Unit 3

Linear Systems & Root Finding

we want to find ...

solving linear systems

1. ... the solution to a system of linear equations

$$A_1 x + A_2 y = c_1$$

$$A_3 x + A_4 y = c_2$$

■ here x and y are the unknowns and A₁, A₂, A₃, A₄, c₁, and c₂ need to be known

• the system is best described in matrix form:

$$\begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

root finding

2. ...the roots (=points where the function crosses the zero axis) of a given function f(x)

$$f(x) = 0$$

root finding can also be used for finding other special points...

g(x) = 5g(x)-5 = 0 \Leftrightarrow f(x) = 0 with f(x) = g(x)-5 \Leftrightarrow

...as well as the intersection point of two functions

g(x) = h(x)g(x)-h(x)=0f(x) = 0 with f(x) = g(x)-h(x) \Leftrightarrow \Leftrightarrow

• Note: these functions are arbitrary and there are no restrictions to them.

Linear Systems

a system of linear equations is a set of M equations...

... for N unknown variables x_i

• a linear system can be written as a matrix equation...

$$A \vec{x} = \vec{b}$$

 x_1 x_2 ...

...with:

Note:

- $A_{II}x_I + ... + A_{IN}x_N = b_I$ describes a hyper-plane in the N-dimensional space $(x_1, ..., x_N)$
- the solution to a linear system is the intersection of hyper-planes.
- linear systems also work for non-linear function if the functions have the same structure, e.g.

$$y = m_1 \sin(x) + c_1 \qquad \Leftrightarrow \qquad m_1 \sin(x) - y = -c_1 \qquad \Leftrightarrow \qquad \begin{pmatrix} m_1 & -1 \\ m_2 & -1 \end{pmatrix} \begin{pmatrix} \sin(x) \\ y \end{pmatrix} = \begin{pmatrix} -c_1 \\ -c_2 \end{pmatrix}$$

(one then certainly does not solve for x but for sin(x) in the end...)

definitions

Linear Systems

solving linear systems

• a system of linear equations is a set of M equations for N unknown variables x_i:

$$A \ \vec{x} = \vec{b}$$

$$A = \begin{pmatrix} A_{11} & \dots & A_{1N} \\ \dots & \dots & \dots \\ A_{M1} & \dots & A_{MN} \end{pmatrix}, \quad \vec{x} = \begin{pmatrix} x_1 \\ \dots \\ x_N \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} b_1 \\ \dots \\ b_N \end{pmatrix}$$

• the solution to the system is given by...

$$\vec{x} = A^{-1}\vec{b}$$

...with $A^{\cdot I}$ being the inverse matrix of A defined via

$$AA^{-1} = 1$$

Note:

• the inverse matrix is <u>not</u> given by

$$A^{-1} \neq \begin{pmatrix} A_{11}^{-1} & \dots & A_{1N}^{-1} \\ \dots & \dots \\ A_{M1}^{-1} & \dots & A_{MN}^{-1} \end{pmatrix}$$

Solvability of Linear Systems:

$$\begin{pmatrix} A_{11} & \dots & A_{1N} \\ \dots & & \dots \\ A_{M1} & \dots & A_{MN} \end{pmatrix} \begin{pmatrix} x_1 \\ \dots \\ x_N \end{pmatrix} = \begin{pmatrix} b_1 \\ \dots \\ b_N \end{pmatrix}$$

- M<N: underdetermined system, i.e. you cannot find a unique solution
- M=N: there exists a unique solution if det(A)≠0
- M>N: overdetermined system, i.e. you may find a solution by requiring r = Ax b to be minimal

solving linear systems

MATLAB has built-in commands to solve linear systems and calculate inverse matrices, respectively:

```
>> x = mldivide(A,b)
>> x = A\b
>> x = inv(A)*b
```

Note:

• the multiplication for the last option is "*" and not ".*"!

> exercise:

• calculate the intersection point of the two lines

$$y = 5x - 3$$

 $y = -0.3x + 7$

... by solving the linear system

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

• use all three methods to solve the system and compare the results

• generate a figure that plots the intersection point as a cross as well as the two lines

➤ exercise:

- you plan to buy a new suitcase for your flight to Melbourne, Australia, that complies with the airline regulations and the DIN norm:
 - airline regulation says that the sum of all three lengths is limited by

x+*y*+*z*=158cm

 \bullet DIN norm says that the ratio of two lengths has to be $\sqrt{2}$

$$\begin{array}{l} x = \sqrt{2} \quad y \\ y = \sqrt{2} \quad z \end{array}$$

• calculate the dimensions x, y, and z of the allowed suitcase by solving the linear system

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

• hint: you must bring each of the three equations into the form $A_{i1}x + A_{i2}y + A_{i3}z = b_i$

Linear Systems

> exercise:

• remember the cannonball exercise from Unit 1, using now the following constraints:

- assume a starting point of x_0 =0m, y_0 =0m
- after *T*=3sec the cannonball has reached position *x*=18m, *y*=2m
- calculate the initial velocity v_{0x} , v_{0y} by solving the linear system

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} v_{0x} \\ v_{0y} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

• what was the angle at which the cannonball was shot?

➤ exercise:

• you and a horse are having a race:

- you can run 0.2km per minute, and
- the horse can run 0.5km per minute, but it takes 6min. to saddle the horse.
- how far (and how long) can you run before the horse catches up with you?

➤ exercise:

• consider the following linear system

$$\begin{pmatrix} 1 & -2 \\ 2 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$$

- what do you get when trying to solve this system using inv(A) or mldivide(A,b)
- does this system have a solution? (check det(A))

solving linear systems

motivation

- 1. we either want to find the root of any arbitrary function f(x) = 0
 - Note: finding points f(x) = b require finding the root of f(x)-b = 0
- 2. or we want to find the intersection point of two arbitrary functions

$$y = g(x)$$
$$y = h(x)$$

• Note:

• in the case of linear functions f(x) and h(x) we are able to calculate the intersection by solving the corresponding linear system Ax=b as discussed previously!

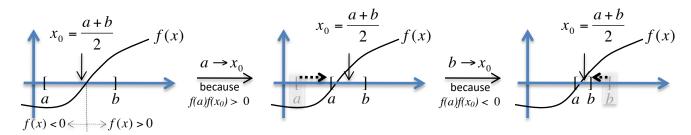
• the problem of finding the intersection of 2 functions g(x) and h(x) can be solved by "Root Finding",

$$\begin{array}{l} y = g(x) \\ y = h(x) \end{array} \Rightarrow g(x) = h(x) \Rightarrow 0 = f(x) = g(x) - h(x)$$

i.e. we define a function f(x)=g(x)-h(x) and determine the points x_0 where $f(x_0)=0$.

bi-section method

■ the bi-section method successively divides an interval [*a*,*b*] bracketing a root of *f*(*x*) until the difference between the left and right edge of the interval is smaller than a pre-selected accuracy threshold,



i.e. we are constantly shifting either a or b towards the actual root depending on the position of the root with respects to the mid-point (a+b)/2 of the current interval!

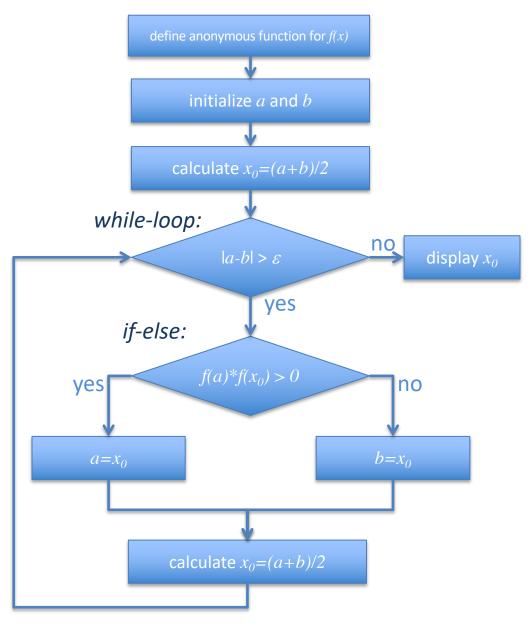
necessary requirements to program this algorithm:

- a kind of loop that loops until a certain condition is no longer valid: while-loop
- a criterion to decide whether to shift *a* or to shift *b* to the midpoint: if-then-else

flowchart representation of the bi-section algorithm:

• to avoid writing an extra script my_function.m that contains only a single function f(x) you can define an "anonymous function" in MATLAB (cf. Unit 2):

>> f = @(x) (expression defining function of x);



Note:

Day 1

• the "small number" ε should be larger than MATLAB's eps (help eps)

• the calculation of f(x) is best done by using a my_function.m script (cf. Unit 2)

Advanced Tips:

bi-section method

\succ exercise:

• find the root of the function $\Phi(r) = \frac{2}{r^2} - \frac{5}{r}$ on the interval [0.2,2] by bi-section.

• plot the function $\Phi(r)$ and mark the root r_0

Note:

• Φ is the *effective* gravitational potential in spherical coordinates where ... the first term is the centrifugal potential and ...the second term the gravitational potential

> exercise:

- find the root of the function $f(x) = x^2$ on the interval [-2,2] by bi-section.
- do you find a solution?
- what happens when you change the initial bi-section interval (e.g. [-3,1], [-1,2], ...)?

> exercise:

write a function

function [root] = bisec(f, a, b)

that takes as input arguments an anonymous function f=@(x)(...) and the intervall [a,b]and returns the root of f(x) on that interval

repeat the previous exercises using your bisec.m script

> exercise:

- with the definition of an anonymous function you can use MATLAB's fzero() to find roots!
 adjust your root finding script with the anonymous function to use fzero()
 hint: help fzero()

Newton-Raphson method

Root Finding

• the convergence of the root-finding can be increased by not only using the actual values of the function but also including its derivatives in the root-finding process:

• we are Taylor-expanding the function f(x) about a point x_0 close to the root up to the first order term:

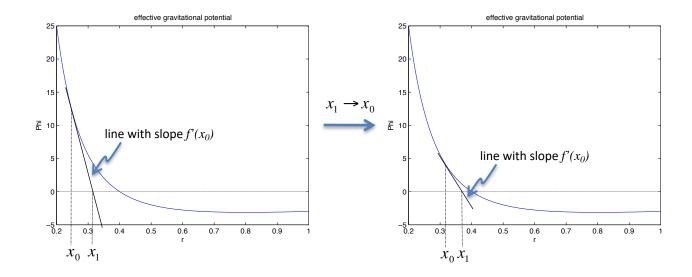
$$f(x) = f(x_0) + f'(x_0)(x - x_0) + O(x^2)$$

• as we are interested in the root we request f(x) = 0 leading to (ignoring higher-order terms):

$$x = x_0 - \frac{f(x_0)}{f'(x_0)}$$

• x will not be the root (as we truncated the Taylor-expansion), but it will be closer to the root than x_0

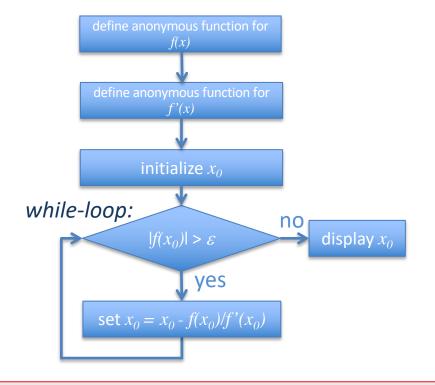
 \rightarrow we need to determine the root by applying the "formula" iteratively :



Note:

- this method only convergences when choosing a starting value x_0 sufficiently close to the actual root
- the derivative of f(x) should neither be zero nor infinite in the region of interest
- this method convergences faster than the bi-section (i.e. fewer iterations)
- you *must* have an analytical formula for the derivative f'(x)

Newton-Raphson method



flowchart representation of Newton-Raphson root finding procedure:

> exercise:

• find the root of the function $\Phi(r) = \frac{2}{r^2} - \frac{5}{r}$ on the interval [0.2,2] by Newton-Raphson.

- plot the function $\Phi(r)$ and mark the root r_0
- hints:
 - use as initial guess for the root r_0 =0.3
 - use the analytical expression for the derivative to calculate $f'(r_0)$
 - $|f(x_0)|$ can be calculated using MATLAB's abs () function (help abs)

> exercise:

- what happens when you start the iterations with r_0 >0.6 ?
- what is special about the point r_0 =0.6 and why does the method fail for r_0 >0.6?

> exercise:

- calculate the minimum of $\Phi(r)$ by finding the root of $\Phi'(r_{min})=0$?
- hint: you obviously require the second derivative of Φ for the Newton-Raphson method

> exercise:

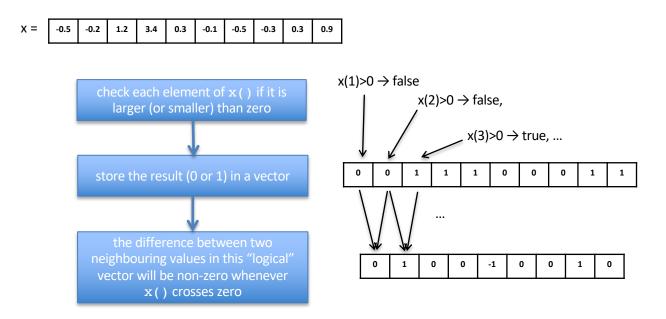
write a function

```
function [root] = NewRaph(f, fder, x0)
```

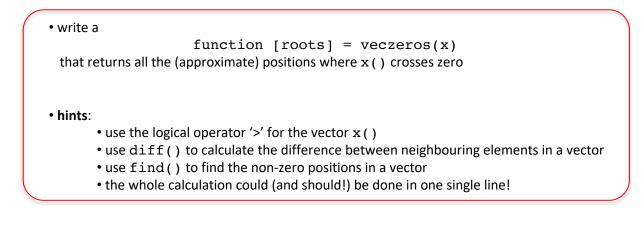
that takes as input arguments two anonymous functions for f(x) and f'(x) and the first guess x_0

approximate method for vectors

we want to find the zero-crossings of a given vector, e.g.



> exercise:



application - intersection of circle and exponential

circle:

• a circle can be described in two different ways in Cartesian coordinates

$$x^{2} + y^{2} + Ax + By + C = 0$$
 Eq.(1)

or

$$(x - x_0)^2 + (y - y_0)^2 = R^2$$
 Eq.(2)

where x_0 and y_0 are the centre and R its radius.

> exercise:

• determine x₀, y₀, and R of the circle crossing the 3 points

$$(3,-1)$$

 $(-2,4)$
 $(6,8)$

by solving the linear system for A, B, and C first.

• hint: to obtain x_0 , y_0 , and R from A, B, and C you need to convert Eq.(1) into something similar to Eq.(2) by using the binomial rules.

> exercise:

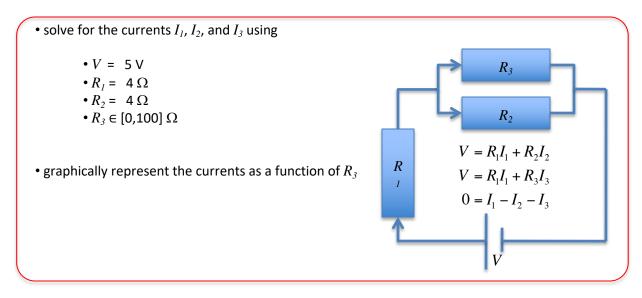
- plot the circle marking the three points with crosses
- hint: plot two functions y=f(x) where one is the positive and the other one the negative root of y^2

> exercise:

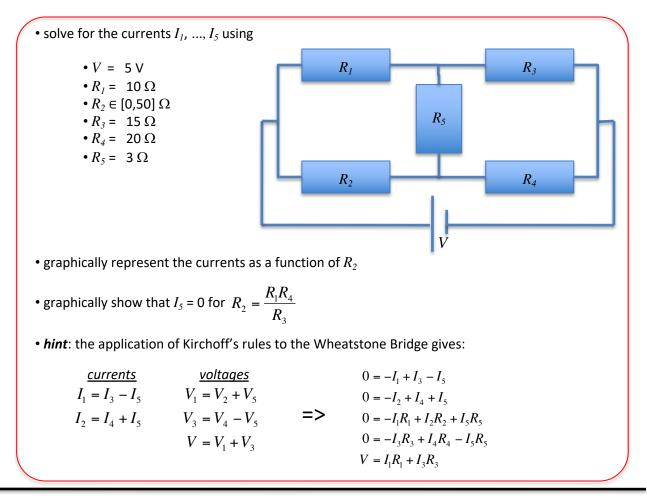
- find the two intersection points of the circle with $f(x)=e^{-x/4}$
- plot the function *f*(*x*) onto the same figure as the circle
- mark the two intersection points wit the circle with a cross
- hint: you need to use a root-finding technique

application - electrical circuits

> exercise:



> exercise ("Wheatstone Bridge"):



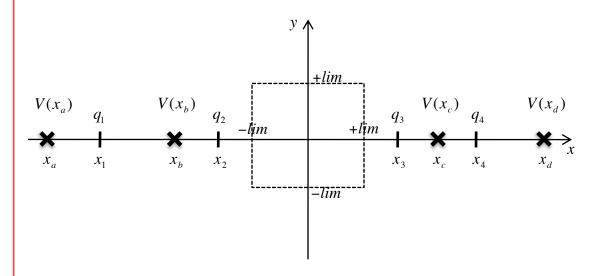
application – unknown charges

> exercise:

Four charges q_1 , q_2 , q_3 y q_4 of unknown value are placed along the x-axis. The electrical potential

$$V(x) = \sum_{i} \frac{q_i}{x_i - x}$$

has been measured experimentally at the four positions x_a , x_b , x_c , x_d



• determine the charge values q_i by solving the system of equations

$$V(x_j) = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{x_i - x_j} \quad j = (a, b, c, d)$$

visualize the electric potential generated by the four charges in the region
 x = [-lim, lim] and y = [-lim, lim].

(the relevant values are

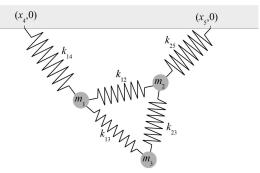
$$x_1 = -4.3 \cdot 10^{-2} \text{ m}, x_2 = -1.5 \cdot 10^{-2} \text{ m}, x_3 = 1.29 \cdot 10^{-2} \text{ m}, x_4 = 4.7 \cdot 10^{-2} \text{ m}, x_a = -5.1 \cdot 10^{-2} \text{ m}, x_b = -2.7 \cdot 10^{-2} \text{ m}, x_c = 3.0 \cdot 10^{-2} \text{ m}, x_d = 7.0 \cdot 10^{-2} \text{ m}, V_a = -1.3 \text{ V}, V_b = 3.33 \text{ V}, V_c = -0.77 \text{ V}, V_d = 3.0 \text{ V},$$

lim=0.98 \cdot 10^{-2} \text{ m})

application – equilibrium springs

➤ exercise:

Three masses are connected via a system of springs:



The corresponding equations for the equilibrium state are

$$0 = F_{ix} = \sum_{j=1}^{5} k_{ij}(x_j - x_i)$$
$$0 = F_{iy} = \sum_{j=1}^{5} k_{ij}(y_j - y_i) - m_i g$$

where $k_{ij}=k_{ji}$ for all existing springs and $k_{nm}=0$ for all non-existing springs. These equations form a system of 6 equations for the 6 unknowns $x_1, x_2, x_3, y_1, y_2, y_3$.

• Write a function equilib3m.m that calculates the equilibrium positions of the masses m_1 , m_2 , and m_3 , the matrix of the spring constants k_{ij} , and the fixpoints x_4 , x_5 . This function should work like this:

```
function [r] = equilib3m(m, k, p)
% Equilibrium points of 3 hanging masses connected by springs and
% under the gravitational force as shown in the Figure above
% Input:
%
                       particle masses (kg)
        m(3) :
%
        k(5)
                       spring constants (N/m)
             :
                       [x4, x5] coordinates (m)
%
        p(2)
             :
% Output:
                       equilibrium points of each mass (m)
%
        r(2,3) :
```

• Using your script function determine the equilibrium points for the following setup: $x_4=0m, x_5=5m,$

 $m_1=2$ kg, $m_2=3$ kg, $m_3=5$ kg, $k_{12}=20$ N/m, $k_{23}=80$ N/m, $k_{14}=40$ N/m, $k_{13}=50$ N/m, $k_{25}=30$ N/m

• Create a plot like this:

MATLAB

- besides of all the new commands and functions, you need to know how to...
 - define and solve systems of linear equations
 - find the root of functions of one variable
 - find the zero crossings of vectors