Unit 5

Differential Equations

Prof. Alexander Knebe

relevance in physics

Unit 5

Differential Equations

example:

Kepler's laws vs. Newton's gravity theory

- <u>Kepler's laws</u> (= empirically derived description of physical phenomenon)
 - \checkmark orbits of a planet is an ellipse with the Sun at one of the two focii
 - ✓ line segment joining planet & Sun sweeps out equal areas in equal times
 - ✓ $T^2 \sim a^3$ (*T*: orbital period, *a*: semi-major axis)

<u>Newton's theory</u> (= mathematical explanation of physical phenomenon)

$$m_1 \frac{d^2 \vec{r}_1}{dt^2} = -G \frac{m_1 m_2}{\left|\vec{r}_1 - \vec{r}_2\right|^3} \left(\vec{r}_1 - \vec{r}_2\right)$$
$$m_1 \frac{d^2 \vec{r}_1}{dt^2} = -m_2 \frac{d^2 \vec{r}_2}{dt^2}$$

differential equation: describes how a quantity changes (as opposed to simply stating some relation between quantities)

 \Rightarrow all of Kepler's law can be easily derived from Newton's theory!

ordinary differential equation:

an equation of the following type

$$0 = \mathcal{G}(f^{(n)}, f^{(n-1)}, ..., f', f, x)$$

is called n^{th} -order ordinary differential equation (ODE) as it involves one independent variable x, a function f(x), and all its derivatives up to the n^{th} order, i.e. f'(x), f''(x), ..., $f^{(n-1)}(x)$, $f^{(n)}(x)$.

 $\mathcal{G}(f^{(n)}, f^{(n-1)}, ..., f', f, x)$ is some arbitrary function of x, f(x) and all derivatives of f(x) up to the n^{th} order, e.g. movement in gravity field: $0 = GM/r^2 + r'' = \mathcal{G}(r'', r', r, t)$

Note:

- $f^{(n)}$ is an abbreviation for $d^n f/dx^n$
- the order of the differential equation is determined by the highest derivative
- the differential equation is "ordinary" because there is only one independent variable x
- in most cases we can re-write the ODE as an *explicit ordinary differential equation*:

$$\frac{d^{n}f}{dx^{n}} = g(f^{(n-1)},...,f',f,x)$$

example:

• the equation of motion for a particle m in a gravity field created by a constant mass M

$$m\frac{d^2r(t)}{dt^2} = -G\frac{mM}{r^2(t)} \qquad \Leftrightarrow \qquad \frac{d^2f(x)}{dx^2} = g(f',f,x) \quad \text{with} \quad g(f',f,x) = -G\frac{M}{f^2}$$

is a second order explicit ordinary differential equation.

definitions

Note:

- a differential equation tells you how a certain quantity *changes*, i.e. the equation of motion for a particle m tells you how its position r(t) changes as a function of time t
- practically every theory in physics is based upon differential equations!

Important:

• a n^{th} -order explicit ordinary differential equation can be written as a system of $n \ 1^{\text{st}}$ -order explicit ordinary differential equations, e.g. the equation of motion for a particle in a gravity field:

2 nd order differential equation	system of two 1 st order differential equations
$\frac{d^2 r(t)}{dt^2} = -G \frac{M}{r^2(t)} \Leftrightarrow $	$\frac{dr}{dt} = v$ $\frac{dv}{dt} = -G\frac{M}{r^2}$

 \rightarrow we can focus on numerical techniques for solving 1st-order ordinary differential equations!

geometrical interpretation

explicit 1st-order ordinary differential equation:

$$\frac{df(x)}{dx} = g(f, x)$$

■ *g*(*f*, *x*) only tells us the slope of the tangent to *f*(*x*) at a given point *x*:

f(x)

solving explicit 1st-order ordinary differential equations

$$\frac{df(x)}{dx} = g(f, x)$$

- we construct f_{i+1} using a straight line starting in (x_i, f_i)
 - $\frac{f(x_{i+1}) f(x_i)}{x_{i+1} x_i} = g(f_i, x_i) \Leftrightarrow f(x_{i+1}) = f(x_i) + g(f_i, x_i) (x_{i+1} x_i)$ $\frac{f(x_{i+1}) f(x_i)}{x_{i+1} x_i} = g(f_i, x_i) \Leftrightarrow f(x_{i+1}) = f(x_i) + g(f_i, x_i) (x_{i+1} x_i)$ needs to be known personal choice

• we can use that knowledge to construct the solution piece-by-piece, i.e. in small increments of Δx :

Unit 5

solving explicit 1st-order ordinary differential equations via the Euler method

$$\frac{df(x)}{dx} = g(f,x) \implies f(x_{i+1}) = f(x_i) + g(f_i,x_i)(x_{i+1} - x_i)$$

• flowchart for the numerical integration of a differential equation via the Euler method:

integration block

Euler methods

application: barometric pressure

• the barometric pressure is given by the following ordinary differential equation

...where p(h) is the pressure at height h, G_E the Earth's gravitational acceleration and p_0 , ρ_0 the pressure and density at sea level.

• Note:

• the derivation of this equation is based upon $dp = -\rho G_E dh$ in combination with the Boyle-Mariotte law $p/\rho = p_0/\rho_0$ and the assumption that the Earth's gravity G_E is constant for the considered heights h.

> exercise:

- use the Euler method to integrate the equation for the barometric pressure
- plot both the numerical and the analytical result in the same figure
- approach:
 - use $H_0 = p_0 / (\rho_0 G_E) =$ 8005m in your formulae
 - use p_0 =101325pascals at height h_0 =0m as your initial values
 - integrate up to h_N =20000m in 5, 10, and 100 integration steps, respectively
 - use an anonymous function g=@ (p,h) (-p/H0)
 - $\mbox{ \bullet}$ use a function \mbox{euler} () for the integration block:

function [p,h] = euler(g, h0, p0, hN, N) % initialisation block:

% integration block:

... a.m. al

end

• Note:


```
h = N values of h from h_0 to h_N
```

- p = the solution of the differential equation, i.e. $p(h_0)$ to $p(h_N)$
- you need to calculate the analytical solution using paper-and-pen

flowchart on the following page ightarrow

application: barometric pressure – flowchart for exercise

• the Euler method only uses g(f,x) in x_i to construct a piece-by-piece solution

$$f(x_{i+1}) = f(x_i) + g(f_i, x_i)(x_{i+1} - x_i)$$
 Euler method

• to obtain better accuracy of the solution we can perform a "trial step":

$$f(x_{i+1}) = f(x_i) + \frac{g(f_i, x_i) + g(f_{i+1}, x_{i+1})}{2}(x_{i+1} - x_i)$$
 modified Euler method

Note:

- to be able to calculate $g(f_{i+1}, x_{i+1})$ we need to perform a standard Euler step first!
- for the actual integration step we then used the average slope $(g_i+g_{i+l})/2$

1. trial step (just to obtain g_{i+1}):

f(x)

line with slope $df/dx = g(f_i, x_i)$ f_{i+1} line with slope $df/dx = g(f_{i+1}, x_{i+1})$ f_i x_i x_{i+1} slope averaging: 2. actual integration step: f(x)line with slope $df/dx = (g(f_i, x_i) + g(f_{i+1}, x_{i+1}))/2$ f_{i+1} f_i $>_x$ x_i x_{i+1}

• the Euler method only uses g(f,x) in x_i to construct a piece-by-piece solution

$$f(x_{i+1}) = f(x_i) + g(f_i, x_i)(x_{i+1} - x_i)$$
 Euler method

• to obtain better accuracy of the solution we can perform a "trial step":

$$f(x_{i+1}) = f(x_i) + \frac{g(f_i, x_i) + g(f_{i+1}, x_{i+1})}{2}(x_{i+1} - x_i)$$
 modified Euler method

flowchart for modified Euler method (showing only the for-loop!):

Unit 5

➤ exercise:

• approach:

• simply generate a new script meuler.m containing the function meuler() by modifying your script euler.m

Runge-Kutta methods

Differential Equations

2nd order Runge-Kutta scheme:

 $f(x_{i+1}) = f(x_i) + g(f_{i+1/2}, x_{i+1/2})(x_{i+1} - x_i)$

- Note: "2nd order" refers to the accuracy of the scheme
- geometrical interpretation:

• flowchart for the 2nd order Runge-Kutta scheme (showing only the for-loop!):

Runge-Kutta methods

2nd order Runge-Kutta scheme:

$$f(x_{i+1}) = f(x_i) + g(f_{i+1/2}, x_{i+1/2})(x_{i+1} - x_i)$$

➤ exercise:

Runge-Kutta methods

• 4th order Runge-Kutta scheme:

$$f(x_{i+1}) = f(x_i) + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)(x_{i+1} - x_i)$$

➤ exercise:

use the 4th order Runge-Kutta method to solve the equation for the barometric pressure
plot the numerical result as derived by the 4th and 2nd order Runge-Kutta scheme and the

• plot the numerical result as derived by the 4th and 2th order Runge-Rutta scheme and the standard Euler method alongside the analytical result in the same figure:

solving an explicit 1st order explicit ordinary differential equation:

$$\frac{df}{dx} = g(f, x)$$

• Euler method

$$f(x_{i+1}) = f(x_i) + g(f_i, x_i) \qquad (x_{i+1} - x_i)$$
• modified Euler method

$$f(x_{i+1}) = f(x_i) + \frac{g(f_i, x_i) + g(f_{i+1}, x_{i+1})}{2} \qquad (x_{i+1} - x_i)$$
• 2nd order Runge-Kutta method

$$f(x_{i+1}) = f(x_i) + g(f_{i+1/2}, x_{i+1/2}) \qquad (x_{i+1} - x_i)$$

• <u>4th order Runge-Kutta scheme</u>

$$f(x_{i+1}) = f(x_i) + \left(\frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)\right)(x_{i+1} - x_i)$$

$$k_{1} = g(f_{i}, x_{i})$$

$$k_{2} = g\left(f_{i} + k_{1}\frac{(x_{i+1} - x_{i})}{2}, x_{i} + \frac{(x_{i+1} - x_{i})}{2}\right)$$

$$k_{3} = g\left(f_{i} + k_{2}\frac{(x_{i+1} - x_{i})}{2}, x_{i} + \frac{(x_{i+1} - x_{i})}{2}\right)$$

$$k_{4} = g\left(f_{i} + k_{3}(x_{i+1} - x_{i}), x_{i+1}\right)$$

summary

without loss of generality we will restrict ourselves to an explicit 2nd order ODE

$$\frac{d^2f}{dx^2} = h\left(f, \frac{df}{dx}, x\right)$$

• we can split this 2nd order ODE into a coupled system of two 1st order ODEs:

$$\frac{df}{dx} = g(f,\phi,x) = \phi$$
$$\frac{d\phi}{dx} = h(f,\phi,x)$$

solving this system only requires minimal modifications to our previous scheme(s):

$$f(x_{i+1}) = f(x_i) + G(x_{i+1} - x_i)$$

$$\phi(x_{i+1}) = \phi(x_i) + H(x_{i+1} - x_i)$$

• Euler method

$$G = g(f_i, \phi_i, x_i)$$

$$H = h(f_i, \phi_i, x_i)$$

$$G = \frac{g(f_i, \phi_i, x_i) + g(f_{i+1}, \phi_{i+1}, x_{i+1})}{2}$$

$$H = \frac{h(f_i, \phi_i, x_i) + h(f_{i+1}, \phi_{i+1}, x_{i+1})}{2}$$

$$H = \frac{h(f_i, \phi_i, x_i) + h(f_{i+1}, \phi_{i+1}, x_{i+1})}{2}$$

$$H = h(f_{i+1/2}, \phi_{i+1/2}, x_{i+1/2})$$

Note:

- x_{i+1} , f_{i+1} and ϕ_{i+1} in the formulae for G() and H() are (again) only temporary values and must be calculated **before** being used in G() and H()!
- the same is obviously true for $x_{i+1/2}$, $f_{i+1/2}$ and $\phi_{i+1/2}$

the differential equation for a harmonic oscillator (e.g. a spring) reads as follows

$$\ddot{x} + \frac{k}{m}x = 0$$

...where k is the "spring constant" and m the mass attached to the spring.

• split this 2nd order ODE into a coupled system of two 1st order ODEs:

$$\ddot{x} + \frac{k}{m}x = 0 \qquad \Longrightarrow \qquad \dot{x} = g(x, v, t) = v$$

$$\dot{v} = h(x, v, t) = -\frac{k}{m}x$$

• *Note*: the analytical solution for this particular equation is:

$$x(t) = A\sin(\omega t + \varphi)$$

with:
$$\omega = \sqrt{k/m}$$

$$A = \sqrt{x_0^2 + (v_0/\omega)^2}$$

$$\varphi = a \tan(\omega x_0/v_0)$$

harmonic oscillator

harmonic oscillator

standard Euler method:

• 2nd order Runge-Kutta method:

 \succ exercise:

Systems of Differential Equations

consider a spring with the following specifications: k=1kg/s² and m=2kg • use the initial conditions $t_0=0s$, $x_0=-1m$, $v_0=2m/s$ • solve the differential equation for the harmonic oscillator using the standard Euler method and the 2nd order Runge-Kutta scheme • plot the numerical solutions alongside the analytical solution up to the end point t_N =80s: harmonic oscillator 1000 Euler steps generate this figure! 1000 2nd order RK steps analytical solution 10 5 (t) n -5 -10 -15^L0 10 20 30 40 50 60 70 80 • approach: you now have to define two anonymous functions g = Q(x, v, t)(v);h = Q(x, v, t) (-k/m * x);• both these functions must be passed to your integration function, e.g. euler2() euler2.m: function [x,v,t] = euler2(g, h, t0, x0, v0, tN, N)% initialisation block: ... % integration block: end • Note: • your integration function now returns the vectors x, v, and t• the solution becomes numerically instable when choosing too few integration steps as can be seen for the Euler method

➤ exercise:

- consider a spring with the following specifications: k=1kg/s² and m=2kg
- use the initial conditions t_0 =0s, x_0 =-1m, v_0 =2m/s
- solve the differential equation for the harmonic oscillator using the 4th order Runge-Kutta and the 2nd order Runge-Kutta scheme
- plot the numerical solutions alongside the analytical solution up to the end point t_N =80s:

Note:

Day 2

• this is a **highly advanced** exercise as it is **not simple** to write the formulae for the predictor steps!

• if you plan to do this exercise remember the way the predictor steps have been done in the case of the modified Euler or the 2nd order Runge-Kuta scheme method: one first makes a predictor step in both variables before doing the second predictor step and so on...

decay equation

consider the following ordinary differential equation

$$\frac{dx}{dt} = -xt$$

➤ exercise:

- solve the equation on the interval t = [0,5] using $t_0=0$, $x(t_0)=1$
- numerically differentiate the solution x(t) with respect to t.
- compare the analytical function for dx/dt against the numerically derived one.

radioactive decay

 the number of decay events of unstable radioactive nuclei is proportional to the number of nuclei present in a given sample

$$\frac{dN}{dt} = -\lambda N$$

where N is the number of nuclei, and the decay constant λ depends on the type of (radioactive) nuclei.

example:

for ²³²U the half-life time is 68.9 days giving a decay constant of λ =ln(2)/68.9days=0.01006/day

> exercise:

• numerically solve the decay equation for ²³²U using the 2nd order Runge-Kutta scheme.

• determine the minimum number of integration steps needed to obtain a numerical solution close to the correct analytical one for the following setup:

 $t_0 = 0$ years, $N(t_0) = 5$ million nuclei, $t_{end} = 4$ years, $N^{analytical}(t_{end}) = 2.09$ nulcei

• use a while-loop to determine the required number of integration points

hints:

• when determining the number of integration steps to match the correct analytical solution, it is sufficient to achieve an absolute accuracy of 0.1 nuclei:

• when using a while-loop, you gradually need to increase the number of integration step inside the loop.

do not mix days and years but use a unique time unit

more

radioactive decay

➤ exercise:

• numerically solve the decay equation using the Euler scheme.

• how many integration steps do you require to obtain a numerical solution close to the analytical solution when using the Euler scheme? An absolute accuracy of 0.1 nuclei is sufficient again.

➤ exercise:

• plot both numerical solutions into the same figure using a logarithmic y-axis.

• plot only every 10th point for the RK2 solution and every 100th for the Euler solution, i.e. generate a figure similar to the following one:

Notes:

• the reduction of the number of points for the numerical RK2 and Euler solution depends on the absolute accuracy chosen to match the analytical. The suggested values of 10th and 100th are best suited for an absolute accuracy of 0.1!

• the analytical solution is $N(t) = N_0 e^{-\lambda t}$

cosmic expansion

- the expansion of the Universe is described by the Friedmann equation given above
- the constants in this equation have the following meaning...
 - H_0 = expansion rate at present time Ω_0 = matter content in the Universe Ω_{Λ} = dark energy content in the Universe $\Omega_k = 1 - (\Omega_0 + \Omega_{\Lambda})$ curvature of space - time
- ...and the solution a(t) describes how the Universe grows with time since the Big Bang
- *H*₀ can be obtained by measuring the recessional speed of distant galaxies...

- ...and is found to be H_0 =72km/sec/Mpc.
- the *Friedmann equation* can be re-written as follows (by transforming t to $\tau = H_0 t$):

$$\frac{da}{d\tau} = a\sqrt{\Omega_0 a^{-3} + \Omega_k a^{-2} + \Omega_\Lambda}$$

cosmic expansion

➤ exercise:

• consider the following parameter sets...

$\Omega_0 = 0.28$	(the currently favoured model)
$\Omega_{\Lambda} = 0.72$ $\Omega_{0} = 1.00$ $\Omega_{\Lambda} = 0.00$	(the old standard model)
$\Omega_0 = 0.24$ $\Omega_A = 0.00$	(an "open" model)
$\Omega_0 = 5.00$ $\Omega_\Lambda = 0.00$	(a "Big Crunch" model)
	$\Omega_0 = 0.28$ $\Omega_{\Lambda} = 0.72$ $\Omega_0 = 1.00$ $\Omega_{\Lambda} = 0.00$ $\Omega_0 = 0.24$ $\Omega_{\Lambda} = 0.00$ $\Omega_0 = 5.00$ $\Omega_{\Lambda} = 0.00$

• using as initial values $t_0=0$, $a(t_0)=1$...

• ...study the past expansion by solving the Friedmann equation backwards in time

• ...study the future expansion by solving the Friedmann equation forward in time

> exercise:

• why is the closed model not giving the expected recollapse in the future?

why can't you start the integration at the Big Bang?

cannonball – numerically revisited

We are reconsidering the cannonball exercise from Unit 1 again. So far, we have treated the solution in the dimensions x and y independently, but now the plan is to solve the coupled system of 2D 2nd order differential equations numerically, also adding a frictional force term:

$$\frac{d^2\vec{r}}{dt^2} = bv^2\frac{\vec{v}}{|v|} + \vec{g} \qquad \Leftrightarrow \qquad \frac{dr}{dt} = \vec{v} \qquad = g(\vec{r}, \vec{v}, t)$$
$$\frac{d\vec{v}}{dt} = bv^2\frac{\vec{v}}{|v|} + \vec{g}_0 = h(\vec{r}, \vec{v}, t)$$

where *b* is the frictional constant and $\vec{g}_0 = (0, -g_0)$, $|\vec{g}_0| = 9.81 \text{m/s}^2$.

> exercise #1:

• Write a function "rk22_2D.m" that numerically integrates a 2nd order 2D ordinary differential equation using a 2nd order Runge-Kutta scheme. The function should work like this:

```
function [r,v,t] = rk22_2D(g,h,r0,v0,t0,tN,N)
% input:
% g: anonymous function for g(r,v,t)
% h: anonymous function for h(r,v,t)
% r0: 2D column vector with initial position
% v0: 2D column vector with initial velocity
% t0: integration start time
% tN: integration end time
% N: number of integration steps
%
% output:
% r: 2xN matrix with positions
% v: 2xN matrix with velocities
% t: vector of length N with time
```

more ->

cannonball – numerically revisited

We are reconsidering the cannonball exercise from Unit 1 again. So far, we have treated the solution in the dimensions x and y independently, but now the plan is to solve the coupled system of 2D 2nd order differential equations numerically, also adding a frictional force term:

$$\frac{d^2\vec{r}}{dt^2} = bv^2\frac{\vec{v}}{|v|} + \vec{g} \qquad \Leftrightarrow \qquad \frac{d\vec{r}}{dt} = \vec{v} \qquad = g(\vec{r}, \vec{v}, t)$$
$$\frac{d\vec{v}}{dt} = bv^2\frac{\vec{v}}{|v|} + \vec{g}_0 = h(\vec{r}, \vec{v}, t)$$

where b is the frictional constant and $\vec{g}_0 = (0, -g_0)$, $|\vec{g}_0| = 9.81 \text{m/s}^2$.

exercise #2:

• Use rk22_2D() to solve the equations of motion for the following conditions:

 $x_0 = 3m, y_0 = 2m, v_0 = 10 m/s, \alpha = 23^{\circ}, g = 9.81 \text{ kg m/s}^2, \beta = -0.05$

Show the analytical solution (without friction!) in the same plot.

> exercise #3:

• using the formula for the analytical solution $\vec{v}(t) = \vec{v}_0 + \vec{g}t$ calculate the peak height $y_{\text{max}} = y(t_{\text{max}})$ of the analytical solution via the condition $v_y(t_{\text{max}}) = 0$ using a bi-section method and mark it in the same plot using a large X.

> exercise #4:

• find the peak position of the numerically obtained solution and also mark it with a X.

2.8

numerical solution (w/ friction) the final plot should look similar to this \rightarrow analytical solution (w/o friction analytical peak position 2.7 numerical peak position 2.6 2.5 2.4 E 2.3 2.2 2.1 2 1.9 10 12 4 5 6 7 9 11 x [m]

Prof. Alexander Knebe

derivation of 4th order Runge-Kutta scheme

$$\frac{df}{dx} = g(f, x)$$

$$f_{i+1} - f_i = \int_{x_i}^{x_{i+1}} g(f, x) dx$$

Simpson's rule for numerical integration
$$= \frac{\Delta x}{6} \Big[g(f_i, x_i) + 4g(f_{i+1/2}, x_{i+1/2}) + g(f_{i+1}, x_{i+1}) \Big]$$
$$= \frac{\Delta x}{6} \Big[g(f_i, x_i) + 2g(f_{i+1/2}^{(1)}, x_{i+1/2}) + 2g(f_{i+1/2}^{(2)}, x_{i+1/2}) + g(f_{i+1}, x_{i+1}) \Big]$$

$$\begin{cases} f_{i+1/2}^{(1)} = f_i + \frac{\Delta x}{2} k_1 & ,k_1 = g(f_i, x_i) \\ f_{i+1/2}^{(2)} = f_i + \frac{\Delta x}{2} k_2 & ,k_2 = g(f_{i+1/2}^{(1)}, x_{i+1/2}) \\ \tilde{f}_{i+1} = f_i + \Delta x k_3 & ,k_3 = g(f_{i+1/2}^{(2)}, x_{i+1/2}) \\ & k_4 = g(\tilde{f}_{i+1}, x_{i+1}) \end{cases}$$

$$=\frac{\Delta x}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

$$f_{i+1} = f_i + \frac{\Delta x}{6} \left(k_1 + 2k_2 + 2k_3 + k_4 \right)$$