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we want to find…

1.  …the solution to a system of linear equations

A1 x + A2 y  = c1
A3 x + A4 y  = c2

§ here x and y are the unknowns and A1, A2, A3, A4 ,c1, and c2 need to be known

§ the system is best described in matrix form:

2. …the roots (=points where the function crosses the zero axis) of a given function f(x)

f(x) = 0

§ root finding can also be used for finding other special points...

g(x) = 5     ó g(x)-5 = 0 ó f(x) = 0  with f(x) = g(x)-5

§ ...as well as the intersection point of two functions 

g(x) = h(x)  ó g(x)-h(x) = 0 ó f(x) = 0  with f(x) = g(x)-h(x)

§ Note: these functions are arbitrary and there are no restrictions to them.

root finding

solving linear systems

Day 1
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§ a system of linear equations is a set of M equations…

…for N unknown variables xi

§ a linear system can be written as a matrix equation...

…with:

𝐴 =
𝐴!! … 𝐴!%
… … …
𝐴&! … 𝐴&%

, �⃗� =
𝑥!
…
𝑥%

, �⃗� =
𝑏!
…
𝑏&

§ Note:

• A11x1+…+A1NxN=b1 describes a hyper-plane in the N-dimensional space (x1,…,xN)

• the solution to a linear system is the intersection of hyper-planes.

• linear systems also work for non-linear function if the functions have the same structure, e.g.

(one then certainly does not solve for x but for sin(x) in the end...)

definitions
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€ 

A11x1 + A12x2 + ...+ A1N xN = b1
A21x1 + A22x2 + ...+ A2N xN = b2
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€ 

x1
x2
...
xN

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

M equations

N unknown variables
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MxN matrix
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€ 

m1 sin(x) − y = −c1
m2 sin(x) − y = −c2
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m2 −1
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y = m1 sin(x) + c1
y = m2 sin(x) + c2
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§ a system of linear equations is a set of M equations for N unknown variables xi :

§ the solution to the system is given by…

…with A-1 being the inverse matrix of A defined via

§ Note:

• the inverse matrix is not given by

solving linear systems
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§ Solvability of Linear Systems:

•M<N: underdetermined system, i.e. you cannot find a unique solution

•M=N: there exists a unique solution if det(A)≠0

•M>N: overdetermined system, i.e. you may find a solution by requiring r = Ax - b to be minimal
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§ MATLAB has built-in commands to solve linear systems and calculate inverse matrices, respectively:

>> x = mldivide(A,b)
>> x = A\b
>> x = inv(A)*b

§ Note:
• the multiplication for the last option is “*” and not “.*”!

Ø exercise:

• calculate the intersection point of the two lines

y =      5 x – 3
y = -0.3 x + 7

…by solving the linear system

• use all three methods to solve the system and compare the results
• generate a figure that plots the intersection point as a cross as well as the two lines

solving linear systems
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Ø exercise:

• you plan to buy a new suitcase for your flight to Melbourne, Australia, that complies with the
airline regulations and the DIN norm:

• airline regulation says that the sum of all three lengths is limited by

x+y+z=158cm

• DIN norm says that the ratio of two lengths has to be √2

x = √2  y
y = √2  z

• calculate the dimensions x, y, and z of the allowed suitcase by solving the linear system

• hint: you must bring each of the three equations into the form  Ai1x + Ai2y + Ai3z = bi
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Ø exercise:

• remember the cannonball exercise from Unit 1, using now the following constraints:

• assume a starting point of x0=0m, y0=0m
• after T=3sec the cannonball has reached position x=18m, y=2m 

• calculate the initial velocity v0x, v0y by solving the linear system

• what was the angle at which the cannonball was shot?

solving linear systems
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Ø exercise:

• you and a horse are having a race:

• you can run 0.2km per minute, and

• the horse can run 0.5km per minute, but it takes 6min. to saddle the horse.

• how far (and how long) can you run before the horse catches up with you?

Linear Systems
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Ø exercise:

• consider the following linear system

• what do you get when trying to solve this system using inv(A) or mldivide(A,b)

• does this system have a solution? (check det(A))
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Root Finding

1. we either want to find the root of any arbitrary function f(x) = 0

§ Note: finding points f(x) = b require finding the root of f(x)-b = 0

2. or we want to find the intersection point of two arbitrary functions

§ Note:
• in the case of linear functions f(x) and h(x) we are able to calculate the intersection by solving the 
corresponding linear system Ax=b as discussed previously!

• the problem of finding the intersection of 2 functions g(x) and h(x) can be solved by “Root Finding”,

i.e. we define a function f(x)=g(x)-h(x) and determine the points x0 where f(x0) = 0.

§ the bi-section method successively divides an interval [a,b] bracketing a root of f(x) until the difference 
between the left and right edge of the interval is smaller than a pre-selected accuracy threshold,

i.e. we are constantly shifting either a or b towards the actual root depending on the position of the root with 
respects to the mid-point (a+b)/2 of the current interval!

§ necessary requirements to program this algorithm:

• a kind of loop that loops until a certain condition is no longer valid: while-loop

• a criterion to decide whether to shift a or to shift b to the midpoint: if-then-else

motivation

Computational Physics I Unit 3
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y = g(x)
y = h(x)
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y = g(x)
y = h(x)

" 
# 
$ 

⇒ g(x) = h(x) ⇒ 0 = f (x) = g(x) − h(x)

bi-section method
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x0 =
a + b
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a→ x0
because

f(a)f(x0) >  0
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b→ x0
because

f(a)f(x0) <  0

€ 

f (x) > 0

€ 

f (x) < 0
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Root Finding bi-section method

Computational Physics I Unit 3

§ flowchart representation of the bi-section algorithm:

initialize a and b

|a-b| > e

calculate x0=(a+b)/2

f(a)*f(x0) > 0

b=x0a=x0

display x0

yes

no

yes no

while-loop:

if-else:

§ Note:

• the “small number” e should be larger than MATLAB’s eps (help eps)

§ Advanced Tips:

• the calculation of f(x) is best done by using a my_function.m script (cf. Unit 2)

• to avoid writing an extra script my_function.m that contains only a single function f(x) you can define 
an “anonymous function” in MATLAB (cf. Unit 2):

>> f = @(x) (expression defining function of x);

Day 1

calculate x0=(a+b)/2

define anonymous function for f(x)
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Ø exercise:

• find the root of the function                                     on the interval [0.2,2] by bi-section.

• plot the function F(r) and mark the root r0

• Note:
• F is the effective gravitational potential in spherical coordinates where

…the first term is the centrifugal potential and
…the second term the gravitational potential

Ø exercise:

• find the root of the function                        on the interval [-2,2] by bi-section.
• do you find a solution?
• what happens when you change the initial bi-section interval (e.g. [-3,1], [-1,2], …)?

Ø exercise:

• write a function

function [root] = bisec(f, a, b)

that takes as input arguments an anonymous function f=@(x)(…) and the intervall [a,b]
and returns the root of f(x) on that interval
• repeat the previous exercises using your bisec.m script

Ø exercise:

• with the definition of an anonymous function you can use MATLAB’s fzero() to find roots!
• adjust your root finding script with the anonymous function to use fzero()
• hint: help fzero()

Root Finding bi-section method

Computational Physics I Unit 3

€ 

Φ(r) =
2
r2
−
5
r

voluntary exercis
e!

€ 

f (x) = x 2

Day 1
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Root Finding Newton-Raphson method
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§ the convergence of the root-finding can be increased by not only using the actual values of the function but 
also including its derivatives in the root-finding process:

• we are Taylor-expanding the function f(x) about a point x0 close to the root up to the first order term:

• as we are interested in the root we request f(x) = 0 leading to (ignoring higher-order terms):

• x will not be the root (as we truncated the Taylor-expansion), but it will be closer to the root than x0

→we need to determine the root by applying the “formula” iteratively :

€ 

f (x) = f (x0) + " f (x0)(x − x0) +O(x 2)

€ 

x = x0 −
f (x0)
# f (x0)

€ 

x0

€ 

x1

€ 

x0

€ 

x1

line with slope f’(x0)

line with slope f’(x0)
€ 

x1 → x0

§ Note:

• this method only convergences when choosing a starting value x0 sufficiently close to the actual root
• the derivative of f(x) should neither be zero nor infinite in the region of interest
• this method convergences faster than the bi-section (i.e. fewer iterations)
• you must have an analytical formula for the derivative f ’(x)

Day 2
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Root Finding Newton-Raphson method

Computational Physics I Unit 3

§ flowchart representation of Newton-Raphson root finding procedure:

Ø exercise:

• find the root of the function                               on the interval [0.2,2] by Newton-Raphson.

• plot the function F(r) and mark the root r0

• hints:
• use as initial guess for the root r0=0.3
• use the analytical expression for the derivative to calculate f’(r0)
• |f(x0)| can be calculated using MATLAB’s abs() function (help abs)

Ø exercise:

• what happens when you start the iterations with r0>0.6 ?
• what is special about the point r0=0.6 and why does the method fail for r0>0.6?

Ø exercise:

• calculate the minimum of F(r) by finding the root of F‘ (rmin)=0?
• hint: you obviously require the second derivative of F for the Newton-Raphson method

Ø exercise:

• write a function

function [root] = NewRaph(f, fder, x0)

that takes as input arguments two anonymous functions for f(x) and f’(x) and the first guess x0

€ 

Φ(r) =
2
r2
−
5
r

Day 2

initialize x0

|f(x0)| > e display x0

yes

nowhile-loop:

set x0 = x0 - f(x0)/f’(x0)

define anonymous function for 
f ’(x)

define anonymous function for 
f(x)
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Root Finding approximate method for vectors

Computational Physics I Unit 3

§ we want to find the zero-crossings of a given vector, e.g.

Ø exercise:

• write a 
function [roots] = veczeros(x)

that returns all the (approximate) positions where x() crosses zero

• hints:
• use the logical operator ‘>’ for the vector x()
• use diff() to calculate the difference between neighbouring elements in a vector
• use find() to find the non-zero positions in a vector
• the whole calculation could (and should!) be done in one single line!

Day 2

-0.5 -0.2 1.2 3.4 0.3 -0.1 -0.5 -0.3 0.3 0.9x =

the difference between two 
neighbouring values in this “logical” 
vector will be non-zero whenever 

x() crosses zero 

store the result (0 or 1) in a vector

check each element of x() if it is 
larger (or smaller) than zero

x(1)>0 → false

0 0 1 1 1 0 0 0 1 1

0 1 0 0 -1 0 0 1 0

…

x(3)>0 → true, …

x(2)>0 → false,
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• determine x0, y0, and R of the circle crossing the 3 points

by solving the linear system for A, B, and C first.

• hint: to obtain x0, y0, and R from A, B, and C you need to convert Eq.(1) into something 
similar to Eq.(2) by using the binomial rules.

Computational Physics I Unit 3

€ 

(3,−1)
(−2,4)
(6,8)

Ø exercise:

§ circle:

• a circle can be described in two different ways in Cartesian coordinates

Eq.(1)

or

Eq.(2)

where x0 and y0 are the centre and R its radius.€ 

x 2 + y 2 + Ax + By +C = 0

€ 

(x − x0)
2 + (y − y0)

2 = R2

• plot the circle marking the three points with crosses

• hint: plot two functions y=f(x) where one is the positive and the other one the negative root of y2

Ø exercise:

• find the two intersection points of the circle with f(x)=e-x/4
• plot the function f(x) onto the same figure as the circle
•mark the two intersection points wit the circle with a cross

• hint: you need to use a root-finding technique

Ø exercise:

Examples application - intersection of circle and exponential

Day 2
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• solve for the currents I1, I2, and I3 using

• V =   5 V
• R1 =   4 W
• R2 =   4 W
• R3 ∈ [0,100] W

• graphically represent the currents as a function of R3

Ø exercise:

€ 

V = R1I1 + R2I2
V = R1I1 + R3I3
0 = I1 − I2 − I3

R3

R2

R
1

V

Computational Physics I Unit 3

Examples application - electrical circuits

• solve for the currents I1, ..., I5 using

• V =   5 V
• R1 =   10 W
• R2 ∈ [0,50] W
• R3 =   15 W
• R4 =   20 W
• R5 =   3 W

• graphically represent the currents as a function of R2

• graphically show that I5 = 0 for

• hint: the application of Kirchoff’s rules to the Wheatstone Bridge gives:

Ø exercise (“Wheatstone Bridge”):

R1

R2

V

R3

R4

R5

€ 

R2 =
R1R4
R3

€ 

I1 = I3 − I5
I2 = I4 + I5

€ 

V1 =V2 +V5
V3 =V4 −V5
V =V1 +V3

€ 

0 = −I1 + I3 − I5
0 = −I2 + I4 + I5
0 = −I1R1 + I2R2 + I5R5
0 = −I3R3 + I4R4 − I5R5
V = I1R1 + I3R3

=>

currents voltages

Day 2
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Ø exercise:

Computational Physics I Unit 3

Examples application – unknown charges

Day 2

Four charges q1, q2, q3 y q4 of unknown value are placed along the x-axis. The electrical
potential

has been measured experimentally at the four positions xa, xb, xc, xd

• determine the charge values qi by solving the system of equations

• visualize the electric potential generated by the four charges in the region

x = [-lim, lim] and y = [-lim, lim].

(the relevant values are

x1=−4.3·10-2 m, x2=−1.5·10-2 m, x3=1.29·10-2 m, x4=4.7·10-2 m,

xa=−5.1·10-2 m, xb=−2.7·10-2 m, xc=3.0·10-2 m, xd=7.0·10-2 m,

Va=−1.3 V, Vb=3.33 V, Vc=−0.77 V, Vd=3.0 V, 

lim=0.98·10-2 m)

€ 

V (x) =
qi

xi − xi
∑

€ 

V (xb )

€ 

V (xc )

€ 

V (xd )

€ 

q1

€ 

q2

€ 

q3

€ 

q4
€ 

+lim

€ 

−lim€ 

+lim

€ 

−lim

€ 

x

€ 

y

€ 

x1

€ 

x2

€ 

x3

€ 

x4

€ 

xa

€ 

xb

€ 

xc
€ 

V (xa )

€ 

xd

V (x j ) =
1
4πε0

qi
xi − x ji

∑ j = (a,b,c,d)
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Ø exercise:

Computational Physics I Unit 3

Examples application – equilibrium springs

Day 2

Three masses are connected via a system of springs:

The corresponding equations for the equilibrium state are

where kij=kji for all existing springs and knm=0 for all non-existing springs. These
equations form a system of 6 equations for the 6 unknowns x1, x2, x3, y1, y2, y3.

• Write a function equilib3m.m that calculates the equilibrium positions of the
masses m1, m2, and m3, the matrix of the spring constants kij, and the fixpoints x4, x5.
This function should work like this:

function [r] = equilib3m(m, k, p)
% Equilibrium points of 3 hanging masses connected by springs and
% under the gravitational force as shown in the Figure above
% Input:
% m(3) : particle masses (kg)
% k(5) : spring constants (N/m)
% p(2) : [x4, x5] coordinates (m)
% Output:
% r(2,3) : equilibrium points of each mass (m)

• Using your script function determine the equilibrium points for the following setup:
x4=0m, x5=5m,
m1=2kg, m2=3kg, m3=5kg,
k12=20N/m, k23= 80N/m, k14=40N/m, k13=50N/m, k25=30N/m

• Create a plot like this:

0 = Fix = kij (x j − xi )
j=1

5

∑

0 = Fiy = kij (yj − yi )
j=1

5

∑ −mig
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MATLAB summary

§ besides of all the new commands and functions, you need to know how to…

• define and solve systems of linear equations

• find the root of functions of one variable

• find the zero crossings of vectors

Computational Physics I Unit 3


