

ε = − Ḣ

H2
=

1

2
β2 ⇒ a ∝ tp

ε=1/p−→ p =
2

β2
(193)

ε = δ =
1

p
= const (194)

N =

∫ φend

φ

κdφ√
2ε

=
κ

β
(φend − φ) = 65 (195)

AS =
κ√
2ε

H

2π
= 5× 10−5 ⇒ M ' 10−3MP 'MGUT (196)
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ns − 1 = 2

(
δ − 2ε

1− ε

)
= − 2

p− 1
⇒ d ns

d ln k
= 0 (197)

ns = 0.96 ⇒ p = 51 (198)

nT = − 2ε

1− ε
= − 2

p− 1
= ns − 1 , r = −8nT = 0.32 > 0.11

(199)

51



Chaotic inflation (m2φ2)

V (φ) =
1

2
m2φ2 ⇒ H2 ' κ2

6
m2φ2 (200)

ε =
1

2κ2

(
V ′

V

)2

=
2

κ2φ2
= 1 ⇒ φend =

MP

2
√
π
' MP

3.5
(201)

η =
1

κ2

(
V ′′

V

)
=

2

κ2φ2
= ε =

1

2N
, ξ = 0 (202)

N =

∫ φ

φend

κdφ√
2ε

=

(
κφ

2

)2
∣∣∣∣∣
φ

φend

≈ κ2φ2

4
⇒ φ60 = 3MP(203)

AS =
κm√

6

κ2φ2

4π
= N

√
4

3π

m

MP
= 5× 10−5 ⇒ (204)

m = 1.2× 10−6MP = 1.4× 1013 GeV (205)

ns = 1− 2

N
≈ 0.967 ,

dns
d ln k

=
2

N 2
= 6× 10−4

AT =
4√
π

H

MP
< 10−5 , nT = −2ε = − 1

N
' −0.016 (206)

r =
8

N
' 0.13 (207)
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Chaotic inflation (λφ4)

V (φ) =
1

4
λφ4 ⇒ H2 ' κ2

12
λφ4 (208)

ε =
1

2κ2

(
V ′

V

)2

=
8

κ2φ2
= 1 ⇒ φend =

MP√
π
' MP

1.8
(209)

η =
1

κ2

(
V ′′

V

)
=

12

κ2φ2
=

3ε

2
=

3

2N
, ξ =

3

2N 2
, (210)

N =

∫ φ

φend

κdφ√
2ε

=

(
κφ

8

)2
∣∣∣∣∣
φ

φend

≈ κ2φ2

8
⇒ φ60 = 4.3MP (211)

AS(φ∗) =

√
λ

3

κ3φ3
∗

16π
=

√
λ

3

(8N)3/2

16π
= 5× 10−5 (212)

⇒ λ = 1.3× 10−13 (213)

ns = 1 + 2η − 6ε = 1− 3

N
≈ 0.95 , (214)

dns
d ln k

=
3

N 2
= 1.7× 10−3 (215)

AT =
4√
π

H

MP
< 10−5 , (216)

nT = −2ε = − 2

N
' −0.03 (217)

r = −8nT =
16

N
' 0.27 (218)
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New inflation (v ∼MP)

V (φ) =
λ

4

(
φ2−v2

)2

= M 4

(
1− φ2

v2

)2

⇒ H2 ' κ2

12
λ
(
φ2 − v2

)2

(219)

ε =
8φ2

κ2(φ2 − v2)2
= 1 ⇒ φend = v ± MP

2
√
π
. (220)

η =
4(3φ2 − v2)

κ2(φ2 − v2)2
, ξ =

96φ2

κ4(φ2 − v2)3
, (221)

N =

∫ φ

φend

κdφ√
2ε

=
κ2

8

(
φ2 − φ2

end

)
− κ2v2

4
ln

φ

φend
(222)

⇒ φ60 = φend exp
(
− 30M 2

P

πv2

)
(223)

AS(φ∗) =

√
λ

3

κ3

16πφ∗

(
φ2
∗ − v2

)2

=
κ2M 2

2π
√

6

φend

φ∗
= 5× 10−5 (224)

⇒ M ∼ 1013 GeV (225)

ns = 1 + 2η − 6ε ' 1− 8

κ2v2
≈ 0.96 (226)

⇒ v ' 5Mp√
π
,

dns
d ln k

≈ 0 (227)

AT =
4√
π

H

MP
< 10−5 , nT = −2ε ≈ 0 (228)

r = −8nT ≈ 0 (229)
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Natural inflation

V (φ) = M 2 f 2

(
1− cos

φ

f

)
= 2M 2 f 2 sin2 φ

2f
(230)

=
1

2
M 2φ2 − 1

4!

M 2

f 2
φ4 +O(φ6) (231)

ε =
1

2κ2f 2

(
sin φ

f

1− cos φf

)2

=
cot2 φ

2f

2κ2f 2
� 1 (232)

η =
1

κ2f 2

cos φf

1− cos φf
= ε− 1

2κ2f 2
� 1 (233)

ξ =
−1

κ4f 4

(
sin φ

f

1− cos φf

)2

=
−2ε

κ2f 2
� 1 (234)

N = 2κ2f 2

∫ x

xend

dx tanx = −2κ2f 2 ln cos
φ

2f

∣∣∣∣φ
φend

(235)

ε = 1 ⇒ cos
φend

2f
=

(
2κ2f 2

1 + 2κ2f 2

)1/2

< 1 (236)

cos
φ

2f
=

(
2κ2f 2

1 + 2κ2f 2

)1/2

e
− N

2κ2f2 (237)

ε65 =
1

2κ2f 2

(
e

N
κ2f2 − 1

)−1

� 1

2κ2f 2
(238)

η65 = ε65 −
1

2κ2f 2
⇒ ns ' 1− 1

κ2f 2
(239)
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AS =

√
2

3

κM

2π
(2κ2f 2) sinh

N

2κ2f 2
(240)

If f = MP ⇒ M = 9× 10−7MP = 1013 GeV (241)

ns = 1− 1

8π
= 0.96 ,

d ns
d ln k

=
1.3ε

2π
= 4.2× 10−4 (242)

r = −8nT =
1

π

(
e
N
8π − 1

)−1

' 0.032 (243)
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Figure 4: The plane (ns, r) allowed by Planck, with all the models discussed in the text. The
ranges of values correspond to the interval N ∈ [50, 60]. Also shown is the motion along the
plane due to a increasing non-minimal coupling, as discussed below.

56



0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
!4.0

!3.8

!3.6

!3.4

!3.2

!3.0

!2.8

!2.6

ns

Lo
g 1
0!!dn

s"dlnk
#

Chaotic
ΛΦ4

m2Φ2

gΦ

Power Law

Starobinsky

NaturalBrane

Log

Kähler T!model

Tanh
Moduli

Hybrid

Planck 2013

Figure 5: The plane (ns, dns/d ln k) with all the models discussed in the text. The ranges of
values correspond to the interval N ∈ [50, 60]. Note that they all lie in a small region around
dns/d ln k ' 10−3, where PRISM is possibly capable of detecting it, but where unfortunately
Planck has no resolution.

Starobinski inflation

Rµν −
1

2
gµν R = κ2 〈Tµν〉ren =

1

6M 2
(1)Hµν +

1

H2
0

(3)Hµν , (244)

(1)Hµν = 2(∇µ∇ν − gµν∇2)R + 2RRµν −
1

2
gµνR

2 (245)

(3)Hµν = R λ
µ Rλν −

2

3
RRµν −

1

2
gµνR

ρσRρσ +
1

4
gµνR

2 (246)
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Substituting FRW metric and using the Slow Roll Approximation,

Ḣ = −M
2

6

(
1− H2

H2
0

)
. (247)

At first stage: H2
0 � M 2 ⇒ −Ḣ < M 2/6 � H2

0 ⇒ H ≈
H0 = const. However, H grows and becomes unstable. When H ∼
M inflation ends. Alternatively, one can study the evolution in the

effective action formalism, including higher derivatives,

Sg =

∫
d4x
√
−g 1

2κ2

(
R− R2

6M 2

)
≡
∫
d4x
√
−g 1

2κ2
f (R) (248)

which gives rise to Eq. (245). One can then write this action as the

usual Einstein-Hilbert action plus a scalar field, making use of the

conformal transformation

g̃µν = F (R) gµν ≡ eακφgµν ⇒
√
−g̃ = e2ακφ√−g (249)

R̃µν = Rµν −
ακ

2

(
gµν∇2φ + 2∇µ∇νφ

)
(250)

R̃ = e−ακφ
[
R− 3ακ∇2φ− 3

2
α2κ2(∂φ)2

]
(251)

The scalar field φ will have canonical kinetic term for α2 = 2/3. From

the equations of motion one finds the relationship F (R) = f ′(R), and

therefore the effective scalar potential becomes

V (φ) =
1

2κ2

f (R)−Rf ′(R)

(f ′(R))2
=

R2

12κ2M 2

(
1− R

3M 2

)−2

(252)

V (φ) =
3M 2

4κ2

(
1− e−ακφ

)2
=

1

2
M 2φ2 (1 + ακφ + . . . ) (253)
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ε =
2α2

(eακφ − 1)2
= 1 ⇒ φend =

√
3MP

4
√
π

ln
(

1 +
2√
3

)
' MP

5.33

⇒ Hend =

√
3M

2
√

2 +
√

3
(254)

η =
2α2(2− eακφ)

(eακφ − 1)2
= 0 ⇒ φ∗ =

√
3MP

4
√
π

ln 2 ' MP

5.90
(255)

ξ =
4α4(eακφ − 4)

(eακφ − 1)3
(256)

N =
eακφ − ακφ

2α2

∣∣∣∣φ
φend

' 3

4
eακφ ⇒ φ60 = 1.09MP (257)

ε60 '
1

2α2N 2
, η60 ' −

1

N
, ξ60 '

1

N 2
, (258)

ακφ60 = 4.38� 1 ⇒ V (φ60) ' M 2

2α2κ2
⇒ H60 '

M

2
(259)

AS =
αN

2π
κH = 5× 10−5 ⇒ M ' 2.4× 10−6MP (260)

ns = 1− 2

N
' 0.97 ,

d ns
d ln k

' 2

N 2
= 5.6× 10−4 (261)

AT =

√
2

π

H

MP
=

2√
π

M

MP
= 2.7× 10−6 (262)

nT = −2ε ' − 3

2N 2
= −2.8× 10−4 (263)

r = −8nT ' 2× 10−3 (264)
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(Inverted) Hybrid inflation

V (φ, χ) =
λ

4
(χ2 − v2)2 +

1

2
g2φ2χ2 − 1

2
m2φ2 (265)

The effective Higgs mass in the false vacuum (χ = 0):

m2
χ ≡

∂2V

∂χ2
= g2φ2 − λv2 = 0 ⇒ φc ≡

M

g
=

√
λv

g
(266)

For large values of the inflaton, the Higgs has a large mass and sits at

its minimum, and therefore the ffective potential during inflation is

V (φ) = V0 −
1

2
m2φ2 ' V0 = const. (267)

H0 '
√

2π

3

Mv

MP
(268)

ε =
m2

κ2V0

m2φ2

2V0
� η = − m2

κ2V0
⇒ n = 1− 2m2

κ2V0
(269)

N =
κ2V0

m2
ln
φ

φc
⇒ φ = φc e

ηN (270)

Inflation ends not because of the end of slow-roll (ε = 1) but because

of symmetry breaking by the Higgs

AS =
H2

2πφ̇
=

gH

2πηM
e−ηN = 5× 10−5 ⇒ (271)

g =

√
3π

8
(n− 1) 10−4 MP

v
e(n−1)N2 (272)

Negligible gravitational waves:

r = −8nT = 16ε � 8 (n− 1) (273)

Many possibilities of scales of inflation: e.g. GUT scale,

v = 10−3MP , λ = 0.1 , g = 0.01 , ⇒ n = 0.965 , (274)

M = 4× 1015 GeV , m = 1.3× 1012 GeV , r = 5× 10−4 (275)
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Radiative corrections on SUSY hybrid infla-
tion

Coleman-Weinberg potential

V1−loop =
1

64π2

∑
i

(−1)Fim4
i ln

m2
i

Λ2
(276)

Supergravity hybrid model (units κ = 1)

W =
√
λΦ(Σ̄Σ− v2) (277)

V = λ
∣∣σ̄σ − v2

∣∣2 +
λ

2
φ2(|σ|2 + |σ̄|2) + D− term (278)

where φ =
√

2 Φ is the canonically normalized field. The absolute

minimum appears at φ = 0, σ = σ̄ = v. For φ > φc =
√

2 v, the fields

σ, σ̄ have a positive mass squared and stay at the origin. Inflation takes

place along that “flat” direction, which is lifted by radiative corrections.

The masses of bosons are m2
B = 1

2λ(φ2±2v2), while that of the fermion

is m2
F = 1

2λφ
2. The loop corrected potential along the flat direction is

V1−loop(φ) =
λ2

128π2

[
(φ2 − 2v2)2 ln

(
φ2 − 2v2

Λ2

)
+ (φ2 + 2v2)2 ln

(
φ2 + 2v2

Λ2

)
− 2φ4 ln

(
φ2

Λ2

)]
(279)

⇒ V (φ) ' λ v4

(
1 +

λ

8π2
ln
φ

φc

)
, φ� φc (280)

ε =
λ2

128π4φ2
=

λ

32π2N
, η = − λ

8π2φ2
= − 1

2N
(281)

N =

∫
dφ√

2ε
=

4π2φ2

λ
(282)

61



AS =

√
N

3
16π

v2

M 2
P

= 5× 10−5 ⇒ v = 5.6× 1015 GeV(283)

n = 1− 1

N
= 0.98 , r = −2π nT = 4πε =

λ

8πN
� 1 (284)

Higgs Inflation

Standard Model Higgs with non-minimal coupling ξ. For the moment

I will consider only the most straightforward model

S =

∫
d4x
√
g

[
1

2
(1 + ξφ2)R− 1

2
(∂φ)2 − λ

4
φ4

]
. (285)

The usual procedure is to do a conformal transformation to the Einstein

frame,

Ω2 = 1+ξφ2 ≡ eαϕ ,
dϕ

dφ
=

√
1 + ξ(1 + 6ξ)φ2

1 + ξφ2
, V (ϕ) =

λφ4

4(1 + ξφ2)2
.

(286)

This allows one to write the slow-roll parameters

εV =
1

2V 2

(
dφ

dϕ

dV

dφ

)2

, (287)

ηV =
1

V

dφ

dϕ

d

dφ

(
dφ

dϕ

dV

dφ

)
, (288)

ξV =
1

V 2

dφ

dϕ

dV

dφ
· dφ
dϕ

d

dφ

(
dφ

dϕ

d

dφ

(
dφ

dϕ

dV

dφ

))
, (289)

while integrating the number of e-folds,

N =
φ2

8
(1 + 6ξ)− 3

4
ln(1 + ξφ2) , (290)
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we can substitute into the expression for the slow-roll parameters

εV =
1 + 6ξ

N(1 + 8ξN)
, (291)

ηV =
3 + 2ξ(4N + 9)− 32ξ2N(4N − 3)

2N(1 + 8ξN)2
, (292)

ξV =
3− 4ξ(8N − 9)− 12ξ2(80N 2 + 12N − 9)

2N 2(1 + 8ξN)4
− (293)

− 96ξ3N(32N 2 + 60N − 3) + 2048ξ4N 3(4N − 9)

2N 2(1 + 8ξN)4
,

with which we can construct the observables

ns = 1− 6 + 36ξ

N(1 + 8ξN)
(294)

+
3 + 2ξ(4N + 9)− 32ξ2N(4N − 3)

N(1 + 8ξN)2
,

d lnns
d ln k

=
3 + 12ξ(8N + 3) + 4ξ2(272N 2 + 252N + 27)

N 2(1 + 8ξN)4
(295)

+
32ξ3N(160N 2 + 300N + 81)

N 2(1 + 8ξN)4

+
2048ξ4N 2(4N 2 + 15N + 9)

N 2(1 + 8ξN)4
,

r =
16 + 96ξ

N(1 + 8ξN)
. (296)

We show in Fig. 4 the attractor behavior, as we increase the non-

minimal coupling, from the chaotic inflation λφ4 model towards the

Starobinsky model.
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Reheating after inflation

One of the fundamental quests of cosmology is to understand the origin

of all the matter and radiation present in the universe today. We have

seen how inflation produces a homogeneous and flat background space-

time, and imprints on top of it a set of scalar and tensor quantum

fluctuations that become classical Gaussian random fields outside the

horizon, with an approximately scale invariant spectrum.

Inflation also dilutes any relic species left from a hypothetical earlier

period of the universe, such that at the end of inflation there remains

only a homogeneous zero mode of the inflaton field with tiny fluctua-

tions on the homogeneous metric. That is, the universe is empty and

very cold: the entropy of the universe is exponentially small and the

temperature can be taken to be zero, S = T = 0.

Therefore we are left with the puzzle: How does the large entropy

and energy of our present horizon, S ∼ 1089 and M ∼ 1023M�, arise

from such a cold and empty universe? The answer seems to lie in

the process by which the large potential energy density present during

inflation gets converted into radiation at the end of inflation, a process

known as reheating of the universe.

This process was studied soon after the first models of inflation were

proposed and considered the perturbative decay of the inflaton field

into quanta of other fields to which it coupled, e.g. fermions, gauge

fields, and other scalars. Such couplings exist during inflation but play

no role (except for inducing radiative corrections, as we will discuss

later), because even if those particles were produced during inflation

the exponential expansion would dilute them almost instantaneously,

and nothing would be left at the end of inflation.

Let us write down the most general Lagrangian with couplings of

64



the inflaton to other fields and among themselves,

L =
1

2
(∂µφ)2 − V (φ) +

1

2
(∂µχ)2 − 1

2
m2
χχ

2 +
1

2
ξχ2R

+ ψ̄(iγµ∂µ −mψ)ψ − hφψ̄ψ − 1

2
g2φ2χ2 − g2σφχ2 , (297)

where g, h, ξ, etc. are small couplings (to avoid large radiative correc-

tions during inflation); σ is the possibly finite vev of the inflaton, and

we have shifted the inflaton potential by φ − σ → φ, such that the

minimum is at φ = 0 and the potential can be expanded around the

minimum as

V (φ) =
1

2
m2φ2 +O(φ4) , (298)

wherem is the mass of the inflaton at the minimum. In chaotic inflation

of the type m2φ2 or λφ4, this mass and self-coupling are bounded by

observations of the CMB to be

m ∼ 1013 GeV , λ ∼< 10−13 . (299)

We will consider this mass to be much larger than that of the other

fields to which it couples: m2 � m2
χ,m

2
ψ � g2σφ, hφ. Also, the end

of inflation occurs in these models when H ∼ m, and subsequently,

the rate of expansion decays as H ∼ 1/t < m.

Let us compute the evolution of the inflaton after inflation, whose

amplitude satisfies the equation (we are neglecting here the couplings

to other fields, but we will consider them later)

φ̈ + 3H(t)φ̇ + m2φ = 0 , (300)

whose solution is oscillatory,

φ(t) = Φ(t) sin mt , (301)

with the amplitude of oscillations decaying like Φ ∼ a−3/2, as we will

prove now. Consider the average energy density and pressure of the
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homogeneous inflaton field over one period of oscillations,

〈ρ〉 =
1

2
〈φ̇2〉 +

1

2
m2〈φ2〉 =

1

2
m2Φ2(t)

(
〈cos2mt〉 + 〈sin2mt〉

)
, (302)

〈p〉 =
1

2
〈φ̇2〉 − 1

2
m2〈φ2〉 =

1

2
m2Φ2(t)

(
〈cos2mt〉 − 〈sin2mt〉

)
' 0(303)

where we have neglected the change in Φ(t) due to the condition m�
H during reheating. The fact that an oscillating homogeneous scalar

field behaves like a pressureless fluid means that the universe during

that period expands like a matter dominated universe,

ρ̇ + 3H(ρ + p) = 0 ⇒ ρ =
1

2
m2Φ2(t) ∼ a−3 , (304)

and therefore Φ ∼ a−3/2 ∼ t−1. That is, a homogeneous scalar field

oscillating with frequency equal to its mass can be considered as a

coherent wave of φ particles with zero momenta and particle density

nφ = ρφ/m =
1

2
mΦ2 ∼ a−3 , (305)

oscillating coherently with the same phase.

Until now we have considered only the effects of expansion, and

ignored the effects due to the production of particles from the inflaton.

This can be accounted for by including, in the equation of motion, the

denominator of the QFT propagator,

φ̈ + 3H(t)φ̇ +
(
m2 + Π(ω)

)
φ = 0 , (306)

where Π(ω) is the Minkowski space polarization operator for φ with

four-momentum kµ = (ω,0), with ω = m. The real part of the

polarization operator can be neglected (due to the small couplings),

Re Π(ω)� m2. However, due to phase space, if the frequency of oscil-

lations satisfies ω � min(2mχ, 2mψ), then the polarization operator

acquires an imaginary part,

Im Π(m) = mΓφ , (307)
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where Γφ is the total decay rate of the inflaton, and we have used the

optical theorem (i.e. unitarity) to relate both quantities at the physical

pole, ω = m.

The total decay rate can be written as a sum over partial decays,

Γφ =
∑
i

Γ(φ→ χiχi) +
∑
i

Γ(φ→ ψ̄iψi) , (308)

Γ(φ→ χiχi) =
g4
i v

2

8πm
, Γ(φ→ ψ̄iψi) =

h2
im

8π
, (309)

Γφ ≡
h2

effm

8π
� m, h2

eff =
∑
i

(
h2
i +

g4
i v

2

m2

)
(310)

The evolution of the inflaton during the period of oscillations after

inflation can be described through the phenomenological equation

φ̈ + 3H(t)φ̇ + Γφφ̇ + m2φ = 0 , (311)

which includes the decay rate Γφ as a friction term giving rise to the

damping of the oscillations due to inflaton particle decay. It assumes

the inflaton condensate (the homogeneous zero mode) is composed of

very many inflaton particles, each of these decaying into other particles

to which it couples. The solution to this equation is given by (301) with

Φ(t) = Φ0 e
−1

2

∫
3Hdt

e−
1
2Γφt =

Φ0

t
e−

1
2Γφt , (312)

where we have used H = 2/3t.

We can now compute the evolution of the energy and number density

of the inflaton field under the effect of particle production,

d

dt

(
ρφa

3
)

= −Γφ ρφa
3 , (313)

d

dt

(
nφa

3
)

= −Γφ nφa
3 , (314)
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which simply states the usual exponential decay law for particles with

decay rate Γ. Initially, the total decay rate is much smaller than the

rate of expansion, Γφ � 3H = 2/t � m, and the total comoving

energy and total number of inflaton particles is conserved, their energy

and number densities decaying like a matter fluid, ρφ ' mnφ ∼ a−3.

Eventually, the universe expands sufficiently (this may take many

many inflaton oscillations) that the decay rate becomes larger than the

rate of expansion, or alternatively, the inflaton life-time, ηφ = Γ−1
φ ,

becomes smaller than the age of the universe, ηφ < tU = H−1, and

the inflaton decays suddenly (in less than one Hubble time), releas-

ing all its energy density ρφ into relativistic particles χ and ψ, in an

exponential burst of energy. Subsequently, the produced particles inter-

act among themselves and soon thermalize to a common temperature.

This process is responsible for the present abundance of matter and

radiation energy, and could be associated with the Big Bang of the

“old” cosmology.

At first sight it may seem paradoxical that the universe may have to

“wait” until it is old enough for the inflaton to decay, because we are

accustomed to very rapid decays in our particle physics detectors, where

life-times of order 10−17s are possible, while our universe is 10+17s old!

However, if inflation took place at energy densities of order the GUT

scale, the Hubble time of a causal domain at the end of inflation would

be of order 10−35s, which is many orders of magnitude smaller than even

the fastest decays of the inflaton, ∼ 10−25s. So the probability that

the inflaton decays in such a short Hubble time is negligible, and the

universe has to wait until it is old enough that there is any probability

of decay of a single inflaton particle. Eventually, of course, once the

universe is older than the inflaton life-time, it (the inflaton) will decay

exponentially fast due to its constant decay rate Γφ.

Let us now compute the reheating temperature of the universe that
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arises from the thermalization of the products of decay of the inflaton.

Note that the process of reheating, once possible, is essentially instan-

taneous and therefore the energy density at reheating can be estimated

as that corresponding to a rate of expansion H = Γφ. Since all that

energy density will be quickly converted into a plasma of relativistic

particles, we can estimate

ρ(trh) =
3Γ2

φM
2
P

8π
=
π2

30
g(Trh)T 4

rh , (315)

⇒ Trh ' 0.1
√

ΓφMP , (316)

where we have assumed g(Trh) ∼ 102 − 103. Let us estimate this

temperature. If we substitute Γφ = h2
effm/8π with m ∼ 1013 GeV, we

find

Trh ' 2× 1014 heff GeV ∼< 1011 GeV , (317)

where we have imposed the constraint heff ∼< 10−3 from radiative cor-

rections in chaotic type models. Let us estimate it: if we consider the

quantum loop corrections to the inflaton potential due to its coupling

to other fields like in the Lagrangian described above, we find

V (φ) =
1

2
m2φ2

(
1+

3g4

16π4λ

)
+
λ

4
φ4
(

1+
3g4

16π4λ
− h4

16π4λ

)
+ . . . (318)

Therefore, the couplings of the inflaton to other fields cannot be very

large otherwise they would modify the amplitude of CMB anisotropies.

If we impose that the mass and self-coupling of the inflaton satisfy

(299), then the other couplings are bound to

3g4 , h4 < 16π2λ ⇒ g , h ∼< 10−3 . (319)

For completeness, let us mention that in theories with only gravita-

tional interactions, like e.g. in Starobinsky model, the decay of the

inflaton is induced via gravity only and

Γgrav ∼
m3

M 2
P

∼ 10−18MP ⇒ Trh ∼ 109 GeV . (320)
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All this indicates that, although the energy density at the end of

inflation may be large, the final reheating temperature Trh may not

be higher than 1012 GeV, and thus the usually assumed thermal phase

transition at Grand Unification, which was the basis for most of the

early universe phenomenology, like production of topological defects,

GUT baryogenesis, etc., could not have taken place.

We will see shortly that such phenomenology may be resucitated in

the context of preheating and non-thermal phase transitions, but for

the moment let us focus our attention onto two well differentiated and

concrete cases of ordinary reheating:
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Reheating in chaotic inflation models

Consider a m2φ2 model of inflation, for which the value of the inflaton

at the end of inflation is φend = MP/2
√
π, and the corresponding

energy density

ρend =
3

2
V (φend) =

3m2M 2
P

16π
=
(

6.5× 1015 GeV
)4

. (321)

On the other hand, CMB anisotropies require

AS = N

√
4

3π

m

MP
= 5×10−5 ⇒ m ' 1.4×1013 GeV , (322)

while radiative corrections impose the constraint heff ∼< 10−3.

We are thus left with three time scales:

tosc ∼ m−1 ∼ 10−36 s

texp ∼> H−1
end ∼ 10−35 s

tdec ∼ Γ−1
φ ∼ 10−25 s

⇒ tosc � texp � tdec , (323)

so there are several oscillations per Hubble time, and we also expect

many oscillations of the inflaton field before it decays. This result is

typical of most high-scale models of inflation.

71



Reheating in low-scale hybrid inflation mod-
els

In this case, reheating occurs in very different circumstances. Most

models of inflation occur at scales of order the GUT scale, because their

parameters are fixed by the amplitude of CMB anisotropies, δT/T ∼
m/MP ∼ 10−5. However, in models of hybrid inflation, which end due

to the symmetry breaking of a field coupled to the inflaton, and not

because of the end of slow-roll, it is possible to decouple the amplitude

of CMB fluctuations from the scale of inflation. For instance, consider

a hybrid model at the electroweak scale, where the symmetry breaking

field is the SM Higgs field, with a vev v = 246 GeV, a relatively strong

coupling to the inflaton, g = 0.4, and a Higgs self-coupling λ = 0.12,

giving rise to the following masses in the true vacuum

minf = g v ∼ 100 GeV , m
H

=
√

2λ v ∼ 120 GeV , (324)

which are much larger than the rate of expansion at the end of inflation

Hend =

√
π

3

m
H
v

MP
∼ 2× 10−5 eV� m

H
, (325)

and therefore we can neglect it during the oscillations of the inflaton

and Higgs fields around the minimum of their potential.

The energy density at the end of inflation is

ρend =
1

8
m2

H
v2 ∼ (102 GeV)4 , (326)

which is very low indeed.

The couplings of the Higgs to matter could be large, e.g. the top

quark Yukawa ht ∼ 1, although for such a low mass Higgs there is no

phase space for top perturbative production. On the other hand, the

inflaton may couple to other particles, so it is expected that their decay
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widths be similar and both of order Γ ∼ 1 GeV. Naively, using (316),

one would thus expect that the reheating temperature be Trh ∼ 109

GeV, but that is impossible because it would correspond to an energy

density during inflation much above the actual false vacuum energy,

ρend ∼ (102 GeV)4.

Actually, since the rate of expansion is so low compared with the

other scales, we can ignore the decay in energy due to the expansion

of the universe, which was so important during chaotic inflation, and

use energy conservation to estimate

ρend =
λv4

4
=
π2

30
g∗ T

4
rh ⇒ Trh '

(
15λ

2π2g∗

)1/4

v ∼ 42 GeV ,

(327)

where we have used g∗ = 106.75 as the effective number of degrees of

freedom of the SM particles. Note that this temperature is rather low,

but in fact we have no observational evidence that the universe has

actually gone through a thermal period with a temperature above this.

We are thus left with three time scales:

tosc ∼ m−1
H
∼ 10−27 s

texp ∼ H−1 ∼ 10−10 s

tdec ∼ Γ−1 ∼ 10−23 s

⇒ tosc � tdec � texp , (328)

so there are many oscillations per Hubble time, but contrary to the

case of chaotic inflation models, here the decay time is much smaller

than the expansion time, because the universe is already quite old, so

once the inflaton and Higgs start oscillating they decay very soon via

their usual perturbative decay.
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Preheating

The previous discussion falls under the name of perturbative reheat-

ing, because it assumes that the coherently oscillating inflaton will

decay as if it were composed on individual inflaton quanta, each one

decaying as described by ordinary QFT, with the perturbative decay

rate computed above. This was the standard lore during at least a

decade since it was first proposed in 1982. However, it was soon real-

ized that the inflaton at the end of inflation is actually a coherent wave,

a zero mode, a condensate made out of many inflaton quanta, all os-

cillating with the same phase, and non-perturbative effects associated

with this condensate were bound to be important for the problem of

reheating. In fact, a few years ago, in a seminal paper, Linde, Kofman

and Starobinsky proposed a new picture of reheating, which has be-

come known as preheating. I will describe these new developments in

the following sections. They make use of the well studied problem of

particle production in the presence of strong background fields, whose

formalism we have already encountered for the analysis of the gener-

ation of metric fluctuations during inflation. In this case, instead of

a quantum field evolving in a rapidly changing gravitational field (like

during inflation), we have a field coupled to the inflaton, which has a

rapidly changing frequency or mass due to the inflaton oscillations.

We will first describe the Bogolyubov formalism for a single scalar

field with a time-dependent mass and then particularize to the case of

the inflaton oscillations after inflation. Later on, we will also extended

the formalism to fermions, which can also be produced at preheating.

Consider a massive scalar field φ with Lagrangian density

L =
1

2
φ̇2 − 1

2
(∇φ)2 − 1

2
m2φ2 , (329)
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which gives a canonically conjugate momentum π =
δL
δφ̇

= φ̇, and the

Hamiltonian

H = πφ̇− L =
1

2
φ̇2 +

1

2
(∇φ)2 +

1

2
m2φ2 . (330)

We can treat the fields as quantum fields and define the usual equal

time commutation relation

[φ(x, t), π(x′, t)] = i δ(3)(x− x′) , (331)

as well as expand in Fourier components,

φ(x, t) =

∫
d3k

(2π)3/2
φk(t) eik·x . (332)

The field mode φk(t) satisfies the harmonic oscillator equation

φ̈k + ω2
k φk = 0 , (333)

ω2
k(t) = k2 + m2(t) , (334)

where the time dependence of the oscillation frequency comes through

that of the mass. We will assume that the field is real, so we should

impose the constraint φk(t) = φ∗−k(t). Following the quantization

condition (331), we can write the field and momentum operators in

terms of time-dependent creation and annihilation operators,

φk(t) =
1√
2ωk

(
ak(t) + a†−k(t)

)
,

πk(t) = −i
√
ωk
2

(
ak(t) + a†−k(t)

)
,

(335)

satisfying the usual commutation relation, ∀t,

[ak(t), a†k′(t)] = δ(3)(k− k′) ,
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and in terms of which the Hamiltonian becomes

H =
1

2

∫
d3k

[
πkπ

†
k + ω2

k φkφ
†
k

]
=

1

2

∫
d3k ωk

(
a†kak + aka

†
k

)
≡ Hpart + Hvac(t) , (336)

where

Hpart =

∫
d3k ωk a

†
kak , (337)

Hvac(t) =
V

(2π)3

∫
d3k

ωk
2
. (338)

We can then define a number operator for these fields

N =

∫
d3k a†kak , (339)

and a Fock space with vacuum state defined as

ak(t)|0t〉 = 0 , 〈0t|0t〉 = 1 , (340)

and particle states |nk〉 ∝ (a†k)n|0t〉 satisfying

Hpart|nk〉 = nkωk|nk〉 ≡ Ek|nk〉 , (341)

N |nk〉 = nk|nk〉 . (342)

In the vacuum state |0t〉, the energy takes its lowest possible value,

Hvac(t) = 〈0t|H|0t〉.

We can compute the equations of motion as usual with

d

dt
ak =

∂ak

∂t
+ i [H, ak]

where we can invert the relations (335)

ak(t) =

√
ωk
2
φk(t) +

i√
2ωk

πk(t) ,

a†−k(t) =

√
ωk
2
φk(t)− i√

2ωk
πk(t) .

(343)
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In the Heisenberg picture, the original canonical operators {φk, πk}
may have no explicit time-dependence, but ωk is indeed time-dependent,

so
d

dt
ak = −iωkak +

ω̇k
2ωk

a†−k . (344)

The solution to the equations of motion is(
ak(t)

a†−k(t)

)
=

(
uk(t) vk(t)

v∗k(t) u∗k(t)

)(
ak(0)

a†−k(0)

)
(345)

The unitary evolution preserves the commutation relation (331) iff

|uk|2 − |vk|2 = 1 , (346)

with initial condition : |uk|2 = 1 , |vk|2 = 0 . (347)

If the initial state is the vacuum, |0〉 ≡ |0t=0〉, then

ak(0)|0〉 = 0 ⇒ ak(t)|0〉 = vk(t) a
†
−k(0)|0〉 6= 0 (348)

In particular, the number density of particles created from the vacuum

is

n(t) =
1

V
〈0|N |0〉 =

∫
d3k

(2π)3
|vk|2(t) . (349)

In order to find the function n(t) explictly, we have to solve for uk and

vk as a solution of(
u̇k(t)

v̇∗k(t)

)
=

 −iωk
ω̇k
2ωk

ω̇k
2ωk

iωk

( uk(t)

v∗k(t)

)
(350)

It is customary to write the mode functions uk and vk is terms of

the usual Bogolyubov coefficients, {αk, βk},

uk = αk e
−i

∫ t

ωkdt

, v∗k = βk e
+i

∫ t

ωkdt

, (351)
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then the evolution equations (350) become

α̇k =
ω̇k
2ωk

βk e
+2i

∫ t

ωkdt

,

β̇k =
ω̇k
2ωk

αk e
−2i

∫ t

ωkdt

,

(352)

which can be integrated in the adiabatic approximation, to give

n(t) =

∫
d3k

(2π)3
nk(t) =

∫
d3k

(2π)3
|βk|2(t) , (353)

the number density of particles produced due to the time-dependent

background field.

Alternatively, one can introduce the |in〉 and |out〉 states, and make

the field decomposition over time-independent creation and annihila-

tion operators {ak, a
†
−k},

φ(x, t) =

∫
d3k

(2π)3/2

[
fk(t) ak e

ik·x + h.c.
]

=

∫
d3k

(2π)3/2

(
fk(t) ak + f ∗k (t) a†−k

)
eik·x , (354)

π(x, t) =

∫
d3k

(2π)3/2

(
gk(t) ak + g∗k(t) a

†
−k

)
eik·x , (355)

where the mode functions fk(t) and gk(t) depend only on the modulus

k = |k|, thanks to the homogeneity and isotropy of the background

fields. These functions satisfy the equations of motion

f̈k + ω2
k fk = 0 , gk = iḟk . (356)

Comparing with the former decomposition (335), we find the relation

uk =
1√
2ωk

(ωkfk + gk) ,

vk =
1√
2ωk

(ωkfk − gk) ,
(357)
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and viceversa

fk =
1√
2ωk

(uk + v∗k) ,

gk =

√
ωk
2

(uk − v∗k) ,
(358)

which gives for the occupation number

nk(t) = |βk|2 =
1

2ωk
|ḟk|2 +

ωk
2
|fk|2 −

1

2
, (359)

where we have used the Wronskian

i(ḟkf
∗
k − ḟ ∗kfk) = 2 Re (f ∗kgk) = 1 ⇔ |uk|2 − |vk|2 = 1 . (360)
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Diagonalization of the Hamiltonian

With the above decomposition, we can write the Hamiltonian as

H =

∫
d3k

[
Ek(t)

(
a†k ak + ak a

†
k

)
+Fk(t) ak a−k + F ∗k (t) a†k a

†
−k

]
, (361)

where

Ek(t) =
1

2
(|ḟk|2 + ω2

k|fk|2) = ωk

(
nk +

1

2

)
, (362)

Fk(t) =
1

2
(ḟ 2
k + ω2

kf
2
k ) , (363)

E2
k(t) − |Fk(t)|2 =

ω2
k

4
. (364)

Let us now introduce a canonical Bogolyubov transformation(
ak

a†−k

)
=

(
uk(t) vk(t)

v∗k(t) u∗k(t)

)(
bk

b†−k

)
(365)

Then

nk = |βk|2 =
2Ek − ωk

2ωk
, (366)

uk
vk

=
2Ek + ωk

2F ∗k
, (367)

and the Hamiltonian becomes diagonal

H =

∫
d3k

ωk
2

(
b†k bk + bk b

†
k

)
, (368)

which can be decomposed into Hpart and Hvac, as before, see (337).
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The Schrödinger picture

We can define the unitary evolution operator U †(t) = U−1(t), where

i~ ∂tU(t) = H U(t), such that time evolution determines

ak(t) = U †(t)ak(0)U(t) . (369)

The solution of the Schrödinger equation is the squeezed state

|ψ(t)〉 = U(t)|ψ(0)〉 . (370)

The vacuum at time t is given by |0t〉 = U †(t)|0〉. Let |ψ(0)〉 be the

initial vacuum state |0〉. Then the operator

bk(t) = U(t)ak(0)U †(t) = u∗k ak(0)− vk a†−k(0) (371)

annihilates the state |ψ(t)〉. Now let us use (343) to evaluate

ak(0) =

√
ωk
2
φk(0) +

i√
2ωk

πk(0) , (372)

and substitute into bk(t)|ψ(t)〉 = 0,

1√
2ωk

[(u∗k − vk)ωk φk(0) + i(u∗k + vk) πk(0)] |ψ(t)〉 = 0.

Therefore, the evolved state satisfies the Schrödinger equation

[Ωk(t)φk(0) + iπk(0)]|ψ(t)〉 = 0 , (373)

Ωk(t) ≡ ωk
u∗k − vk
u∗k + vk

=
g∗k
f ∗k

=
1− 2iFk(t)

2|fk(t)|2
, (374)

where we have used g∗kfk = Re (g∗kfk)− i Im (f ∗kgk) = 1
2 − iRe (f ∗k ḟk).

Using the operator definition πk = −i ∂
∂φ−k

= −i ∂
∂φ∗k

, we find the solu-

tion

ψ(φk, φ
∗
k, t) ∼ e−Ωk(t)|φk|2 , (375)

P (φk, φ
∗
k, t) = |ψ(φk, φ

∗
k, t)|2 ∼ e

− 1
|fk(t)|2

|φk|2
. (376)
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The phase Fk(t) = Re (f ∗k ḟk) � 1 quickly becomes very large during

preheating, which ensures that the state becomes a squeezed state,

with large occupation numbers, described by the Gaussian distribution

(376).
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Parametric resonance

We will consider here the case of a scalar field χ coupled to the inflaton

φ with coupling 1
2g

2φ2χ2, which induces an oscillating mass term

m2
χ(t) = m2

χ + g2φ2(t) . (377)

The inflaton is assumed to oscillate like (301) with a frequency given

by its mass m, not necessarily much larger than the “bare” mass of the

field χ. In that case, the frequency can be written as

ω2
k(t) = k2 + m2

χ + g2Φ2(t) sin2mt , (378)

and the mode equation (356) can be written as a Mathieu equation,

where z = mt, and primes denote differentiation w.r.t. z,

f ′′k + (Ak − 2q cos 2z) fk = 0 , (379)

Ak =
k2 + m2

χ

m2
+ 2q , q =

g2Φ2(t)

4m2
. (380)

The Mathieu equation is part of a large class of Hill equations (which

includes also the Lamé equation and many others) that present un-

stable solutions for certain values of the momenta for a given set of

parameters {Ak, q}, with A ≥ 2q. These solutions fall into bands of

instability that are narrow for small values of the resonant parameter

q ≤ 1, but can be very broad for larger values of q.

The solutions to the Mathieu eq. have the form fk(z) = eµk z p(z),

with µk the Floquet index, characterizing the exponential instability,

and typically much smaller than one, although it could be as large

as µmax = 0.28055; and where p(z) is a periodic function of z. The

occupation number can then be computed to be

nk(t) ∼ e2µkmt , (381)

which can grow significantly in a few oscillations, if the growth index

µk is not totally negligible.
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The effect of parametric resonance is similar to the lasing effect

(or light amplification by stimulated emission of radiation), where a

large population of particles is produced from oscillations of a coherent

source.

Narrow resonance

Let us consider first the case where mχ, gΦ � m, or q � 1. Then

the Mathieu equation instability chart shows that the resonance occurs

only in some narrow bands around Ak ' l2 , l = 1, 2, . . . , with widths

in momentum space of order ∆k ∼ mql; so, for q < 1, the most

important band is the first one, Ak ∼ 1±q, centered around k = m/2.

The growth factor µk for the first instability band is given by

µk =

√(q
2

)2

−
(

2k

m
− 1

)2

. (382)

The resonance occurs for k within the range m
2 (1 ± q

2). The index

µk vanishes at the edges of the resonance band and takes its maximum

value µk = q
2 at k = m

2 . The corresponding modes grow at a maximal

rate χk ∼ exp(qz/2). This leads to a growth of the occupation numbers

(381) as nk ∼ exp(qmt).

We can interpret this as follows. In the limit q � 1, the effective

mass of the χ particles is much smaller than m, and each decaying

φ particle creates two χ particles with momentum k ∼ m/2. The

difference with respect to the perturbative decay Γ(φ → χχ) is that,

in the regime of parametric resonance, the rate of production of χ

particles is proportional to the number of particles produced earlier

(which gives rise to an exponential growth in time). This is a non-

perturbative effect, as we will discuss later, and we could not have
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obtained it by using the methods described in the previous section, at

any finite order of perturbation theory with respect to the interaction

term g2Φ2 sin2mt. It is by solving the mode equation (379) exactly

that we have found this result.

Note that only a very narrow range of modes grow exponentially with

time, so the spectrum of particles is dominated by these modes, while

the rest are still in the vacuum, produced only through the ordinary

perturbative decay process. Of course, the exponential production does

not last for ever: the universe expansion is going to affect the resonant

production of particles in two ways, leading to the end of the narrow

resonance regime.

First, the time-dependent amplitude of oscillations Φ(t), which de-

termines q, see (380), not only decays (∼ t−1) due to the expansion of

the universe, but also due to the perturbative decay of the inflaton field,

Φ(t) ∼ exp(Γφt/2). Therefore, the narrow resonance will end when the

usual perturbative decay becomes important, i.e. when q m < Γφ.

Second, in the evolution equation (379), the momenta k are actually

physical momenta, which redshift with the scale factor as kphys = k/a,

and therefore, even if a given mode is initially within the narrow

band, ∆k ∼ q m, it will very quickly redshift away from it, within

the time scale ∆t ∼ q H−1, preventing its occupation numbers (381)

from growing exponentially. Thus, the narrow resonance will end when

q2m < H .

Therefore, if the amplitude of inflaton oscillations decays like Φ ∼
1/t, there will always be a time (typically a dozen oscillations) for which

one of the two conditions above will hold and the narrow resonance will

end.
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Broad resonance

If the initial amplitude of oscillations is very large, like in models of

chaotic inflation, in which Φ0 ∼ MP/10 and m ∼ 10−6MP, then the

initial q-parameter could be very large,

q0 =
g2Φ2

0

4m2
∼ g2 1010 ∼< 104 , (383)

where we have used the constraint due to radiative corrections (319).

In this case, the χ particle production due to stimulated emission by

the oscillating inflaton field can be very efficient as it enters into the

broad resonance regime.

Particles are produced only at the instances of maximum accelera-

tion of the inflaton field, when φ(t) ∼ 0, and∣∣∣∣ω̇kω2
k

∣∣∣∣� 1 , (384)

a relation known as the non-adiabaticity condition. When it holds,

we cannot define a proper Fock space for the χ particles, and the

occupation numbers of those particles grow very quickly. We thus

associate (384) with particle production.

We will now describe how to compute the growth of modes and the

Floquet index in this regime, using the formalism developed above. We

can expand the quantum field χ in Fourier components fk satisfying the

mode equation (356) with time-dependent frequency (378) and initial

conditions

fk(0) =
1√
2ωk

e−iωkt , gk(0) = iḟk(0) = ωk fk(0) , (385)
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whose evolution in terms of the Bogolyubov coefficients is

fk(t) =
αk(t)√

2ωk
e
−i

∫
ωkdt

+
βk(t)√

2ωk
e

+i

∫
ωkdt

, (386)

αk(0) = 1 , βk(0) = 0 . (387)

And the occupation numbers are

nk(t) = |βk(t)|2 =
1

2ωk
|ḟk|2 +

ωk
2
|fk|2 −

1

2
. (388)

The inflaton field has maximum acceleration at t = tj = jπ/m, such

that sinmtj = 0. Between tj and tj+1, the amplitude φ(t) ≈ φ0 =

const, so that the frequency ωk(t) is approximately constant between

succesive zeros of the inflaton, and we can properly define a Fock space

for χ. At tj, the amplitude changes rapidly, such that (384) is satisfied

and we cannot define an adiabatic invariant like the occupation number

(388). Therefore, let us study the behaviour of the modes χk precisely

at those instances t = tj. We can expand the time-dependent frequency

(378) around those points (where the frequency has a minimum) as

ω2
k(t) = ω2

k(tj) +
1

2
ω2
k
′′
(tj)(t− tj)2 + · · · (389)

and make the change of variables

η ≡ [2ω2
k
′′
(tj)]

1/4(t− tj) , (390)

κ2 ≡ ω2
k(tj)√

2ω2
k
′′
(tj)

=
k2 + m2

χ

2gmΦ
=
Ak − 2q

4
√
q

. (391)

The mode equation (356) around t = tj then becomes

d2fk
dη2

+

(
κ2 +

η2

4

)
fk = 0 , (392)
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which can be interpreted as a Schrödinger equation for a wave func-

tion scattering in an inverted parabolic potential. The exact solutions

are parabolic cylinder functions, W (−κ2,±η), whose asymptotic ex-

pressions are well known. Thus we have substituted the problem of

parametric resonance after chaotic inflation with that of partial waves

scattering off successive inverted parabolic potentials.

Let the wave fk(t) have the form of the adiabatic solution (386)

before scattering at tj,

f jk(t) =
αjk√
2ωk

e
−i

∫
ωkdt

+
βjk√
2ωk

e
+i

∫
ωkdt

, (393)

where the coefficients {αjk, β
j
k} are constant, for tj−1 < t < tj.

After scattering off the potential at tj, the wave fk(t) takes the form

f j+1
k (t) =

αj+1
k√
2ωk

e
−i

∫
ωkdt

+
βj+1
k√
2ωk

e
+i

∫
ωkdt

, (394)

where the coefficients {αj+1
k , βj+1

k } are again constant, for tj < t <

tj+1. These are essentially the asymptotic expressions for the incom-

ing and the outgoing waves, scattered at tj. Therefore, the outgoing

amplitudes {αj+1
k , βj+1

k } can be expressed in terms of the incoming

amplitudes {αjk, β
j
k} with the help of the reflection Rk and transmis-

sion Dk coefficients of scattering at tj, αj+1
k e−iθ

j
k

βj+1
k e+iθ

j
k

 =

 1
Dk

R∗k
D∗k

Rk
Dk

1
D∗k

 αjke
−iθjk

βjke
+iθ

j
k

 (395)

where θjk =

∫ tj

0

ωk(t)dt, and

Rk = −i e−iφk [1 + e2πκ2
]−1/2 ,

Dk = e−iφk [1 + e−2πκ2
]−1/2 ,

 |Rk|2 + |Dk|2 = 1 . (396)
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The k-dependent angle of scattering is

φk = Arg Γ
[1

2
+ iκ2

]
+ κ2(1− lnκ2) . (397)

Simplifying (395), we find αj+1
k

βj+1
k

 =

 [1 + e−2πκ2
]1/2eiφk i e−πκ

2+2iθk

−i e−πκ2−2iθk [1 + e−2πκ2
]1/2e−iφk

 αjk

βjk


(398)

and therefore, using njk = |βjk|2 and |αjk|2|β
j
k|2 = njk(n

j
k + 1), we have

nj+1
k = e−2πκ2

+ (1 + 2e−2πκ2
)njk

− 2e−πκ
2
[1 + e−2πκ2

]1/2[njk(n
j
k + 1)]1/2 sin θjtot , (399)

where θjtot = 2θjk − φk + Arg βjk − Argαjk .

This expression is very enlightening. Let us describe its properties:

• Step-like. The number of created particles is a step-like function

of time. The occupation number between successive scatterings is

constant. In the first scattering (when n0
k = 0), we have

nk = e−2πκ2
= e−

πk2

gmΦ < 1 . (400)

• Non-perturbative. The occupation number (400) cannot be

expanded perturbatively, for small coupling, because the function

e−1/g is non-analytical at g = 0. This is the form that most non-

perturbative effects take in Quantum Mechanics.

• Infrared effect. For large momenta, the occupation number de-

cays exponentially, so even if there are bands at low momenta, i.e.

in the IR region, the high momentum modes will not be populated,

κ2 � π−1 ⇒ nj+1
k ' njk ' 0 . (401)
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• Non-linear. For small momenta one may have production of

particles with mass greater than that of the inflaton:

κ2 =
k2 + m2

χ

2gmΦ0
∼< π−1 ⇒ nk large if m2 < m2

χ � gmΦ0 (402)

• Exponential boson production. In the case of bosons (we

will discuss the fermionic case later), the occupation number can

grow exponentially due to Bose-Einstein statistics, nk ∼ exp(2µkz)�
1,

nj+1
k ' [(1+2e−2πκ2

)−2e−πκ
2
[1+e−2πκ2

]1/2 sin θjtot]n
j
k ≡ e2πµ

j
k njk

which allows one to estimate the Floquet index µk.

• Resonant production. Valid only for periodic sources. If scat-

tering occurs in phase, the incoming and outgoing waves add up

constructively, and we can have resonant effects. This occurs when

θjtot is a semi-integer multiple of π. In that case, it is possible that,

for some modes, nj+1
k > njk. This gives rise to a particular band

structure.

• Stochastic preheating. It may happen that the phase a mode

has acquired in a given scattering exactly compensates for the

universe expansion in that interval and the phases destructively

interfere, decreasing the number of particles in that mode. This

gives rise to a stochastic growth of particles, where approximately

3/4 of the time the particle number increases.

• Band structure. Different models of inflation give rise to dif-

ferent evolution laws for the amplitude of inflaton oscillations, and

therefore to different mode equations (356). The corresponding

Hill equations (linear second order differential equations with pe-

riodic coefficients) can have quite different band structures, e.g.

those of Mathieu or Lamé equations.
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Even if we compute the complete band structure of the Mathieu or

Lamé equation and we determine the growth factors µk with great

accuracy, the universe expansion will shift any given mode from one

band to the next, as the mode redshifts and the amplitude of inflaton

oscillations decreases: A mode starts in a given band, its occupation

numbers increase exponentially through several oscillations, and sud-

denly it falls out of the band, until the expansion makes it fall into

the next band, and so on until it reaches the narrow resonance regime

described above.
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