
Prof. Alexander Knebe

Unit 5

Differential Equations

Computational Physics I Unit 5

Prof. Alexander Knebe

Differential Equations

§ example: Kepler’s laws vs. Newton’s gravity theory

• Kepler’s laws (= empirically derived description of physical phenomenon)

ü orbits of a planet is an ellipse with the Sun at one of the two focii

ü line segment joining planet & Sun sweeps out equal areas in equal times

ü T2 ~ a3 (T: orbital period, a: semi-major axis)

• Newton’s theory (= mathematical explanation of physical phenomenon)

relevance in physics

Computational Physics I Unit 5

Day 1

m1
d 2!r1
dt2

= −G m1m2
!r1 −
!r2
3
!r1 −
!r2()

m1
d 2!r1
dt2

= −m2
d 2!r2
dt2

differential equation:
describes how a quantity changes

(as opposed to simply stating some relation between quantities)

⇒ all of Kepler’s law can be easily derived from Newton’s theory!

Prof. Alexander Knebe

Differential Equations

§ ordinary differential equation:

an equation of the following type

is called nth-order ordinary differential equation (ODE) as it involves one independent variable x,
a function f(x), and all its derivatives up to the nth order, i.e. f ’(x), f ’’(x),…, f(n-1)(x), f(n)(x).

G (f(n), f(n-1),…, f’, f, x) is some arbitrary function of x, f(x) and all derivatives of f(x) up to the nth

order, e.g. movement in gravity field: 0 = G M / r 2 + r’’ = G (r’’, r’, r, t)

§ Note:
• f(n) is an abbreviation for dnf/dxn

• the order of the differential equation is determined by the highest derivative
• the differential equation is “ordinary” because there is only one independent variable x
• in most cases we can re-write the ODE as an explicit ordinary differential equation:

§ example:

• the equation of motion for a particle m in a gravity field created by a constant mass M

is a second order explicit ordinary differential equation.

definitions

Computational Physics I

!!

€

m
d2r(t)

dt 2
= −G

mM
r2(t)

⇔
d2 f (x)

dx 2
= g($ f , f ,x) with g($ f , f ,x) = −G

M
f 2

€

dn f
dxn = g(f (n−1),..., # f , f ,x)

Unit 5

Day 1

0 = G (f(n), f(n-1),…, f’, f, x)

Prof. Alexander Knebe

§ Note:
• a differential equation tells you how a certain quantity changes, i.e. the equation of motion

for a particle m tells you how its position r(t) changes as a function of time t

• practically every theory in physics is based upon differential equations!

§ Important:

• a nth-order explicit ordinary differential equation can be written as a system of n 1st-order
explicit ordinary differential equations, e.g. the equation of motion for a particle in a gravity
field:

→ we can focus on numerical techniques for solving 1st-order ordinary differential equations!

Differential Equations definitions

Computational Physics I

d 2r(t)
dt2

= −G M
r2 (t)

⇔

Unit 5

Day 1

§ explicit 1st-order ordinary differential equation:

§ g(f, x) only tells us the slope of the tangent to f(x) at a given point x:
€

df (x)
dx

= g(f ,x)

€

x

€

f (x)

€

xi

€

fi

(tangent) line with slope df/dx = g(fi, xi)

geometrical interpretation

dr
dt
= v

dv
dt
= −G M

r2

2nd order differential equation system of two 1st order differential equations

Prof. Alexander Knebe

Differential Equations

§ solving explicit 1st-order ordinary differential equations

§ we construct fi+1 using a straight line starting in (xi, fi)

§ we can use that knowledge to construct the solution piece-by-piece, i.e. in small increments of Dx:

Computational Physics I

€

df (x)
dx

= g(f ,x)

€

x

€

f (x)

€

xi

€

f (xi+1) − f (xi)
xi+1 − xi

= g(fi,xi) ⇔ f (xi+1) = f (xi) + g(f i,xi) (xi+1 − xi)

€

x

€

f (x)

€

xi

€

fi

line with slope df/dx = g(fi, xi)=Df/Dx

€

xi+1

€

fi+1

line with slope df/dx = g(fi+1, xi+1)

€

f (xi+1) = f (xi) + g(fi,xi) (xi+1 − xi)
f (xi+2) = f (xi+1) + g(fi+1,xi+1) (xi+2 − xi+1)

...
f (xN) = f (xN −1) + g(fN −1,xN −1)(xN − xN −1)

Euler method

Unit 5

Day 1

Euler methods

€

xi+1

€

Δf =
f (xi+1) − f (xi)

xi+1 − xi

€

Δx = xi+1 − xi

€

xi+2

€

fi+2

ODE

personal choiceneeds to be known

known values!

Prof. Alexander Knebe

Differential Equations

§ solving explicit 1st-order ordinary differential equations via the Euler method

§ flowchart for the numerical integration of a differential equation via the Euler method:

Euler methods

Computational Physics I

€

df (x)
dx

= g(f ,x) ⇒ f (xi+1) = f (xi) + g(f i,xi)(xi+1 − xi)

choose initial values x0 and f0

choose end point xN

choose number of steps N

calculate step size
Dx=(xN-x0)/(N-1)

generate (empty) array of length N for x

i = 1:N-1 plot f(x)

fi+1 = fi + g(fi, xi) Dx
xi+1 = xi + Dx

generate (empty) array of length N for f

for-loop:

input block:

initialization:

no

yes

plot analytical
result (if
possible)

plotting block:

integration block

define anonymous function for g(f, x)

Unit 5

initialize elements
x(1)=x0 and f(1)=f0

Day 1

Prof. Alexander Knebe

Differential Equations

§ application: barometric pressure

• the barometric pressure is given by the following ordinary differential equation

…where p(h) is the pressure at height h, GE the Earth’s gravitational acceleration and p0, r0
the pressure and density at sea level.

• Note:
• the derivation of this equation is based upon dp = -r GE dh in combination with the
Boyle-Mariotte law p/r = p0/r0 and the assumption that the Earth’s gravity GE is
constant for the considered heights h.

Ø exercise:

• use the Euler method to integrate the equation for the barometric pressure
• plot both the numerical and the analytical result in the same figure

• approach:
• use H0=p0/(r0GE)=8005m in your formulae
• use p0=101325pascals at height h0=0m as your initial values
• integrate up to hN=20000m in 5, 10, and 100 integration steps, respectively
• use an anonymous function g=@(p,h)(-p/H0)
• use a function euler() for the integration block:

euler.m:
function [p,h] = euler(g, h0, p0, hN, N)
% initialisation block:
…
% integration block:
…
end

• Note:
• euler() takes as arguments the anonymous function g, the initial values h0 and p0,
the end point of the integration hN and the number of integration steps N
• euler() returns the two vectors p and h containing

h = N values of h from h0 to hN
p = the solution of the differential equation, i.e. p(h0) to p(hN)

• you need to calculate the analytical solution using paper-and-pen

flowchart on the following page è

Euler methods

Computational Physics I

€

dp
dh

= −GE
ρ0
p0
p

€

p0, ρ0

€

h
€

dh

€

p(h), ρ(h)

€

p(h + dh), ρ(h + dh)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

2

4

6

8

10

12
x 104

h

p(
h)

barometric pressure

5 Euler steps
10 Euler steps
100 Euler steps
analytical solution

generate this figure!

Unit 5

Day 1

Prof. Alexander Knebe

Differential Equations Euler methods

Computational Physics I

§ application: barometric pressure – flowchart for exercise

choose initial values h0 and p0

choose end point hN

choose number of steps N

plot p(h)

input block:

plot analytical result

plotting block:

integration block
in

euler.m

define g(p, h)

(g, h0, p0, hN, N)

[p. h]

calculate step size
Dh=(hN-h0)/(N-1)

generate arrays h and p

i = 1:N-1

pi+1 = pi + g(pi, hi) Dh
hi+1 = hi + Dh

initialize h(1) and p(1)

no

yes

euler.m

(g, h0, p0, hN, N)

[p, h]for-loop:

Unit 5

pressure-euler.m

Day 1

Prof. Alexander Knebe

Differential Equations

§ the Euler method only uses g(f,x) in xi to construct a piece-by-piece solution

§ to obtain better accuracy of the solution we can perform a “trial step”:

§ Note:

• to be able to calculate g(fi+1, xi+1) we need to perform a standard Euler step first!
• for the actual integration step we then used the average slope (gi+gi+1)/2

Euler methods

Computational Physics I

€

x

€

f (x)

€

xi

€

fi

line with slope df/dx = g(fi, xi)

€

xi+1

€

fi+1

line with slope df/dx = g(fi+1, xi+1)

€

f (xi+1) = f (xi) + g(fi,xi)(xi+1 − xi)

€

f (xi+1) = f (xi) +
g(fi,xi) + g(f i+1,xi+1)

2
(xi+1 − xi)

1. trial step (just to obtain gi+1):

€

x

€

f (x)

€

xi

€

fi

line with slope df/dx = (g(fi, xi)+g(fi+1, xi+1))/2

€

xi+1

€

fi+1

2. actual integration step:

slope averaging: =>

Euler method

modified Euler method

Unit 5

Day 1

Prof. Alexander Knebe

Differential Equations

§ the Euler method only uses g(f,x) in xi to construct a piece-by-piece solution

§ to obtain better accuracy of the solution we can perform a “trial step”:

§ flowchart for modified Euler method (showing only the for-loop!):

Euler methods

Computational Physics I

i = 1:N-1

fi+1 = fi + g(fi, xi) Dx

for-loop:

no

yes

G = (g(fi, xi) + g(fi+1, xi+1)) / 2

fi+1 = fi + G Dx

€

f (xi+1) = f (xi) + g(fi,xi)(xi+1 − xi)

€

f (xi+1) = f (xi) +
g(fi,xi) + g(f i+1,xi+1)

2
(xi+1 − xi)

Euler method

modified Euler method

Unit 5

meuler.m

Day 1

Prof. Alexander Knebe

Ø exercise:

• use the modified Euler method to integrate the equation for the barometric pressure

• plot the numerical result as derived by the modified and the standard Euler method
alongside the analytical result in the same figure:

• approach:
• simply generate a new script meuler.m containing the function meuler() by
modifying your script euler.m

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

2

4

6

8

10

12
x 104

h

p(
h)

barometric pressure

10 modified Euler steps
10 Euler steps
analytical solution

Differential Equations Euler methods

Computational Physics I

generate this figure!

Unit 5

Day 1

Prof. Alexander Knebe

Differential Equations Runge-Kutta methods

Computational Physics I

§ 2nd order Runge-Kutta scheme:

§ Note: “2nd order” refers to the accuracy of the scheme

§ geometrical interpretation:

§ flowchart for the 2nd order Runge-Kutta scheme (showing only the for-loop!):

€

x

€

f (x)

€

xi

€

fi

line with slope df/dx = g(fi+1/2, xi+1/2)

€

xi+1

€

fi+1

€

xi+1/ 2

€

fi+1/ 2

i = 1:N-1

xi+1/2 = xi + Dx/2
fi+1/2 = fi+g(fi, xi) Dx/2

for-loop:

no

yes

fi+1 = fi + g(fi+1/2, xi+1/2) Dx

Unit 5

rk2.m

Day 1

€

f (xi+1) = f (xi) + g(fi+1/ 2, xi+1/ 2)(xi+1 − xi)

Prof. Alexander Knebe

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

2

4

6

8

10

12
x 104

h

p(
h)

barometric pressure

10 2nd order Runge�Kutta steps
10 modified Euler steps
analytical solution

Differential Equations Runge-Kutta methods

Computational Physics I

§ 2nd order Runge-Kutta scheme:

Ø exercise:

• use the 2nd order Runge-Kutta method to solve the equation for the barometric pressure

• plot the numerical result as derived by the Runge-Kutta and the modified Euler scheme
alongside the analytical result in the same figure:

generate this figure!

Unit 5

Day 1

€

f (xi+1) = f (xi) + g(fi+1/ 2, xi+1/ 2)(xi+1 − xi)

Prof. Alexander Knebe

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

2

4

6

8

10

12
x 104

h

p(
h)

barometric pressure

5 4th order RK steps
5 2nd order RK steps
10 Euler steps
analytical solution

Ø exercise:

• use the 4th order Runge-Kutta method to solve the equation for the barometric pressure

• plot the numerical result as derived by the 4th and 2nd order Runge-Kutta scheme and the
standard Euler method alongside the analytical result in the same figure:

Differential Equations Runge-Kutta methods

Computational Physics I

generate this figure!

§ 4th order Runge-Kutta scheme:

Unit 5

Day 1

€

f (xi+1) = f (xi) +
1
6
(k1 + 2k2 + 2k3 + k4)(xi+1 − xi)

k1 = g fi,xi()

k2 = g fi + k1
(xi+1 − xi)

2
, xi +

(xi+1 − xi)
2

$
%

&

'
(

k3 = g fi + k2
(xi+1 − xi)

2
, xi +

(xi+1 − xi)
2

$
%

&

'
(

k4 = g fi + k3(xi+1 − xi), xi+1()

Prof. Alexander Knebe

§ solving an explicit 1st order explicit ordinary differential equation:

• Euler method

•modified Euler method

• 2nd order Runge-Kutta method

• 4th order Runge-Kutta scheme

€

df
dx

= g(f ,x)

€

f (xi+1) = f (xi) + g(fi,xi) (xi+1 − xi)

€

f (xi+1) = f (xi) +
g(fi,xi) + g(f i+1,xi+1)

2
(xi+1 − xi)

€

f (xi+1) = f (xi) + g(fi+1/ 2, xi+1/ 2) (xi+1 − xi)

€

f (xi+1) = f (xi) +
1
6
(k1 + 2k2 + 2k3 + k4) (xi+1 − xi)

k1 = g fi,xi()

k2 = g fi + k1
(xi+1 − xi)

2
, xi +

(xi+1 − xi)
2

$
%

&

'
(

k3 = g fi + k2
(xi+1 − xi)

2
, xi +

(xi+1 − xi)
2

$
%

&

'
(

k4 = g fi + k3(xi+1 − xi), xi+1()

Differential Equations summary

Computational Physics I Unit 5

Day 1

Prof. Alexander Knebe

§ without loss of generality we will restrict ourselves to an explicit 2nd order ODE

§ we can split this 2nd order ODE into a coupled system of two 1st order ODEs:

§ solving this system only requires minimal modifications to our previous scheme(s):

§ Note:
• xi+1, fi+1 and fi+1 in the formulae for G() and H() are (again) only temporary values

and must be calculated before being used in G() and H()!
• the same is obviously true for xi+1/2, fi+1/2 and fi+1/2

• Euler method

•modified Euler method

• 2nd order Runge-Kutta method

Systems of Differential Equations

Computational Physics I

df
dx

= g(f ,φ, x) = φ

dφ
dx

= h(f ,φ, x)

Unit 5

Day 2

f (xi+1) = f (xi)+G (xi+1 − xi)
φ(xi+1) = φ(xi)+H (xi+1 − xi)

G = g(fi,φi, xi)
H = h(fi,φi, xi)

G =
g(fi,φi, xi)+ g(fi+1,φi+1, xi+1)

2

H =
h(fi,φi, xi)+ h(fi+1,φi+1, xi+1)

2

G = g(fi+1/2,φi+1/2, xi+1/2)
H = h(fi+1/2,φi+1/2, xi+1/2)

𝑑!𝑓
𝑑𝑥! = ℎ 𝑓,

𝑑𝑓
𝑑𝑥 , 𝑥

Prof. Alexander Knebe

§ the differential equation for a harmonic oscillator (e.g. a spring) reads as follows

…where k is the “spring constant” and m the mass attached to the spring.

§ split this 2nd order ODE into a coupled system of two 1st order ODEs:

§ Note: the analytical solution for this particular equation is:

Systems of Differential Equations harmonic oscillator

Computational Physics I

€

˙ ̇ x +
k
m

x = 0

€

˙ ̇ x +
k
m

x = 0

€

˙ x = g(x,v,t) = v

˙ v = h(x,v,t) = −
k
m

x
=>

€

x(t) = Asin(ωt +ϕ)

€

ω = k /m

A = x0
2 + v0 /ω()2

ϕ = atan(ω x0 /v0)

with:

Unit 5

Day 2

Prof. Alexander Knebe

Systems of Differential Equations

Computational Physics I

§ standard Euler method:

§ 2nd order Runge-Kutta method:

i = 1:N-1

tmid = ti + Dt/2
xmid = xi + g(xi, vi, ti) Dt/2
vmid = vi + h(xi, vi, ti) Dt/2

for-loop:

no

yes

xi+1=xi+g(xmid,vmid,tmid) Dt
vi+1=vi+h(xmid,vmid,tmid) Dt

i = 1:N-1

for-loop:

no

yes

xi+1 = xi+g(xi,vi,ti) Dt
vi+1 = vi+h(xi,vi,ti) Dt

Unit 5

rk22.m

euler2.m

Day 2

harmonic oscillator

Prof. Alexander Knebe

Ø exercise:

• consider a spring with the following specifications: k=1kg/s2 and m=2kg
• use the initial conditions t0=0s, x0=-1m, v0=2m/s
• solve the differential equation for the harmonic oscillator using the standard Euler method
and the 2nd order Runge-Kutta scheme
• plot the numerical solutions alongside the analytical solution up to the end point tN=80s:

• approach:

• you now have to define two anonymous functions

g = @(x,v,t)(v);
h = @(x,v,t)(-k/m * x);

• both these functions must be passed to your integration function, e.g. euler2()

euler2.m:
function [x,v,t] = euler2(g, h, t0, x0, v0, tN, N)
% initialisation block:
…
% integration block:
…
end

• Note:

• your integration function now returns the vectors x, v, and t

• the solution becomes numerically instable when choosing too few integration steps
as can be seen for the Euler method

0 10 20 30 40 50 60 70 80
�15

�10

�5

0

5

10

15

t

x(
t)

harmonic oscillator

1000 Euler steps
1000 2nd order RK steps
analytical solution

Systems of Differential Equations

Computational Physics I

generate this figure!

Unit 5

Day 2

harmonic oscillator

Prof. Alexander Knebe

0 10 20 30 40 50 60 70 80
�6

�4

�2

0

2

4

6

t

x(
t)

harmonic oscillator

1000 2nd order Runge�Kutta steps
100 4th order Runge�Kutta steps
analytical solution

Systems of Differential Equations

Computational Physics I

Ø exercise:

• consider a spring with the following specifications: k=1kg/s2 and m=2kg
• use the initial conditions t0=0s, x0=-1m, v0=2m/s
• solve the differential equation for the harmonic oscillator using the 4th order Runge-Kutta
and the 2nd order Runge-Kutta scheme
• plot the numerical solutions alongside the analytical solution up to the end point tN=80s:

§ Note:

• this is a highly advanced exercise as it is not simple to write the formulae for the
predictor steps!
• if you plan to do this exercise remember the way the predictor steps have been
done in the case of the modified Euler or the 2nd order Runge-Kuta scheme method:
one first makes a predictor step in both variables before doing the second predictor
step and so on…

generate this figure!

Unit 5

Day 2

harmonic oscillator

Prof. Alexander Knebe

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

dx
/d
t

numerical
analytical

decay equationApplications

Computational Physics I Unit 5

Day 2

Ø exercise:

• solve the equation on the interval t = [0,5] using t0=0, x(t0)=1

• numerically differentiate the solution x(t) with respect to t.

• compare the analytical function for dx/dt against the numerically derived one.

§ consider the following ordinary differential equation

€

dx
dt

= −xt

generate this figure!

Prof. Alexander Knebe

radioactive decayApplications

Computational Physics I Unit 5

Day 2

€

dN
dt

= −λN

Ø exercise:

• numerically solve the decay equation for 232U using the 2nd order Runge-Kutta scheme.

• determine the minimum number of integration steps needed to obtain a numerical
solution close to the correct analytical one for the following setup:

t0 = 0 years, N(t0) = 5 million nuclei,

tend = 4 years, Nanalytical(tend) = 2.09 nulcei

• use a while-loop to determine the required number of integration points

hints:

• when determining the number of integration steps to match the correct analytical
solution, it is sufficient to achieve an absolute accuracy of 0.1 nuclei:

• when using a while-loop, you gradually need to increase the number of integration step
inside the loop.

• do not mix days and years but use a unique time unit

§ the number of decay events of unstable radioactive nuclei is proportional to the number of nuclei
present in a given sample

where N is the number of nuclei, and the decay constant l depends on the type of (radioactive)
nuclei.

§ example:

for 232U the half-life time is 68.9 days giving a decay constant of l=ln(2)/68.9days=0.01006/day

more

Prof. Alexander Knebe

radioactive decayApplications

Computational Physics I Unit 5

Day 2

Ø exercise:

• plot both numerical solutions into the same figure using a logarithmic y-axis.

• plot only every 10th point for the RK2 solution and every 100th for the Euler solution,
i.e. generate a figure similar to the following one:

Notes:

• the reduction of the number of points for the numerical RK2 and Euler solution
depends on the absolute accuracy chosen to match the analytical. The suggested values
of 10th and 100th are best suited for an absolute accuracy of 0.1!

• the analytical solution is N(t) = N0 e-lt

Ø exercise:

• numerically solve the decay equation using the Euler scheme.

• how many integration steps do you require to obtain a numerical solution close to the
analytical solution when using the Euler scheme? An absolute accuracy of 0.1 nuclei is
sufficient again.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

time [years]

lo
g1

0(
nu

m
be

r o
f n

uc
le

i)

RK2 scheme (every 10th point plotted)
Euler scheme (every 100th point plotted)
analytical solution

Prof. Alexander Knebe

cosmic expansionApplications

Computational Physics I Unit 5

Day 2

§ …and the solution a(t) describes how the Universe grows with time since the Big Bang

§H0 can be obtained by measuring the recessional speed of distant galaxies…

…and is found to be H0=72km/sec/Mpc.

§ the expansion of the Universe is described by the Friedmann equation given above

§ the constants in this equation have the following meaning…

€

H0 = expansion rate at present time
Ω0 = matter content in the Universe
ΩΛ = dark energy content in the Universe
Ωk =1− (Ω0 +ΩΛ) curvature of space - time

€

da
dt

= H0a Ω0a
−3 +Ωka

−2 +ΩΛ

€

da
dτ

= a Ω0a
−3 +Ωka

−2 +ΩΛ

§ the Friedmann equation can be re-written as follows (by transforming t to t = H0 t):

Prof. Alexander Knebe

cosmic expansionApplications

Computational Physics I Unit 5

Day 2

Ø exercise:

• consider the following parameter sets…

o LCDM model: (the currently favoured model)

o SCDM model: (the old standard model)

o OCDM model: (an “open” model)

o closed model: (a “Big Crunch” model)

• using as initial values t0=0, a(t0)=1 …

• …study the past expansion by solving the Friedmann equation backwards in time

• ...study the future expansion by solving the Friedmann equation forward in time

Ø exercise:

• why is the closed model not giving the expected recollapse in the future?

• why can’t you start the integration at the Big Bang?

€

da
dτ

= a Ω0a
−3 +Ωka

−2 +ΩΛ

€

Ω0 = 0.28
ΩΛ = 0.72

€

Ω0 =1.00
ΩΛ = 0.00

€

Ω0 = 0.24
ΩΛ = 0.00

€

Ω0 = 5.00
ΩΛ = 0.00

�1.5 �1 �0.5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
past expansion

(time�today)*H0

a

LCDM
SCDM
OCDM
closed CDM

0 0.5 1 1.5
1

1.5

2

2.5

3

3.5

4
future expansion

(time�today)*H0

a

LCDM
SCDM
OCDM
closed CDM

Prof. Alexander Knebe

Applications cannonball – numerically revisited

Computational Physics I Unit 5

Day 2

We are reconsidering the cannonball exercise from Unit 1 again. So far, we have treated the
solution in the dimensions x and y independently, but now the plan is to solve the coupled
system of 2D 2nd order differential equations numerically, also adding a frictional force term:

ó

where b is the frictional constant and �⃗�" = 0,−𝑔" , �⃗�" = 9.81m/s2.

𝑑!𝑟
𝑑𝑡! = 𝑏𝑣!

�⃗�
𝑣 + �⃗�

𝑑�⃗�
𝑑𝑡 = 𝑏𝑣!

�⃗�
𝑣 + �⃗�"

𝑑𝑟
𝑑𝑡

= �⃗� = 𝑔(𝑟, �⃗�, 𝑡)

= ℎ(𝑟, �⃗�, 𝑡)

Ø exercise #1:

•Write a function "rk22_2D.m" that numerically integrates a 2nd order 2D ordinary
differential equation using a 2nd order Runge-Kutta scheme. The function should work
like this:
function [r,v,t] = rk22_2D(g,h,r0,v0,t0,tN,N)

% input:
% g: anonymous function for 𝑔(𝑟, �⃗�, 𝑡)
% h: anonymous function for h(𝑟, �⃗�, 𝑡)
% r0: 2D column vector with initial position
% v0: 2D column vector with initial velocity
% t0: integration start time
% tN: integration end time
% N: number of integration steps
%
% output:
% r: 2xN matrix with positions
% v: 2xN matrix with velocities
% t: vector of length N with time

more ->

Prof. Alexander Knebe

Ø exercise #4:

• find the peak position of the numerically obtained solution and also mark it with a X.

Applications cannonball – numerically revisited

Computational Physics I Unit 5

Day 2

Ø exercise #3:

• using the formula for the analytical solution calculate the peak height
ymax=y(tmax) of the analytical solution via the condition vy(tmax)=0 using a bi-section method
and mark it in the same plot using a large X.

!v(t) = !v0 +
!gt

𝑑!𝑟
𝑑𝑡! = 𝑏𝑣!

�⃗�
𝑣 + �⃗�

𝑑�⃗�
𝑑𝑡 = 𝑏𝑣!

�⃗�
𝑣 + �⃗�"

𝑑𝑟
𝑑𝑡

= �⃗� = 𝑔(𝑟, �⃗�, 𝑡)

= ℎ(𝑟, �⃗�, 𝑡)

Ø exercise #2:

• Use rk22_2D() to solve the equations of motion for the following conditions:

x0 = 3m, y0 = 2m, v0 = 10 m/s, a = 23o , g=9.81 kg m/s2, b=-0.05

Show the analytical solution (without friction!) in the same plot.

We are reconsidering the cannonball exercise from Unit 1 again. So far, we have treated the
solution in the dimensions x and y independently, but now the plan is to solve the coupled
system of 2D 2nd order differential equations numerically, also adding a frictional force term:

ó

where b is the frictional constant and �⃗�" = 0,−𝑔" , �⃗�" = 9.81m/s2.

the final plot should look similar to this →

Prof. Alexander Knebe

Differential Equations derivation of 4th order Runge-Kutta scheme

Computational Physics I Unit 5

€

df
dx

= g(f ,x)

€

fi+1 − f i = g(f ,x)dx
xi

xi+1

∫

=
Δx
6

g(f i,xi) + 4g(f i+1/ 2,xi+1/ 2) + g(f i+1,xi+1)[]

=
Δx
6

g(f i,xi) + 2g(f i+1/ 2
(1) ,xi+1/ 2) + 2g(fi+1/ 2

(2) ,xi+1/ 2) + g(f i+1,xi+1)[]

?? ?

€

fi+1/ 2
(1) = f i +

Δx
2

k1 , k1 = g(f i,xi)

fi+1/ 2
(2) = f i +

Δx
2

k2 , k2 = g(f i+1/ 2
(1) ,xi+1/ 2)

˜ f i+1 = f i + Δx k3 , k3 = g(f i+1/ 2
(2) ,xi+1/ 2)

€

k4 = g(˜ f i+1,xi+1)

€

=
Δx
6

k1 + 2k2 + 2k3 + k4()

€

fi+1 = f i +
Δx
6

k1 + 2k2 + 2k3 + k4()

Simpson’s rule for numerical integration

