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§ the Universe expands 

TdS = dU + pdV = 0§ entropy is being conserved

§ implication for barotropic fluids  p = w r c2: 

• radiation  w = 1/3
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when decoupled!?

=> the Universe cools down while expanding!



Thermal History of the Universe thermal equilibrium

γ

γ

γ

γ

γ

γ

§ cosmic plasma in equilibrium

T‘thermal bath’



Thermal History of the Universe thermal equilibrium

γ

γ

γ

γ

γ

γ

§ cosmic plasma in equilibrium

T‘thermal bath’

let’s add neutrinos, electrons, positions, and protons...
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• chemical equilibrium: chemical reactions between particles are in equilibrium
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allows us to calculate all that is of relevance!
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number density

energy density

pressure

n = g
2π 2!3

p2

ec p2+m2c2 /kBT ±1
dp∫

ρc2 = g
2π 2!3

c p2 +m2c2 p2

ec p2+m2c2 /kBT ±1
dp∫

P = g
6π 2!3

p2c2

c p2 +m2c2
p2

ec p2+m2c2 /kBT ±1
dp∫

§ relativistic particles in kinetic equilibrium (µ = 0*)…

thermal equilibrium

*In the early universe µ<<T (µg=0 anyways).

Further, for relativistic particles which are continuously created and annihilated there is no net change in particle number and hence their chemical potential can be neglected in general.
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44 3. Thermal History

Figure 3.1: Evolution of the number of relativistic degrees of freedom assuming the Standard Model.

3.1.2 Decoupling and Freeze-Out

If equilibrium had persisted until today, the universe would be mostly photons. Any massive

particle species would be exponentially suppressed.5 To understand the world around us, it

is therefore crucial to understand the deviations from equilibrium that led to the freeze-out of

massive particles (see fig. 3.2).
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Figure 3.2: A schematic illustration of particle freeze-out. At high temperatures, T � m, the particle
abundance tracks its equilibrium value. At low temperatures, T ⌧ m, the particles freeze out and maintain
a density that is much larger than the Boltzmann-suppressed equilibrium abundance.

Below the scale of electroweak symmetry breaking, T . 100 GeV, the gauge bosons of the

weak interactions, W± and Z, receive masses MW ⇠ MZ . The cross section associated with

5This isn’t quite correct for baryons. Since baryon number is a symmetry of the Standard Model, the number

density of baryons can remain significant even in equilibrium.

decreasing temperature
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all particles in thermal bath share the same temperature*,
but have their own distribution (g, m, [7/8])

*the temperature dictated by the dominant species
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but have their own distribution (g, m, [7/8])

…but for relativistic species they can be combined via an effective g* !
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kBT >> 175 GeV    →    all particles of the standard model are relativistic
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the early Universe is a thermal bath in equilibrium
in which photons dominate and dictate the temperature (evolution)
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kBT >> 175 GeV    →    all particles of the standard model are relativistic

gB = gluons + photons + W± + Z0 + Higgs = 8x2 + 2 + 3x3 + 1 = 28
gF = quarks + leptons  + neutrinos  = 12x6 + 6x2 + 3x2 = 90
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the early Universe is a thermal bath in equilibrium
in which photons dominate and dictate the temperature (evolution)
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                  => g* = 28 + 7/8 x 90 = 106.75

as T drops, various of those relativistic species become non-relativistic (and/or annihilate)
=> they are removed from g*

careful: neutrinos, for instance, continue to exist and remain relativistic after decoupling…

the early Universe is a thermal bath in equilibrium
in which photons dominate and dictate the temperature (evolution)
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different to the equilibrium temperature T of the photon bath!

(as is the case for decoupled neutrinos!)

energy densities

1. relativistic species

as T drops, various of those relativistic species become non-relativistic (and/or annihilate)
=> they are removed from g*

careful: neutrinos, for instance, continue to exist and remain relativistic after decoupling…
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⇥ 12 = 96.25. The Higgs boson and the gauge bosons W±, Z0 annihilate next. This happens

roughly at the same time. At T ⇠ 10 GeV, we have g? = 96.26 � (1 + 3 · 3) = 86.25. Next,

the bottom quarks annihilate (g? = 86.25 � 7

8
⇥ 12 = 75.75), followed by the charm quarks

and the tau leptons (g? = 75.75 � 7

8
⇥ (12 + 4) = 61.75). Before the strange quarks had

time to annihilate, something else happens: matter undergoes the QCD phase transition. At

T ⇠ 150 MeV, the quarks combine into baryons (protons, neutrons, ...) and mesons (pions, ...).

There are many di↵erent species of baryons and mesons, but all except the pions (⇡±
,⇡

0) are

non-relativistic below the temperature of the QCD phase transition. Thus, the only particle

species left in large numbers are the pions, electrons, muons, neutrinos, and the photons. The

three pions (spin-0) correspond to g = 3 · 1 = 3 internal degrees of freedom. We therefore get

g? = 2 + 3 + 7

8
⇥ (4 + 4 + 6) = 17.25. Next electrons and positrons annihilate. However, to

understand this process we first need to talk about entropy.

Figure 3.4: Evolution of relativistic degrees of freedom g?(T ) assuming the Standard Model particle content.
The dotted line stands for the number of e↵ective degrees of freedom in entropy g?S(T ).

3.2.3 Conservation of Entropy

To describe the evolution of the universe it is useful to track a conserved quantity. As we will

see, in cosmology entropy is more informative than energy. According to the second law of

thermodynamics, the total entropy of the universe only increases or stays constant. It is easy to

show that the entropy is conserved in equilibrium (see below). Since there are far more photons

than baryons in the universe, the entropy of the universe is dominated by the entropy of the

photon bath (at least as long as the universe is su�ciently uniform). Any entropy production

from non-equilibrium processes is therefore total insignificant relative to the total entropy. To

a good approximation we can therefore treat the expansion of the universe as adiabatic, so that

the total entropy stays constant even beyond equilibrium.
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3.2.3 Conservation of Entropy

To describe the evolution of the universe it is useful to track a conserved quantity. As we will

see, in cosmology entropy is more informative than energy. According to the second law of

thermodynamics, the total entropy of the universe only increases or stays constant. It is easy to

show that the entropy is conserved in equilibrium (see below). Since there are far more photons

than baryons in the universe, the entropy of the universe is dominated by the entropy of the

photon bath (at least as long as the universe is su�ciently uniform). Any entropy production

from non-equilibrium processes is therefore total insignificant relative to the total entropy. To

a good approximation we can therefore treat the expansion of the universe as adiabatic, so that

the total entropy stays constant even beyond equilibrium.

that 𝑔∗"#and 𝑔∗$%& are different means that
some decoupled species has Ti ≠ T
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3.2.3 Conservation of Entropy

To describe the evolution of the universe it is useful to track a conserved quantity. As we will

see, in cosmology entropy is more informative than energy. According to the second law of

thermodynamics, the total entropy of the universe only increases or stays constant. It is easy to

show that the entropy is conserved in equilibrium (see below). Since there are far more photons

than baryons in the universe, the entropy of the universe is dominated by the entropy of the

photon bath (at least as long as the universe is su�ciently uniform). Any entropy production

from non-equilibrium processes is therefore total insignificant relative to the total entropy. To

a good approximation we can therefore treat the expansion of the universe as adiabatic, so that

the total entropy stays constant even beyond equilibrium.

as T drops, various of those relativistic species become non-relativistic (and annihilate)
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energy densities

1. relativistic species

*The mass of the strange quark is 95Mev at the 1GeV scale and in general is of course running with energy. So, at the 
QCD transition scale ~175MeV it is quite higher, eg around 125MeV or so. The transition scale is a bit fuzzy, ie it's not a 
step function happening at one value only, so without a very difficult numerical simulation we cannot say exactly 
how/where it happens exactly. The system is strongly coupled, so counting degrees of freedom in the range of Tc to the 
bottom quark mass does not make much sense anyway. Also, any simulation is very difficult to do to begin with.

temperature T particles g* 4g*

T<Tdec g ’s + 3 n ’s 3.36 13.45=4*((2+(7/8) *2 * 3 * (4/11)(4/3)))

Tdec<T<me 0.5 MeV g ’s + 3 n ’s 7.25 29=4*(2+(7/8)*2 * 3)

me<T<mµ 95 MeV + e-, e+ 10.75 43=29 + 4*((7/8)*2 * 2)

mµ<T<mp 139 MeV + µ-, µ+ 44.25 57=43 + 4*((7/8)*2 * 2)

mp<T<TQCD 150 MeV + p+, p-, p0 17.25 69=57 + 4*(3)
remark: now the 3 pions annihilate again…

TQCD<T<mc 1.3 GeV + u,u, d,d, 
+ g’s
- p+, p-, p0

61.75 205= 69 + 4*(8*2 + (7/8)*(2*3*2*2) – 3*1)
remark: the 3 pions (w/ g*=1) are formed!

mc<T<ms see below* s, s 247=205 + 4*((7/8)*1*3*2*2)

ms<T<mt 1.8 GeV c, c 72.25 280=247 + 4*((7/8)*2*3 * 2)

mt<T<mb 4.2 GeV t-, t+ 75.75 303=289 + 4*((7/8)*2 * 2)

mb<T<mW,Z 85 GeV b, b 86.25 345=303 + 4*((7/8)*2*3 * 2)

mW,Z<T<mH 125 GeV W±, Z0 95.25 381=345 + 4*(3*3)

mH<T<mt 173 GeV H 96.25 385=345 + 4*(1)

mt<T t, t 106.75 427=385 + 4*((7/8)*2*3 * 2) 
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3.2.3 Conservation of Entropy

To describe the evolution of the universe it is useful to track a conserved quantity. As we will

see, in cosmology entropy is more informative than energy. According to the second law of

thermodynamics, the total entropy of the universe only increases or stays constant. It is easy to

show that the entropy is conserved in equilibrium (see below). Since there are far more photons

than baryons in the universe, the entropy of the universe is dominated by the entropy of the

photon bath (at least as long as the universe is su�ciently uniform). Any entropy production

from non-equilibrium processes is therefore total insignificant relative to the total entropy. To

a good approximation we can therefore treat the expansion of the universe as adiabatic, so that

the total entropy stays constant even beyond equilibrium.

as T drops, various of those relativistic species become non-relativistic (and annihilate)
=> they are removed from g*

careful: neutrinos, for instance, remain relativistic when decoupling…
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energy densities

1. relativistic species

*The mass of the strange quark is 95Mev at the 1GeV scale and in general is of course running with energy. So, at the 
QCD transition scale ~175MeV it is quite higher, eg around 125MeV or so. The transition scale is a bit fuzzy, ie it's not a 
step function happening at one value only, so without a very difficult numerical simulation we cannot say exactly 
how/where it happens exactly. The system is strongly coupled, so counting degrees of freedom in the range of Tc to the 
bottom quark mass does not make much sense anyway. Also, any simulation is very difficult to do to begin with.

temperature T particles g* 4g*

T<Tdec g ’s + 3 n ’s 3.36 13.45=4*((2+(7/8) *2 * 3 * (4/11)(4/3)))

Tdec<T<me 0.5 MeV g ’s + 3 n ’s 7.25 29=4*(2+(7/8)*2 * 3)

me<T<mµ 95 MeV + e-, e+ 10.75 43=29 + 4*((7/8)*2 * 2)

mµ<T<mp 139 MeV + µ-, µ+ 44.25 57=43 + 4*((7/8)*2 * 2)

mp<T<TQCD 150 MeV + p+, p-, p0 17.25 69=57 + 4*(3)
remark: now the 3 pions annihilate again…

TQCD<T<mc 1.3 GeV + u,u, d,d, 
+ g’s
- p+, p-, p0

61.75 205= 69 + 4*(8*2 + (7/8)*(2*3*2*2) – 3*1)
remark: the 3 pions (w/ g*=1) are formed!

mc<T<ms see below* s, s 247=205 + 4*((7/8)*1*3*2*2)

ms<T<mt 1.8 GeV c, c 72.25 280=247 + 4*((7/8)*2*3 * 2)

mt<T<mb 4.2 GeV t-, t+ 75.75 303=289 + 4*((7/8)*2 * 2)

mb<T<mW,Z 85 GeV b, b 86.25 345=303 + 4*((7/8)*2*3 * 2)

mW,Z<T<mH 125 GeV W±, Z0 95.25 381=345 + 4*(3*3)

mH<T<mt 173 GeV H 96.25 385=345 + 4*(1)

mt<T t, t 106.75 427=385 + 4*((7/8)*2*3 * 2) 

change in photon temperature due to electron decoupling…
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§ the hot big bang model

§ thermal equilibrium

§ entropy of the Universe

§ decoupling

§ matter radiation equality
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TdS = dU + pdV = 0§ entropy is being conserved*

entropy

*see FRW lecture

but what is it value?
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dV = d(R3)
dU = d(Vρc2 ) = d(R3ρc2 )
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pd(R3) = d(pR3)− R3dp
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dU = d(R3ρc2 )



Thermal History of the Universe

TdS = dU + pdV = 0§ entropy is being conserved

entropy

pd(R3) = d(pR3)− R3dp

dS = 1
T
dU + pdV[ ]

=
1
T
d R3ρc2( )+ pd R3( )!
"

#
$

=
1
T
d R3 ρc2 + p( )( )− R3dp!
"

#
$

dV = d(R3)
dU = d(R3ρc2 )

replace in favour of dT



Thermal History of the Universe

=
1
T
d R3 ρc2 + p( )( )− 1T R

3 ρc2 + p( )dT"

#$
%

&'

TdS = dU + pdV = 0§ entropy is being conserved

entropy

pd(R3) = d(pR3)− R3dp

dS = 1
T
dU + pdV[ ]

=
1
T
d R3ρc2( )+ pd R3( )!
"

#
$

=
1
T
d R3 ρc2 + p( )( )− R3dp!
"

#
$

dV = d(R3)
dU = d(R3ρc2 )

∂S
∂R3∂T

=
∂S

∂T∂R3
⇒ dp = (ρc2 + p) dT

T



Thermal History of the Universe

∂S
∂R3∂T

=
∂S

∂T∂R3
⇒ dp = (ρc2 + p) dT

T

=
1
T
d R3 ρc2 + p( )( )− R

3

T 2 ρc2 + p( )dT

= d
ρc2 + p( )R3

T
+ const.

"

#
$
$

%

&
'
'

TdS = dU + pdV = 0§ entropy is being conserved

entropy

pd(R3) = d(pR3)− R3dp

=
1
T
d R3 ρc2 + p( )( )− 1T R

3 ρc2 + p( )dT"

#$
%

&'

dS = 1
T
dU + pdV[ ]

=
1
T
d R3ρc2( )+ pd R3( )!
"

#
$

=
1
T
d R3 ρc2 + p( )( )− R3dp!
"

#
$

dV = d(R3)
dU = d(R3ρc2 )



Thermal History of the Universe

TdS = dU + pdV = 0§ entropy is being conserved

entropy

dS = d
ρc2 + p( )R3

T
+ const.

!

"
#
#

$

%
&
&



Thermal History of the Universe

S(T ) = R3
ρc2 + p( )
T

= const.

TdS = dU + pdV = 0§ entropy is being conserved

entropy



Thermal History of the Universe

S(T ) = R3
ρc2 + p( )
T

= const.
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entropy
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as p / a
�1. It is therefore convenient to define the time-independent combination q ⌘ ap, so

that the neutrino number density is

n⌫ / a
�3

Z
d3q

1

exp(q/aT⌫) + 1
. (3.2.71)

After decoupling, particle number conservation requires n⌫ / a
�3. This is only consistent with

(3.2.71) if the neutrino temperature evolves as T⌫ / a
�1. As long as the photon temperature13

T� scales in the same way, we still have T⌫ = T� . However, particle annihilations will cause a

deviation from T� / a
�1 in the photon temperature.

3.2.5 Electron-Positron Annihilation

Shortly after the neutrinos decouple, the temperature drops below the electron mass and electron-

positron annihilation occurs

e
+ + e

� $ � + � . (3.2.72)

The energy density and entropy of the electrons and positrons are transferred to the photons,

but not to the decoupled neutrinos. The photons are thus “heated” (the photon temperature

does not decrease as much) relative to the neutrinos (see fig. 3.5). To quantify this e↵ect, we

photon heating

neutrino decoupling

electron-positron
annihilation

Figure 3.5: Thermal history through electron-positron annihilation. Neutrinos are decoupled and their
temperature redshifts simply as T⌫ / a

�1. The energy density of the electron-positron pairs is transferred
to the photon gas whose temperature therefore redshifts more slowly, T� / g

�1/3

?S
a
�1.

consider the change in the e↵ective number of degrees of freedom in entropy. If we neglect

neutrinos and other decoupled species,14 we have

g
th

?S =

(
2 + 7

8
⇥ 4 = 11

2
T & me

2 T < me

. (3.2.73)

Since, in equilibrium, g
th

?S
(aT�)3 remains constant, we find that aT� increases after electron-

positron annihilation, T < me, by a factor (11/4)1/3, while aT⌫ remains the same. This means

13For the moment we will restore the subscript on the photon temperature to highlight the di↵erence with the

neutrino temperature.
14Obviously, entropy is separately conserved for the thermal bath and the decoupling species.

(detailed calculation later…)
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§ the hot big bang model

§ thermal equilibrium

§ entropy of the Universe

§ decoupling

§ matter radiation equality
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=>  particles drop out of thermal equilibrium

interaction rate of particles << expansion rate of Universe

decoupling

𝑇" ∝ Γ! 	 ≪ 	 𝐻	 ∝ 𝑇#
? ?
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Thermal History of the Universe decoupling

§ interaction rate of particles: Γc ∝ nσ v
n  : number density
s : interaction cross-section
v  : relative velocity

cross-section of interaction keeping species in equilibrium
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Γc ∝ nσ v§ interaction rate of particles:

§ interaction mediated by massless gauge bosons:

§ interaction mediated by massive gauge bosons (T<MX):

Γc ∝ T

Γc ∝ T 5

decoupling

(gluon, photon)

(W, Z)
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§ freeze-out condition:
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•  interaction mediated by massive gauge bosons (T<MX):

§ matter domination:

•   interaction mediated by massless gauge bosons:

•  interaction mediated by massive gauge bosons (T<MX):

decoupling

Γ!
𝐻 = 1

Γ!
𝐻 ∝ 𝑇"#

Γ!
𝐻 ∝ 𝑇$

Γ!
𝐻
∝ 𝑇#/&

Γ!
𝐻
∝ 𝑇&.()

➝    T ↘  ⟹ equil. 👍

➝    T ↘  ⟹ equil. 👎

➝    T ↘  ⟹ equil. 👎

➝    T ↘  ⟹ equil. 👎

quantitative calculation requires actual Gc= n s  v and  H=“Fr.equation”
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dt
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Event time t redshift z temperature T

Inflation 10�34 s (?) – –

Baryogenesis ? ? ?

EW phase transition 20 ps 1015 100 GeV

QCD phase transition 20 µs 1012 150 MeV

Dark matter freeze-out ? ? ?

Neutrino decoupling 1 s 6⇥ 109 1 MeV

Electron-positron annihilation 6 s 2⇥ 109 500 keV

Big Bang nucleosynthesis 3 min 4⇥ 108 100 keV

Matter-radiation equality 60 kyr 3400 0.75 eV

Recombination 260–380 kyr 1100–1400 0.26–0.33 eV

Photon decoupling 380 kyr 1000–1200 0.23–0.28 eV

Reionization 100–400 Myr 11–30 2.6–7.0 meV

Dark energy-matter equality 9 Gyr 0.4 0.33 meV

Present 13.8 Gyr 0 0.24 meV

Table 3.1: Key events in the thermal history of the universe.

show that choosing natural values for the mass of the dark matter particles and their

interaction cross section with ordinary matter reproduces the observed relic dark matter

density surprisingly well.

• Neutrino decoupling. Neutrinos only interact with the rest of the primordial plasma

through the weak interaction. The estimate in (3.1.10) therefore applies and neutrinos

decouple at 0.8 MeV.

• Electron-positron annihilation. Electrons and positrons annihilate shortly after neu-

trino decoupling. The energies of the electrons and positrons gets transferred to the

photons, but not the neutrinos. In §3.2.4, we will explain that this is the reason why the

photon temperature today is greater than the neutrino temperature.

• Big Bang nucleosynthesis. Around 3 minutes after the Big Bang, the light elements

were formed. In §3.3.4, we will study this process of Big Bang nucleosynthesis (BBN).

• Recombination. Neutral hydrogen forms through the reaction e
�+p

+ ! H+� when the

temperature has become low enough that the reverse reaction is energetically disfavoured.

We will study recombination in §3.3.3.

decoupling

radiation
domination

matter
domination
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•  coupled to thermal bath via

decoupling

(weak interaction)
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§ neutrino decoupling

n+ν↔ p+ e−

p+ν ↔ n+ e+
•  coupled to thermal bath via

decoupling

Γ(
𝐻
≈?

Γ* = 3.6𝐺+#𝑇, GF: Fermi constant

radiation domination:                                          because of Tν
dec > 0.511MeV > T eq ≈ 0.75eV

electrons are obviously still around… matter-radiation equality will be calculated below…

weak interaction:
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§ neutrino decoupling

n+ν↔ p+ e−

p+ν ↔ n+ e+
•  coupled to thermal bath via

Γν

H
=1 ⇒ Tν

dec ≈ 0.8MeV > 0.511MeV (electron rest mass)

T ∝ g*S
−1/3R−1 g*S = 2+

7
8
4

photons

T ∈ [0.8, 0.511]MeV :

electrons & positrons

GF: Fermi constant, MP: Planck mass
Γν

H
≈
2
3
MPGF

2T 3

decoupling

• interaction rate ratio
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g*S = 2

§ neutrino decoupling

n+ν↔ p+ e−

p+ν ↔ n+ e+
•  coupled to thermal bath via

Γν

H
=1 ⇒ Tν

dec ≈ 0.8MeV > 0.511MeV (electron rest mass)

T ∝ g*S
−1/3R−1 g*S = 2+

7
8
4

(electrons-positrons annihilated)

T ∈ [0.8, 0.511]MeV :

T ∝ g*S
−1/3R−1T < 0.511MeV :

GF: Fermi constant, MP: Planck mass
Γν

H
≈
2
3
MPGF

2T 3

decoupling

• interaction rate ratio

•  decoupling condition

𝑇 ≈ 0.8𝑀𝑒𝑉: neutrinos decouple
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•  entropy conservation:

g*S = 2

§ neutrino decoupling

n+ν↔ p+ e−

p+ν ↔ n+ e+
•  coupled to thermal bath via

Γν

H
=1 ⇒ Tν

dec ≈ 0.8MeV > 0.511MeV (electron rest mass)

T ∈ [0.8, 0.511]MeV :

T < 0.511MeV :

T0 /Tν = (11/ 4)
1/3 ⇒ Tν =1.945 K

T ∝ g*S
−1/3R−1

T ∝ g*S
−1/3R−1

GF: Fermi constant, MP: Planck mass
Γν

H
≈
2
3
MPGF

2T 3

(part of exercise)

decoupling

g*S = 2+
7
8
4

T0 = 2.725 K

• interaction rate ratio

•  decoupling condition

(electrons-positrons annihilated)

𝑇 ≈ 0.8𝑀𝑒𝑉: neutrinos decouple
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•  decoupling condition

•  entropy conservation:

g*S = 2

§ neutrino decoupling

n+ν↔ p+ e−

p+ν ↔ n+ e+
•  coupled to thermal bath via

• interaction rate

Γν

H
=1 ⇒ Tν

dec ≈ 0.8MeV > 0.511MeV (electron rest mass)

g*S = 2+
7
8
4T ∈ [0.8, 0.511]MeV :

T < 0.511MeV :

T0 /Tν = (11/ 4)
1/3 ⇒ Tν =1.945 K

T ∝ g*S
−1/3R−1

T ∝ g*S
−1/3R−1

GF: Fermi constant, MP: Planck mass
Γν

H
≈
2
3
MPGF

2T 3

(part of exercise)

decoupling
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as p / a
�1. It is therefore convenient to define the time-independent combination q ⌘ ap, so

that the neutrino number density is

n⌫ / a
�3

Z
d3q

1

exp(q/aT⌫) + 1
. (3.2.71)

After decoupling, particle number conservation requires n⌫ / a
�3. This is only consistent with

(3.2.71) if the neutrino temperature evolves as T⌫ / a
�1. As long as the photon temperature13

T� scales in the same way, we still have T⌫ = T� . However, particle annihilations will cause a

deviation from T� / a
�1 in the photon temperature.

3.2.5 Electron-Positron Annihilation

Shortly after the neutrinos decouple, the temperature drops below the electron mass and electron-

positron annihilation occurs

e
+ + e

� $ � + � . (3.2.72)

The energy density and entropy of the electrons and positrons are transferred to the photons,

but not to the decoupled neutrinos. The photons are thus “heated” (the photon temperature

does not decrease as much) relative to the neutrinos (see fig. 3.5). To quantify this e↵ect, we

photon heating

neutrino decoupling

electron-positron
annihilation

Figure 3.5: Thermal history through electron-positron annihilation. Neutrinos are decoupled and their
temperature redshifts simply as T⌫ / a

�1. The energy density of the electron-positron pairs is transferred
to the photon gas whose temperature therefore redshifts more slowly, T� / g

�1/3

?S
a
�1.

consider the change in the e↵ective number of degrees of freedom in entropy. If we neglect

neutrinos and other decoupled species,14 we have

g
th

?S =

(
2 + 7

8
⇥ 4 = 11

2
T & me

2 T < me

. (3.2.73)

Since, in equilibrium, g
th

?S
(aT�)3 remains constant, we find that aT� increases after electron-

positron annihilation, T < me, by a factor (11/4)1/3, while aT⌫ remains the same. This means

13For the moment we will restore the subscript on the photon temperature to highlight the di↵erence with the

neutrino temperature.
14Obviously, entropy is separately conserved for the thermal bath and the decoupling species.

T0 = 2.725 K

the entropy of the decoupling e-/e+ is transferred to the photons,
but not to the already decoupled neutrinos anymore…

(electrons-positrons annihilated)

𝑇 ≈ 0.8𝑀𝑒𝑉: neutrinos decouple
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•  decoupling condition

•  entropy conservation:

g*S = 2

§ neutrino decoupling

n+ν↔ p+ e−

p+ν ↔ n+ e+
•  coupled to thermal bath via

• interaction rate

Γν

H
=1 ⇒ Tν

dec ≈ 0.8MeV > 0.511MeV (electron rest mass)

g*S = 2+
7
8
4T ∈ [0.8, 0.511]MeV :

T < 0.511MeV :

T0 /Tν = (11/ 4)
1/3 ⇒ Tν =1.945 K

T ∝ g*S
−1/3R−1

T ∝ g*S
−1/3R−1

GF: Fermi constant, MP: Planck mass
Γν

H
≈
2
3
MPGF

2T 3

(part of exercise)

decoupling
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as p / a
�1. It is therefore convenient to define the time-independent combination q ⌘ ap, so

that the neutrino number density is

n⌫ / a
�3

Z
d3q

1

exp(q/aT⌫) + 1
. (3.2.71)

After decoupling, particle number conservation requires n⌫ / a
�3. This is only consistent with

(3.2.71) if the neutrino temperature evolves as T⌫ / a
�1. As long as the photon temperature13

T� scales in the same way, we still have T⌫ = T� . However, particle annihilations will cause a

deviation from T� / a
�1 in the photon temperature.

3.2.5 Electron-Positron Annihilation

Shortly after the neutrinos decouple, the temperature drops below the electron mass and electron-

positron annihilation occurs

e
+ + e

� $ � + � . (3.2.72)

The energy density and entropy of the electrons and positrons are transferred to the photons,

but not to the decoupled neutrinos. The photons are thus “heated” (the photon temperature

does not decrease as much) relative to the neutrinos (see fig. 3.5). To quantify this e↵ect, we

photon heating
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electron-positron
annihilation

Figure 3.5: Thermal history through electron-positron annihilation. Neutrinos are decoupled and their
temperature redshifts simply as T⌫ / a

�1. The energy density of the electron-positron pairs is transferred
to the photon gas whose temperature therefore redshifts more slowly, T� / g

�1/3

?S
a
�1.

consider the change in the e↵ective number of degrees of freedom in entropy. If we neglect

neutrinos and other decoupled species,14 we have

g
th

?S =

(
2 + 7

8
⇥ 4 = 11

2
T & me

2 T < me

. (3.2.73)

Since, in equilibrium, g
th

?S
(aT�)3 remains constant, we find that aT� increases after electron-

positron annihilation, T < me, by a factor (11/4)1/3, while aT⌫ remains the same. This means

13For the moment we will restore the subscript on the photon temperature to highlight the di↵erence with the

neutrino temperature.
14Obviously, entropy is separately conserved for the thermal bath and the decoupling species.

T0 = 2.725 K

(electrons-positrons annihilated)

some electrons remain (cf. Baryogenesis)

𝑇 ≈ 0.8𝑀𝑒𝑉: neutrinos decouple

the entropy of the decoupling e-/e+ is transferred to the photons,
but not to the already decoupled neutrinos anymore…
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Event time t redshift z temperature T

Inflation 10�34 s (?) – –

Baryogenesis ? ? ?

EW phase transition 20 ps 1015 100 GeV

QCD phase transition 20 µs 1012 150 MeV

Dark matter freeze-out ? ? ?

Neutrino decoupling 1 s 6⇥ 109 1 MeV

Electron-positron annihilation 6 s 2⇥ 109 500 keV

Big Bang nucleosynthesis 3 min 4⇥ 108 100 keV

Matter-radiation equality 60 kyr 3400 0.75 eV

Recombination 260–380 kyr 1100–1400 0.26–0.33 eV

Photon decoupling 380 kyr 1000–1200 0.23–0.28 eV

Reionization 100–400 Myr 11–30 2.6–7.0 meV

Dark energy-matter equality 9 Gyr 0.4 0.33 meV

Present 13.8 Gyr 0 0.24 meV

Table 3.1: Key events in the thermal history of the universe.

show that choosing natural values for the mass of the dark matter particles and their

interaction cross section with ordinary matter reproduces the observed relic dark matter

density surprisingly well.

• Neutrino decoupling. Neutrinos only interact with the rest of the primordial plasma

through the weak interaction. The estimate in (3.1.10) therefore applies and neutrinos

decouple at 0.8 MeV.

• Electron-positron annihilation. Electrons and positrons annihilate shortly after neu-

trino decoupling. The energies of the electrons and positrons gets transferred to the

photons, but not the neutrinos. In §3.2.4, we will explain that this is the reason why the

photon temperature today is greater than the neutrino temperature.

• Big Bang nucleosynthesis. Around 3 minutes after the Big Bang, the light elements

were formed. In §3.3.4, we will study this process of Big Bang nucleosynthesis (BBN).

• Recombination. Neutral hydrogen forms through the reaction e
�+p

+ ! H+� when the

temperature has become low enough that the reverse reaction is energetically disfavoured.

We will study recombination in §3.3.3.

decoupling

radiation
domination

matter
domination

1.

2.

3.
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§ photon decoupling

•  coupled to thermal bath via e− +γ↔ e− +γ

decoupling

(Thomson scattering)
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§ photon decoupling

•  coupled to thermal bath via e− +γ↔ e− +γ

• interaction rate ratio sT:  Thomson scattering cross-sectionΓγ

H
≈

neσ Tc
H0Ωm,0 (R0 / R)

3/2

decoupling

(Thomson scattering)

H 2 = H0
2 Ωm,0

R
R0

"

#
$

%

&
'

−3

matter domination:                                              because of…          (detailed proof in CMB lecture)

H = H0Ωm,0 (R0 / R)
3/2
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§ photon decoupling

•  coupled to thermal bath via e− +γ↔ e− +γ

• interaction rate ratio
Γγ

H
≈

neσ Tc
H0Ωm,0 (R0 / R)

3/2

decoupling

(Thomson scattering)

sT:  Thomson scattering cross-section

•  decoupling condition

(electrons are non-relativistic)

(photons are relativistic)

T ∝R−1

ne = ge
mekT
2π!2
#

$
%

&

'
(
3/2

e− me−µe( )c2 /kT

Γ*
𝐻
= 1 𝑇*+,! ≈ 0.27𝑒𝑉
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Event time t redshift z temperature T

Inflation 10�34 s (?) – –

Baryogenesis ? ? ?

EW phase transition 20 ps 1015 100 GeV

QCD phase transition 20 µs 1012 150 MeV

Dark matter freeze-out ? ? ?

Neutrino decoupling 1 s 6⇥ 109 1 MeV

Electron-positron annihilation 6 s 2⇥ 109 500 keV

Big Bang nucleosynthesis 3 min 4⇥ 108 100 keV

Matter-radiation equality 60 kyr 3400 0.75 eV

Recombination 260–380 kyr 1100–1400 0.26–0.33 eV

Photon decoupling 380 kyr 1000–1200 0.23–0.28 eV

Reionization 100–400 Myr 11–30 2.6–7.0 meV

Dark energy-matter equality 9 Gyr 0.4 0.33 meV

Present 13.8 Gyr 0 0.24 meV

Table 3.1: Key events in the thermal history of the universe.

show that choosing natural values for the mass of the dark matter particles and their

interaction cross section with ordinary matter reproduces the observed relic dark matter

density surprisingly well.

• Neutrino decoupling. Neutrinos only interact with the rest of the primordial plasma

through the weak interaction. The estimate in (3.1.10) therefore applies and neutrinos

decouple at 0.8 MeV.

• Electron-positron annihilation. Electrons and positrons annihilate shortly after neu-

trino decoupling. The energies of the electrons and positrons gets transferred to the

photons, but not the neutrinos. In §3.2.4, we will explain that this is the reason why the

photon temperature today is greater than the neutrino temperature.

• Big Bang nucleosynthesis. Around 3 minutes after the Big Bang, the light elements

were formed. In §3.3.4, we will study this process of Big Bang nucleosynthesis (BBN).

• Recombination. Neutral hydrogen forms through the reaction e
�+p

+ ! H+� when the

temperature has become low enough that the reverse reaction is energetically disfavoured.

We will study recombination in §3.3.3.

decoupling

radiation
domination

matter
domination

1.

2.

3.
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§ the hot big bang model

§ thermal equilibrium

§ entropy of the Universe

§ decoupling

§ matter radiation equality
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§ barotropic fluids p = w r c2:

• radiation  w = 1/3

• matter  w = 0

• vacuum energy w = -1

⇒ ρnr ∝R
−3

⇒ ρrel ∝R
−4

⇒ ρΛ = const.

matter-radiation equality
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§ barotropic fluids   p = w r c2:

• radiation  w = 1/3

• matter  w = 0

• vacuum energy w = -1

⇒ ρnr ∝R
−3

⇒ ρrel ∝R
−4

⇒ ρΛ = const.
27 1. Geometry and Dynamics

matter

radiation

cosmological constant

Figure 1.11: Evolution of the energy densities in the universe.

Integrating this equation, we obtain the time dependence of the scale factor

a(t) /

8
>>>>><

>>>>>:

t
2/3(1+wI) wI 6= �1

t
2/3 MD

t
1/2 RD

e
Ht

wI = �1 ⇤D

(1.3.137)

or, in conformal time,

a(⌧) /

8
>>>>><

>>>>>:

⌧
2/(1+3wI) wI 6= �1

⌧
2 MD

⌧ RD

(�⌧)�1
wI = �1 ⇤D

(1.3.138)

Exercise.—Derive eq. (1.3.138) from eq. (1.3.137).

Table 1.1 summarises the solutions for a flat universe during radiation domination (RD), matter

domination (MD) and dark energy domination (⇤D).

w ⇢(a) a(t) a(⌧)

RD 1

3
a
�4

t
1/2

⌧

MD 0 a
�3

t
2/3

⌧
2

⇤D �1 a
0

e
Ht �⌧

�1

Table 1.1: FRW solutions for a flat single-component universe.

matter-radiation equivalence

matter-radiation equality
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§ matter-radiation equality

ρrel (Req ) = ρnr (Req ) ⇒ 1+ zeq =
ρm,0
ρr,0

matter-radiation equality



Thermal History of the Universe

§ matter-radiation equality

Note: rnr≣ rm ; rrel≣ rr

ρnrR
3 = ρnr,eqReq

3 = ρnr,0R0
3

ρrelR
4 = ρrel,eqReq

4 = ρrel,0R0
4

ρrel (Req ) = ρnr (Req ) ⇒ 1+ zeq =
ρm,0
ρr,0

1
Req

=
ρnr,0
ρrel,0

1
R0

R0
Req

=1+ zeq =
ρm,0
ρr,0

⇒ ⇒

matter-radiation equality

proof:
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Note: rnr≣ rm ; rrel≣ rr ; H0=100h km/s/Mpc

§ matter-radiation equality

ρr,0 = ρCMB,0 + ρν ,0

ρm, 0 =Ωm,0
3H0

2

8πG
=1.9×10−29Ωm,0h

2 g
cm3

ρrel (Req ) = ρnr (Req ) ⇒ 1+ zeq =
ρm,0
ρr,0

matter-radiation equality

?                        
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Note: rnr≣ rm ; rrel≣ rr ; H0=100h km/s/Mpc

§ matter-radiation equality

ρr,0 = ρCMB,0 + ρν ,0

ρm, 0 =Ωm,0
3H0

2

8πG
=1.9×10−29Ωm,0h

2 g
cm3

ρrel (Req ) = ρnr (Req ) ⇒ 1+ zeq =
ρm,0
ρr,0

matter-radiation equality

just as for the photons,
there is a neutrino background radiation!
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§ matter-radiation equality

ρνc
2 =
7
8
π 2

30
kB
4

!3c3
gν

4
11
!

"
#

$

%
&
1/3

TCMB
!

"
##

$

%
&&

4

ρCMB,0c
2 =

π 2

30
kB
4

!3c3
gCMBTCMB

4

ρr,0 = ρCMB,0 + ρν ,0

ρm, 0 =Ωm,0
3H0

2

8πG
=1.9×10−29Ωm,0h

2 g
cm3

ρrel (Req ) = ρnr (Req ) ⇒ 1+ zeq =
ρm,0
ρr,0

matter-radiation equality

Note: rnr≣ rm ; rrel≣ rr ; H0=100h km/s/Mpc
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§ matter-radiation equality

ρνc
2 =
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kB
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2 g
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TCMB

=
4
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!

"
#

$

%
&
1/3

remember neutrino decoupling…

ρrel (Req ) = ρnr (Req ) ⇒ 1+ zeq =
ρm,0
ρr,0

matter-radiation equality

Note: rnr≣ rm ; rrel≣ rr ; H0=100h km/s/Mpc
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§ matter-radiation equality
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matter-radiation equality

Note: rnr≣ rm ; rrel≣ rr ; H0=100h km/s/Mpc
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§ matter-radiation equality

ρr,0 = 7.8×10
−34 g
cm3

ρm, 0 =Ωm,0
3H0
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8πG
=1.9×10−29Ωm,0h
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ρrel (Req ) = ρnr (Req ) ⇒ 1+ zeq =
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matter-radiation equality
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§ matter-radiation equality

ρr,0 = 7.8×10
−34 g
cm3

ρm, 0 =Ωm,0
3H0

2

8πG
=1.9×10−29Ωm,0h

2 g
cm3

ρrel (Req ) = ρnr (Req ) ⇒ 1+ zeq =
ρm,0
ρr,0

matter-radiation equality

1+ zeq =
ρm,0
ρr,0

= 24000Ωm,0h
2

zeq ≅ 3440 (Planck cosmology)

Note: rnr≣ rm ; rrel≣ rr ; H0=100h km/s/Mpc
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§ matter-radiation equality

ρrel (Req ) = ρnr (Req ) ⇒ 1+ zeq =
ρm,0
ρr,0

matter-radiation equality

zeq ≅ 3440 (Planck cosmology)

Note: rnr≣ rm ; rrel≣ rr ; H0=100h km/s/Mpc

Tγ ,eq ≅ 0.8eV?
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§ matter-radiation equality

ρrel (Req ) = ρnr (Req ) ⇒ 1+ zeq =
ρm,0
ρr,0

matter-radiation equality

zeq ≅ 3440 (Planck cosmology)

Note: rnr≣ rm ; rrel≣ rr ; H0=100h km/s/Mpc

Tγ ,0 = 2.73K
Tγ ∝ (1+ z)

Tγ ,eq ≅ 0.8eV
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Event time t redshift z temperature T

Inflation 10�34 s (?) – –

Baryogenesis ? ? ?

EW phase transition 20 ps 1015 100 GeV

QCD phase transition 20 µs 1012 150 MeV

Dark matter freeze-out ? ? ?

Neutrino decoupling 1 s 6⇥ 109 1 MeV

Electron-positron annihilation 6 s 2⇥ 109 500 keV

Big Bang nucleosynthesis 3 min 4⇥ 108 100 keV

Matter-radiation equality 60 kyr 3400 0.75 eV

Recombination 260–380 kyr 1100–1400 0.26–0.33 eV

Photon decoupling 380 kyr 1000–1200 0.23–0.28 eV

Reionization 100–400 Myr 11–30 2.6–7.0 meV

Dark energy-matter equality 9 Gyr 0.4 0.33 meV

Present 13.8 Gyr 0 0.24 meV

Table 3.1: Key events in the thermal history of the universe.

show that choosing natural values for the mass of the dark matter particles and their

interaction cross section with ordinary matter reproduces the observed relic dark matter

density surprisingly well.

• Neutrino decoupling. Neutrinos only interact with the rest of the primordial plasma

through the weak interaction. The estimate in (3.1.10) therefore applies and neutrinos

decouple at 0.8 MeV.

• Electron-positron annihilation. Electrons and positrons annihilate shortly after neu-

trino decoupling. The energies of the electrons and positrons gets transferred to the

photons, but not the neutrinos. In §3.2.4, we will explain that this is the reason why the

photon temperature today is greater than the neutrino temperature.

• Big Bang nucleosynthesis. Around 3 minutes after the Big Bang, the light elements

were formed. In §3.3.4, we will study this process of Big Bang nucleosynthesis (BBN).

• Recombination. Neutral hydrogen forms through the reaction e
�+p

+ ! H+� when the

temperature has become low enough that the reverse reaction is energetically disfavoured.

We will study recombination in §3.3.3.

radiation
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matter
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matter-radiation equality
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Event time t redshift z temperature T

Inflation 10�34 s (?) – –

Baryogenesis ? ? ?

EW phase transition 20 ps 1015 100 GeV

QCD phase transition 20 µs 1012 150 MeV

Dark matter freeze-out ? ? ?

Neutrino decoupling 1 s 6⇥ 109 1 MeV

Electron-positron annihilation 6 s 2⇥ 109 500 keV

Big Bang nucleosynthesis 3 min 4⇥ 108 100 keV

Matter-radiation equality 60 kyr 3400 0.75 eV

Recombination 260–380 kyr 1100–1400 0.26–0.33 eV

Photon decoupling 380 kyr 1000–1200 0.23–0.28 eV

Reionization 100–400 Myr 11–30 2.6–7.0 meV

Dark energy-matter equality 9 Gyr 0.4 0.33 meV

Present 13.8 Gyr 0 0.24 meV

Table 3.1: Key events in the thermal history of the universe.

show that choosing natural values for the mass of the dark matter particles and their

interaction cross section with ordinary matter reproduces the observed relic dark matter

density surprisingly well.

• Neutrino decoupling. Neutrinos only interact with the rest of the primordial plasma

through the weak interaction. The estimate in (3.1.10) therefore applies and neutrinos

decouple at 0.8 MeV.

• Electron-positron annihilation. Electrons and positrons annihilate shortly after neu-

trino decoupling. The energies of the electrons and positrons gets transferred to the

photons, but not the neutrinos. In §3.2.4, we will explain that this is the reason why the

photon temperature today is greater than the neutrino temperature.

• Big Bang nucleosynthesis. Around 3 minutes after the Big Bang, the light elements

were formed. In §3.3.4, we will study this process of Big Bang nucleosynthesis (BBN).

• Recombination. Neutral hydrogen forms through the reaction e
�+p

+ ! H+� when the

temperature has become low enough that the reverse reaction is energetically disfavoured.

We will study recombination in §3.3.3.

hot big bang model

up next…


