Computational Physics | Unit 3

Unit 3

Linear Systems & Root Finding

Prof. Alexander Knebe

Computational Physics | Unit 3

we want to find...

solving linear systems

1. ...the solution to a system of linear equations

Alx+ Ay =c¢
A3X+A4y =C

= here x and y are the unknowns and A,, A,, A;, A4,c;, and ¢, need to be known

= the system is best described in matrix form:

(4 42)6)= ()

root finding

2. ...the roots (=points where the function crosses the zero axis) of a given function f(x)

flx)=0

= root finding can also be used for finding other special points...

gw) =5 A g)-5=0 A Jx) =0 with fix) = g(x)-5

= ...as well as the intersection point of two functions
g(x) = h(x) @ 8(x)-h(x) =0 g Sfix) =0 with f(x) = g(x)-h(x)

= Note: these functions are arbitrary and there are no restrictions to them.

Day 1 Prof. Alexander Knebe

Computational Physics | Unit 3

Linear Systems definitions

= 3 system of linear equations is a set of M equations...

Apx +ApX, + .+ Apxy =b

Ay x +Ayx, + .+ Ayyxy =b, M equations

Ayx + Ay X, + .+ Anxy =by,
NV 7

N unknown variables

...for N unknown variables x;

= a linear system can be written as a matrix equation...

AX=b

...with:
Aqq Ay X1\ | b,
A= ’_)_C) = -, b =
Am Aun XN by
H_/
MxN matrix
= Note:

* A;x;+.. +A;nxy=b, describes a hyper-plane in the N-dimensional space (x;,....xy)
* the solution to a linear system is the intersection of hyper-planes.

* linear systems also work for non-linear function if the functions have the same structure, e.g.

y =m, sin(x) +c, o M sin(x) -y = —c, o (m] —IJ(Sin(x)) _ (—Cl)

y = m,sin(x) +c, m,sin(x) -y = —c, m, -1\ 'y —C;

(one then certainly does not solve for x but for sin(x) in the end...)

Day 1 Prof. Alexander Knebe

Computational Physics | Unit 3

Linear Systems solving linear systems

= a system of linear equations is a set of M equations for N unknown variables x; :

Ax=>b
A Ay X b,
A= , X= , b=
Ay Ay Xy by

...with A-/ being the inverse matrix of A defined via
AA™T =1

= Note:

* the inverse matrix is not given by

-1 -1

All AIN

Al =] L

-1 -1

Ay o Ay

= Solvability of Linear Systems:

All AIN 'xl bl
AMI AMN xN bN

* M<N: underdetermined system, i.e. you cannot find a unique solution
* M=N: there exists a unique solution if det(A)z0

* M>N: overdetermined system, i.e. you may find a solution by requiring r = Ax - b to be minimal

Day 1 Prof. Alexander Knebe

Computational Physics | Unit 3

Linear Systems solving linear systems

= MATLAB has built-in commands to solve linear systems and calculate inverse matrices, respectively:
>>x=mldivide(A,Db)
>>x=A\b

>>x = inv(A)*b

= Note:

* the multiplication for the last option is “*” and not “.*”|

> exercise:

/0 calculate the intersection point of the two lines \
y= 5x-3
y=-03x+7

...by solving the linear system

2 l)(e)
Ay Ap)\y b,

* use all three methods to solve the system and compare the results
* generate a figure that plots the intersection point as a cross as well as the two lines

/

> exercise:

/ * you plan to buy a new suitcase for your flight to Melbourne, Australia, that complies with the\
airline regulations and the DIN norm:

* airline regulation says that the sum of all three lengths is limited by

x+y+z=158cm

* DIN norm says that the ratio of two lengths has to be v2

x=v2 y
y:\/2 Z

* calculate the dimensions x, y, and z of the allowed suitcase by solving the linear system
Ay Ay Ap|(x b,

Ay Ay Aplly|=lb,
Ay Ay Au)\z b,

* hint: you must bring each of the three equations into the form A;\x + A,y + A3z = b;

o v,

Day 1 Prof. Alexander Knebe

Computational Physics |

Unit 3

Linear Systems solving linear systems

> exercise:

Kremember the cannonball exercise from Unit 1, using now the following constraints:

* assume a starting point of x,=0m, y,=0m
* after 7=3sec the cannonball has reached position x=18m, y=2m

* calculate the initial velocity v,,, vy, by solving the linear system

(Au Alz) va)_(bl)
Ay Ay)\Voy b,

* what was the angle at which the cannonball was shot?

~

> exercise:

* you and a horse are having a race: R
* you can run 0.2km per minute, and
* the horse can run 0.5km per minute, but it takes 6min. to saddle the horse.
* how far (and how long) can you run before the horse catches up with you?
_ J
> exercise:

-

* consider the following linear system

S RN

* what do you get when trying to solve this system using inv(A) ormldivide(A,b)

* does this system have a solution? (check det (A))

_

Day 1 Prof. Alexander Knebe

Computational Physics | Unit 3

Root Finding motivation
1. we either want to find the root of any arbitrary function f{x) =

= Note: finding points f{x) = b require finding the root of f{ix)-b =0

2. or we want to find the intersection point of two arbitrary functions

y =g(x)
y = h(x)

= Note:
* in the case of linear functions f{x) and /(x) we are able to calculate the intersection by solving the
corresponding linear system Ax=b as discussed previously!

* the problem of finding the intersection of 2 functions g(x) and k(x) can be solved by “Root Finding”,

y =g(x)
y = h(x)

i.e. we define a function f{x)=g(x)-h(x) and determine the points x, where f{x;) = 0.

} = g)=h(x) = 0=f(x)=gx)-h(x)

bi-section method

= the bi-section method successively divides an interval [a,b] bracketing a root of f{x) until the difference
between the left and right edge of the interval is smaller than a pre-selected accuracy threshold,

a+b a+b

f(x) A

A X 2 S (x) A 2 JACY)
\L/ a —>X0 / b =X /
[because ;-">r] > because b]<"" >
J a ‘ Sfla)fixo)> 0 _/a, b Sfla)fixo) < O _/a(b

fx)<0<—>f(x)>0

i.e. we are constantly shifting either a or b towards the actual root depending on the position of the root with
respects to the mid-point (a+b)/2 of the current interval!

= necessary requirements to program this algorithm:

* a kind of loop that loops until a certain condition is no longer valid: while-loop

* a criterion to decide whether to shift a or to shift b to the midpoint: if-then-else

Day 1 Prof. Alexander Knebe

Computational Physics | Unit 3

Root Finding bi-section method

= flowchart representation of the bi-section algorithm:

define anonymous function for f{x)

initialize a and b

calculate x,=(a+b)/2

while-loop:

fa)*f(xy) >0

calculate x,=(a+b)/2

= Note:

* the “small number” ¢ should be larger than MATLAB's eps (help eps)

= Advanced Tips:
* the calculation of f{x) is best done by using a my_function.m script (cf. Unit 2)
* to avoid writing an extra script my_function.m that contains only a single function f{x) you can define
an “anonymous function” in MATLAB (cf. Unit 2):

>> f = @(x) (expression defining function of x);

Day 1 Prof. Alexander Knebe

Computational Physics | Unit 3

Root Finding bi-section method
> exercise:
4 7

« find the root of the function @(r) = % - 2 on the interval [0.2,2] by bi-section.
ror

* plot the function ®(7) and mark the root r,

* Note:
* @ is the effective gravitational potential in spherical coordinates where
...the first term is the centrifugal potential and
...the second term the gravitational potential

> exercise:

* find the root of the function f(x) = x° onthe interval [-2,2] by bi-section.
* do you find a solution?
* what happens when you change the initial bi-section interval (e.g. [-3,1], [-1,2], ...)?

> exercise:

* write a function
function [root] = bisec(f, a, b)

that takes as input arguments an anonymous function f=@(x)(...) and the intervall [a,b]
and returns the root of f{x) on that interval
* repeat the previous exercises using your bisec .m script

> exercise:
et
* with the definition of an anonymous function you can use MATLAB’s £zero () to find roots! et N
* adjust your root finding script with the anonymous function to use fzero () q G‘L
* hint: help fzero() ‘0(
W
W

Day 1 Prof. Alexander Knebe

Computational Physics | Unit 3

Root Finding Newton-Raphson method

= the convergence of the root-finding can be increased by not only using the actual values of the function but
also including its derivatives in the root-finding process:

* we are Taylor-expanding the function f{x) about a point x, close to the root up to the first order term:

F(x) = f(xp)+ f'(x)(x = x,) +O(x2)

* as we are interested in the root we request f{x) = 0 leading to (ignoring higher-order terms):

J(xo)

=X
Sf'(xy)

* x will not be the root (as we truncated the Taylor-expansion), but it will be closer to the root than x,

— we need to determine the root by applying the “formula” iteratively :

25

effective gravitational potential effective gravitational potential
T T T T T T

25

201 B 201
15 15
—
X1 X
£ 10 . . , 1 é £ 10
line with slope f°(x)
st] st line with slope f’(x)
0 0
5 S\ ‘ ‘ ‘ ‘ ‘ 5 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r r
Xo X, X, X
= Note:

* this method only convergences when choosing a starting value x, sufficiently close to the actual root
* the derivative of f{x) should neither be zero nor infinite in the region of interest

* this method convergences faster than the bi-section (i.e. fewer iterations)

* you must have an analytical formula for the derivative f(x)

Day 2 Prof. Alexander Knebe

Computational Physics | Unit 3

Root Finding Newton-Raphson method

= flowchart representation of Newton-Raphson root finding procedure:

while-loop:

> exercise:

2
* find the root of the function ®(r) = — on the interval [0.2,2] by Newton-Raphson.
r

NS o

* plot the function ®(r) and mark the root r,

* hints:
* use as initial guess for the root r,=0.3
* use the analytical expression for the derivative to calculate f(r,)
* If{xy)l can be calculated using MATLAB's abs () function (help abs)

> exercise:

* what happens when you start the iterations with r,>0.6 ?
* what is special about the point r,=0.6 and why does the method fail for r,>0.6?

> exercise:

* calculate the minimum of ®(r) by finding the root of ®‘ (r,,;,,)=07?
* hint: you obviously require the second derivative of ®@ for the Newton-Raphson method

e’ N

> exercise:

* write a function
function [root] = NewRaph(f, fder, x0)

that takes as input arguments two anonymous functions for f{x) and f’(x) and the first guess x;

"/

Day 2 Prof. Alexander Knebe

Computational Physics | Unit 3

Root Finding approximate method for vectors

= we want to find the zero-crossings of a given vector, e.g.

x(1)>0 - false
x(2)>0 - false,

X(3)>0 = true, .
o / /

0 1 0 0 0 1 1

X (') crosses zero

> exercise:

/ * write a \

function [roots] = veczeros(x)
that returns all the (approximate) positions where x (') crosses zero

* hints:
* use the logical operator >’ for the vector x ()
*use diff () to calculate the difference between neighbouring elements in a vector
* use £ind () to find the non-zero positions in a vector
K * the whole calculation could (and should!) be done in one single line! /

Day 2 Prof. Alexander Knebe

Computational Physics | Unit 3

Examples application - intersection of circle and exponential

= circle:
* a circle can be described in two different ways in Cartesian coordinates
x*+y’ +Ax+By+C =0 Eq.(1)
or

(x=x)’+(y-y) =R Eq.(2)

where x, and y, are the centre and R its radius.

> exercise:

* determine x,, ¥y, and R of the circle crossing the 3 points

(3,-1
(=2,4)
(6,8)

by solving the linear system for A, B, and C first.

* hint: to obtain x,, yy, and R from A, B, and C you need to convert Eq.(1) into something
similar to Eq.(2) by using the binomial rules.

- v,

> exercise:

* plot the circle marking the three points with crosses

* hint: plot two functions y=f{x) where one is the positive and the other one the negative root of y?

> exercise:

* find the two intersection points of the circle with f{x)=¢*#
* plot the function f{x) onto the same figure as the circle
* mark the two intersection points wit the circle with a cross

* hint: you need to use a root-finding technique

Day 2 Prof. Alexander Knebe

Computational Physics |

Unit 3

Examples application - electrical circuits
> exercise:
(e solve for the currents [;, I,, and I; using N\
*V=75V
° R] = 4Q
° R2 = 4 Q
* R; €[0,100] Q
V=RI +R,]1,
* graphically represent the currents as a function of R; R V =RI +R,I,
0=1-1,-1,
|
I !
Vv
o v,

> exercise (“Wheatstone Bridge”):

Ksolve for the currents I;, ..., I5 using

‘R,= 10Q

*R,€1[0,50] Q

“R;= 15Q —
“R,= 200

*Rs= 30

v = s ki LR

|
e B

RR,

* graphically show that /5= 0 for R, =
3

currents voltages
I =1, - Vi=V,+V;

L=1,+1 V,=V, -V, =>
V=V+V,

_

* graphically represent the currents as a function of R,

* hint: the application of Kirchoff’s rules to the Wheatstone Bridge gives:

<—;—

O0=-1+1,-1,
O0=-L+1,+1
0=-IR + LR, + R,
0=-LR,+I,R, - LR,

V =IR +ILR, /

Day 2

Prof. Alexander Knebe

Computational Physics |

Unit 3

Examples

> exercise:

_

application — unknown charges

Four charges g1, g2, g3 ¥ g4 of unknown value are placed along the x-axis. The electrical

potential
q‘
V xX) = 2
() 2xi_x

has been measured experimentally at the four positions x,, x;, x., x4

YA

+lim
Vix,) Vix,) Vix,) Vix,)

1 2 3 4
~lim +lym

»*— *—t— F%———%—>
X, X, X, X, X, X, X X,

—lim

* determine the charge values g, by solving the system of equations

lzq_

i
dme, < x, - x;

Vix;)= j=(a,b,c,d)

* visualize the electric potential generated by the four charges in the region

x = [-lim, lim] and y = [-lim, lim].

(the relevant values are
X;=—4.3-102 m, X,=-1.5-102 m, x3=1.29-102 m, x,=4.7-102 m,
X,=-5.1-102 m, x,=-2.7-10% m, Xx.=3.0-102 m, X4=7.0-102 m,
V,=-1.3V, V,=3.33 V, V.=-0.77 V, V;=3.0 V,
lim=0.98-102 m)

)

Day 2

Prof. Alexander Knebe

Computational Physics | Unit 3

Examples application — equilibrium springs

> exercise:

(- N

Three masses are connected via a system of springs:

@,0) (x,0)

kzs
k14

k
NN
k
13
m

m,
m
1
%§kﬁ
3

The corresponding equations for the equilibrium state are

S5
0=F, =Y k;(x;-x)
j=l

5
0= Fiy = Ekij(yj —-y)-mg
j=1
where k;=k;; for all existing springs and k,,=0 for all non-existing springs. These

equations form a system of 6 equations for the 6 unknowns x, x5, x3, ¥, y2, V3.

* Write a function equilib3m.m that calculates the equilibrium positions of the
masses m,, m,, and ms, the matrix of the spring constants k;;, and the fixpoints x4, xs.
This function should work like this:

function [r] = equilib8m(m, k, p)
% Equilibrium points of 8 hanging masses connected by springs and
% under the gravitational force as shown in the Figure above

ijr

% Input:

% m(3) particle masses (kg)

% k(B) : spring constants (NN/m)

% p(R) : [x4, x5] coordinates (m)

% Output:

% r(8,3) equilibrium points of each mass (m)

* Using your script function determine the equilibrium points for the following setup:
x4=0m, x5=5m,
my=2kg, my=3kg, m;=5kg,
k1,=20N/m, k3= 80N/m, k14,=40N/m, k;3=50N/m, k,5=30N/m

* Create a plot like this:

14
i N
18
2
o o5 0 15 2 25 3 35 4 35 s
x(m)

Day 2 Prof. Alexander Knebe

Computational Physics | Unit 3

MATLAB summary

= besides of all the new commands and functions, you need to know how to...
* define and solve systems of linear equations
* find the root of functions of one variable

* find the zero crossings of vectors

Prof. Alexander Knebe

