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§ every variable in MATLAB is a matrix

>>  a=1 1x1 matrix
>>  b=[1, 2] 1x2 matrix
>>  c=[1; 2] 2x1 matrix
>>  d=[1, 2; 3, 4] 2x2 matrix
>> A=[10, -3, 7; 2, 12, 0] 2x3 matrix

A(n,m) n=rown, m=column

Ø exercise:

• define various matrices (1x1, 1x3, 3x1, 3x3) and check the results of…

>> transpose(d)
>>d’
>> size(d)
>> diag(d)

• Note that diag() can extract and generate diagonal matrix elements!
• use help to learn about the commands  diag(), zeros(), eye(), ones(), numel()

§ matrix multiplication:

• A(n,m)  * B(m,k) = C(n,k) mathematical
• A(n,m) .* B(n,m) = C(n,m) component-wise

Ø exercise:

• perform the following operations on A=[1,2;3,4] and B=[5,6;7,8]

>> A+B
>> A-B
>> A*B
>> A.*B
>> A./B

• Note:  the operations   A/B and  A\B will be explained later!

Ø exercise:

• use A and B from the previous exercise to generate the following matrix C with one command
>> C = ???
C = 

1 2 0 0
3 4 0 0
0 0 5 6
0 0 7 8

MATLAB matrices
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§ matrix elements can be accessed individually

>> A = [10, -3, 7; 2, 12, 0]
A(1,3)=7
A(2,1)=2
A(2)  =2

Ø exercise:

• extract the second column of A into a vector c with one command
• extract the second row of A into a vector r with one command

• Note: do not write [A(1,2),A(2,2)] or [A(2,1),A(2,2),A(2,3)] but use the colon operator ‘:’ instead

§ useful function find():

>> a = [0.1, 7.3, 0.5, 3.2, 2.8, 6.9]
>> find(a>3.5)
>> find(a<3.5)  
>> use help find to learn more about find() and its mode of operation!

Ø exercise:

• fill all zero elements of the following matrix A with -1

>> a = [1, 2, 3, 4, 5, 6]
>> A = diag(a)

>> ???
A =

1 -1 -1 -1 -1 -1
-1  2 -1 -1 -1 -1
-1 -1  3 -1 -1 -1
-1 -1 -1  4 -1 -1
-1 -1 -1 -1  5 -1
-1 -1 -1 -1 -1  6

hint: you have to use find()

§ just like with vectors, you can easily remove columns and/or rows from a matrix, e.g.
>> A(:,1) = []
>> A(end,:) = []

Ø exercise:

• adjust the script for the cannonball trajectory to plot the ascending trajectory in blue (vy>0) and 
the descending in red (vy<0)
• hint: you have to use find() again…
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MATLAB

§ we intend to visualize a function of multiple variables, e.g.

f(x,y) = x2 + y2 with

• we need to cover the following area in the xy-plane:

• we need to generate two matrices of dimension MxN:

>> xm = linspace(a,b,N)
>> ym = linspace(c,d,M)
>> [x,y] = meshgrid(xm,ym)

where now index (i,j) will give the corresponding x and y values:

x = y =

• the 2D mesh covered by x and y can then be used to calculate f(x,y),
i.e. generate another MxN matrix that contains the function values

>> f = x.^2+y.^2 f =

• the matrix f() can then be visualized using one of the following MATLAB functions:

>> contour(x,y,f) 
>> mesh(x,y,f)
>> surf(x,y,f)
>> surfc(x,y,f)
>> surfl(x,y,f)

plotting scalar fields
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MATLAB plotting scalar fields
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Ø exercise:

• write a script potential2D.m that visualizes the potential of an electric charge:

• place the charge at position (x0,y0) within the range [-1.25,+1.00]x[-0.75,+1.15]
• generate a 2D mesh covering this x-y range using meshgrid()
• use the following formula for the potential where e = -1 is the charge: 

• visualize the potential using contour(), mesh(), surf(), etc. either in
multiple figures (figure()) or in one figure (subplot())

Ø exercise:

• write a new script potentials2D.m where you add a second charge e = +1 at position (-x0, -y0)

• Note: the potential is additive, i.e. Utotal = U- + U+

€ 

U =
e

(x − x0)
2 + (y − y0)

2

Ø exercise:

• write a script x2+y2.m that plots f(x,y)=x2+y2 within the range [-100,100]x[-100,100]
• use subplot() or figure() to view all possible contours and surfaces simultaneously
• use colorbar, axis, and shading to modify the figure
• use help to find out more about  mesh(), waterfall(), surf(), surfc(), surfl()
• use help to learn more about  colorbar, axis, shading

Ø exercise:

• write a script sinxcosx.m that visualizes f(x,y)=sin(x)cos(y) within the range [0,2p]x[0,2p]
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MATLAB

§ MATLAB can attach vectors to (a grid of) points with quiver(x,y,Vx,Vy):

>> quiver(x,y, Vx,Vy)

§ example script vectorfield2D.m:

%================================
% vectorfield.m: 2D random vector field
%================================

% range and # of points
Nmesh = 10;

xmin = -2.6;
xmax = +3.2;
ymin = -1.6;
ymax = +2.8;

% generate a linearly spaced mesh in x and y
xmesh = linspace(xmin,xmax,Nmesh);
ymesh = linspace(ymin,ymax,Nmesh);
[x,y] = meshgrid(xmesh,ymesh);

% generate a 2D random vector field
vx = rand(Nmesh,Nmesh)-0.5;
vy = rand(Nmesh,Nmesh)-0.5;

quiver(x,y,vx,vy)
axis image

Ø exercise:

• generate the example script vectorfield2D.m as given above
• what is the output of rand() and rand()-0.5, respectively?
• how can you change the length of the vectors?
• hint: help quiver

Ø exercise:

• write a script vectorfield3D.m that plots a random vector field in 3D using quiver3()

plotting vector fields
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MATLAB

§ recall the exercises on numerical derivatives, e.g. the calculation of dx and df for df/dx

>> il = [1:N-1], ir = [2:N];
>> dx = x(ir)-x(il);
>> df = f(ir)-f(il);

§ as this is a rather important operation MATLAB has a simple command for this that does not need the 
index vectors:

>> dx = diff(x);
>> df = diff(f);

Ø exercise:

• adjust your derivation.m scipt to now use diff() instead of index vectors

§ for functions of multiple variables we have derivatives with respect to every variable, 
e.g. the force is the gradient of the potential:

§ MATLAB can calculate the gradient of a given scalar field

>> [Fx, Fy]     = gradient(U) 2D gradient
>> [Fx, Fy, Fz] = gradient(U) 3D gradient

Ø exercise:

• write a new script force2D.m by adjusting potential2D.m that now plots the force field.

Ø exercise:

• write a script force3D.m that now plots the 3D force field of the same electric charge

• hint: you now need to add a 3rd dimension (i.e. z) to all calculations including meshgrid(), 
the actual potential and the gradient.

gradients
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§ the rotation of a 2D vector can be described by a matrix operation

§ the matrix M is determined as follows:
  

€ 

! v rotated = ˆ M ! v 

MATLAB rotation via matrices
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vx = v cosα ; vx
rotated = v cosβ ; β = α +ϕ

vy = v sinα ; vy
rotated = v sinβ
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vx
rotated = v cos(α +ϕ) = v cosα cosϕ − sinα sinϕ[ ] = vx cosϕ − vy sinϕ
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rotated = v sin(α +ϕ) = v sinα cosϕ + cosα sinϕ[ ] = vy cosϕ + vx sinϕ
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Ø exercise:

• write a script that rotates a given 2D vector about a pre-defined angle (given in degrees!) using
the rotation matrix
• proof that the original and rotated vectors have the same norm.
• graphically display the two vectors using the MATLAB function quiver()

§ the rotation of a 3D vector can be described by successive matrix operations
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rotation about x-axis rotation about y-axis rotation about z-axis

Ø exercise:

• write a script that rotates a given 3D vector about two pre-defined angles (given in degrees!),
i.e. one rotation about the x-axis and another rotation about the z-axis.
• show that rotations are non-permutative, i.e. first rotating about the x- and then the z-axis is

not the same as first rotating about the z- and then the x-axis.
• proof that all (rotated) vectors have the same norm.
• graphically display all vectors using the MATLAB function quiver3()

Day 1

Ø exercise:

• write a script that rotates x = sin(t) (for t∈[0,2p]) about 32o

• hints:
• put the vectors t() and x() into a matrix S=[t; x]
• rotate that matrix via R*S where R is the rotation matrix
• extract the new vectors t() and x() from the rotated matrix and plot them
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MATLAB

§ MATLAB comes with a suite of pre-defined and ready to use functions

>> sin(), cos(), exp(), log(), plot(), linspace(), meshgrid(), …

§ we can also define our own functions, e.g. generate a file statistic.m

%=================================================================
% statistic(x): calculate median, mean and standard deviation of all elements in x
%=================================================================
function [med, avg, stddev] = statistic(x)
% Calculate the median, mean, and standard deviation of all elements in vector x
med      = median(x);
avg = mean(x);
stddev = std(x);

§ to use the function we need to write a script use-statistic.m that, for instance, generates a vector filled 
with random numbers and calculates the median, mean and standard deviation of the elements of that 
vector by calling the function statistic()

%=========================================================================
% use-statistic.m: calculate the median, mean and standard deviation of random numbers
%=========================================================================
% generate a vector h filled with 1000 random numbers
h = 100*rand(1000,1);

% call our own function statistic()
[a, b, c] = statistic(h);

% print the result
a, b, c

§ Note:
• avoid using names that already exist in MATLAB
• functions can return single or multiple variables (or even no variable at all)

− [a] = your_function(x) => returns a single variable “a”
− [a,b] = your_function(x) => returns two variables “a” and “b”

• functions can depend on a single or multiple variables
− [a] = your_function(x,y,z) => makes use of x, y and z (but only returns “a”!)

• a,b,x,y,z can be variables, but also vectors or multi-dimensional matrices
• the return value(s) must be assigned in the function
• the names of the variables inside your function do not need to be the same as the names of the 
variables you pass to the function!
• if you modify “x” in your_function() this will not be known by the program calling your_function()

Ø exercise:

• use both statistic.m and use-statistic.m, and understand these scripts…
• what happens if you type  help statistics in the command window?
• hint: 

• check next page to better understand how to use your own function statistic()
• use help median, help mean, help std, help rand

functions

Computational Physics I Unit 2
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MATLAB

§ before being able to use a function you must tell MATLAB where that function can be found:

functions

Computational Physics I Unit 2

1. click “Set Path...”

2. “Add Folder...” and select the folder where your your_function.m files is located

3. “Save” to save the changes you just made

Day 2
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MATLAB

Ø exercise:

• write a script use-oplot.m that calls your own function oplot(x,y) defined in oplot.m
• your function oplot() is supposed to “overplot” some data (x,y) in an existing plot, e.g.

%=================================================================
% use-oplot.m: plot two functions in the same figure using oplot()
%=================================================================
x = linspace(0,2*pi,100);
figure(1)
plot(x,sin(x))       % use MATLAB’s built-in function plot() to initiate the plot
oplot(x,cos(x))    % use your own function oplot() to add another curve to the plot 

• hints:
• the function should look like this:

function [] = oplot(a,b)
% ensure that we can add a new plot to the existing figure
command?
% plot a on the x-axis and b on the y-axis
command?
% return to the situation where plot() does not add to the existing figure
command?

end

• remember hold on and  hold off
• the function oplot() does not return anything!

Ø exercise:

• write a script use-ang2rad.m that calls your own function ang2rad(x) defined in 
ang2rad.m converting degrees to radians, i.e.

function [y] = ang2rad(x)
% command to convert x in degrees to y in radian
command?

end

• use this function to plot a full period of sin(x)

• Note: this function already exists in MATLAB, but when you write your own version that will 
be the one used by MATLAB!

Ø exercise:

• write a new script force2D-dist2D.m by adjusting your script force2D.m to now utilize a 
function dist2D() that calculates

• hint: dist2D() has to accept 4 arguments (x,y,x0,y0) and return 1 result (the distance)

functions
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dist2D = (x − x0)
2 + (y − y0)

2
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MATLAB

§ there are two different types of functions in MATLAB:

• script functions

function [I] = integrate(g, x0, xend, N)

• anonymous functions

g = @(x)(x.^2-exp(-x))

1) script functions:

• script functions require you to write an m-file with the same name as the function

• script functions can return multiple values of different types, e.g.

function [E,V] = ElectricFields(r)

where 

E is a 3-component vector (electric field),
V is a 1-component scalar (potential field), and 
r the 3-component vector (3D position of electric charge)

• all variables declared as return values must be set inside the function

• a script function can be a block of certain operations that you plan to do repeatedly, e.g.

functions

Computational Physics I

integrate():
integrate the function g(x) 
from x0 to xend in N steps 

and return its value.

(g,x0,xend,N) [I]

input output

Unit 2
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MATLAB

§ there are two different types of functions in MATLAB:

• script functions

function [I] = integrate(g, x0, xend, N)

• anonymous functions

g = @(x)(x.^2-exp(-x))

2) anonymous functions:

• anonymous functions can be defined anywhere in a script

• an anonymous function can be passed to a script function (see example above)

• an anonymous function rather defines a mathematical function than a block of operations

§ Note:

§ you can pass more arguments to a function than actually used, e.g.

g = @(x,v,t)(-1/x.^2)

è this can be very helpful to know when programming general purpose routines! ç

• but when using g(x,v,t) you must call it with all arguments, e.g.

x = linspace(5,10,100);
plot(x, g(x,v,t))

…even though v and t are not used in this particular case!

functions

Computational Physics I Unit 2
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MATLAB

§ vectors vs. functions:

functions

Computational Physics I Unit 2

%========================
% f as a vector
%========================
a = 1.5;
b = 7.8;
n = 5;

x = linspace(a,b,n);

f = x.^2+5.*x;

plot(x,f)

%========================
% f as a function
%========================
a = 1.5;
b = 7.8;
n = 20;

x = linspace(a,b,n);

f = @(x)(x.^2+5.*x);

plot(x,f(x))

a ... bf f(x)
1        2        3       4       5

f is a vector whose values f(1)=a, ..., f(n)=b
can be read and used (and even over-written).
Note again, a vector can only be accessed at
the integer values i=1,...,n as they indicate the
position in the vector (=vector index).

f(x) is an anonymous function that can be used
to evaluate f at any given value for x.
Note, the “plot(x,f(x))” command also generates
a vector that contains f(x) at n points, but this
vector will not be stored under any name in the
computer’s memory; it will only be plotted. 

Ø exercise:

• return to your script force2D-dist2D.m and use an anonymous function for dist2D() now.

Ø exercise:

• write a script function for log3() and use it on the command line to calculate log3(108).
• write an anonymous function for log3() and use it on the command line to calculate log3(108).

§ Note:
•MATLAB does not distinguish syntax-wise between accessing a vector and evaluating a function
• both commands are written as f():

- if f is a vector,     f(i) accesses element i in f()
- if f is a function, f(i) evaluates f() at the argument i

• other programming languages (like C) use, for instance, f[] for accessing vectors and f() for evaluating 
functions to distinguish between these cases...

Day 2
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MATLAB conditions

Computational Physics I Unit 2
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• x > a x is greater than a
• y >= z y is greater or equal z
• q < 5.3 q is smaller than 5.3
• p <= b p is smaller or equal b
•m == n m is equal n
• z ~= c z is not equal c

§ it is possible to compare the content of two variables, vectors, or even matrices:

§ the result of any comparison is either 1 (true) or 0 (false), e.g.

>> 5 == 3
ans = 0
>> 7 > 2
ans = 1

§ if you compare vectors (matrices) the result will be a vector (matrix) containing the results of a 
component-wise comparison, e.g.

>> a = [1:2:10]; b = [10:-2:1];
>> a > b
ans = 0 0 0 1 1

>> A = [1,2; 3,4]; B = [1,1; 4,4];
>> A == B
ans = 1 0

0 1

§ a common application of conditions is to use them together with MATLAB’s function find()

>> x=rand(1,10);
x = 0.8147    0.9058    0.1270    0.9134    0.6324    0.0975    0.2785    0.5469    0.9575    0.9649

>> i=find(x>0.5);
i =  1     2     4     5     8     9    10 i() now contains all the positions of the vector x()whose 

values are larger than 0.5

§ logical conditions can be combined:

& : condition #1 AND condition #2 are true
| : condition #1  OR   condition #2 is true

• example:
x = input(’please give a number x = ’);
if(1 < x & x < 10)

disp(‘the number you entered lies between 1 and 10’)
if(x < 0 | x > 2^32)

disp('very large or negative number’)
end
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MATLAB conditions
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Ø exercise:

• write a script sine-positive.m by adjusting sine.m that sets all negative values of sin() to zero. 

Ø exercise:

• write a script that generates a vector containing 106 uniformly distributed random numbers on 
the intervall [1,100] and calculate what fraction of numbers lies on the intervall [20,30].

0 1 2 3 4 5 6 7 8
0.9
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x

y

Ø exercise:

• write a script cannonball-maximum.m by adjusting the cannonball.m script to also calculate the 
maximum height ymax of the cannonball
• how long does it take to reach this height (i.e. calculate the corresponding tmax, too)?
• at what x-position xmax does the cannonball reach this height?
• generate a plot that indicates the maximum by red lines on top of the actual trajectory:

• hints:
• use the following idea to finding the maximum in vector y():

for increasing values of y() the difference (calculated with diff()) between two neighbouring
points in y() is greater than zero and less than zero for decreasing values of y()
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MATLAB
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Ø exercise:

• write a script function my_abs.m that returns the absolute value of a scalar input argument. 

Ø exercise:

• write a function calculation.m that calculates either a+b, a-b, a*b or a/b depending on a
variable action that either contains 1 (for ‘add’), 2 (for ‘subtract’), 3 (for ‘multiply’) or 4 (for
‘divide’). The function should work like this:

function [result] = calculation(a,b,action)

• Note: you should use a combination of if-elseif-else-end that also checks if the action
is valid (i.e. valid means action∈[1,4]).

§ execute different commands depending on some (combination of) logical condition again, e.g.

%============ %================ %================
% if-clause % if-else clause % if-elseif clause
%============ %================ %================
if condition if condition if condition

command; command; command;
end else elseif condition

some other command; some other command;
end else

another command;
end

§ Note:
• a condition used in an if(-else)-end clause should only compare scalar values and not vectors!
• but: you can also compare two string variables (see exercise below)

if-else-end clause

§ Note: never compare floating variables (i.e. real numbers) using ==   or   ~=  ; use the following instead:

do not use: x==a instead use: abs(x-a) < e for ‘is equal’
do not use: x~=a instead use: abs(x-a) > e for ‘is not equal’

where e defines your desired accuracy, e.g.

will not work will work
if tan(0.7) == sin(0.7)/cos(0.7) if abs(tan(0.7)-sin(0.7)/cos(0.7)) < 1e-10

disp(‘success’) disp(‘success’)
end end

(check help disp to learn more about disp())
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MATLAB
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§ you want to repeat a certain operation while some logical condition remains true:

while condition
command;

end

§ example: we want to determine how often a number can be divided by 2

%======================================
% simple log2() function
%======================================
f = 32
n = 0;
while f > 1

f = f / 2;
n = n + 1;

end
2^n

§ Note: as the title of the script suggests, this is a very simple (and crude!) form for calculating n=log2(f)
§ Note: a condition used in while-loop should only compare scalar values and not vectors!

Ø exercise:

• use the above idea to write a script that evaluates log3() for several values of f (e.g. 27, 243, 
531411) and compare to the real log3(f)

while-loops

Ø exercise:

• write a script that evaluates whether or not a natural number is a prime number.

• hints:
• a prime number is a number that can only be divided by 1 and by itself
• use mod(n,div) or rem(n,div) to evaluate the remainder of the division n/div
• if rem(n,div)==0 for any 1<div<n then n cannot be a prime number

• advanced scripting hints:
• use input() to let the user input the natural number:

n = input(‘give a natural number n = ’)

• use disp() to print whether or not n is a prime number:
if your_condition_for_prime_number

disp(‘prime number’)
else

disp(‘not a prime number’)
end
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MATLAB for-loops
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€ 

fn = fn−1 + fn−2

€ 

f1 =1 , f2 =1

Ø exercise:

• write a script fibonacci.m that calculates the first N Fibonacci numbers using a for-loop
• show in the same script that Binet’s formula for the Fibonacci numbers is correct:

with

€ 

fn =
ϕn −ψ n

5

€ 

ϕ =
1+ 5
2

,ψ =
1− 5
2

Day 3

§ imagine you want to do same operation with every element of a vector, e.g.

• x() and f() are vectors of the same length and you want to store in f() the numbers x2

è for every i: f(i) = x(i).^2

•MATLAB is doing this operation automatically when you type

>> f = x.^2

•MATLAB is hiding from you a so-called for-loop:

%======================== %========================
% example for-loop % example without for-loop
%======================== %========================
x = linspace(0,2*pi,5); x = linspace(0,2*pi,5);

f = zeros(1, length(x));
for i=1:length(x) f = x.^2;

f(i) = x(i)^2;
end

• Note:
• f = zeros(1, length(x)) generates a vector f() with the same length as x() filling it with zeros
• the ‘.’ in front of ‘/’, ‘*’, and ‘^’ always means that MATLAB will perform a for-loop for you

§ an example where MATLAB does not provide a simplified syntax for you is: 

The Fibonacci Series: with

§ Advise:
• you can use the loop-index to access the elements of a vector/matrix
• you can use the loop-index as a variable in formulae…
• ...but never change the value of the loop-index within the loop!
• always use integer values for the loop-index
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MATLAB

Ø exercise:

• write a function my_sum() that calculates the sum of all elements in a vector using a for-loop:
input argument: a vector x, output: the sum of all elements in x

Ø exercise:

• write a function my_find() that works like MATLAB’s “find(x>0)”.

Ø exercise:

• write a script fac.m that calculates   f = n!
• remember: n! is an expression for n*(n-1)*(n-2)*(n-3)*…*2*1
• hints:

• store the result in a variable f that needs to be initialized to f=1 prior to the loop
• you can loop from 2:n

• compare your result to MATLAB’s in-built function factorial()

Ø exercise:

• remember MATLAB’s two different (matrix) multiplication operators * and .*
>> A  * B = C ; mathematical multiplication
>> A .* B = D ; component-wise multiplication

• use for-loops instead of the operator * to calculate C for
A=[1,2; 3,4; 5,6] and   B=[7,8,9; 10,11,12]

• compare your results to the results when using the * operator
• hints:

• the formula for a matrix multiplication is
• you need to use 3(!) nested for-loops
• you need to use MATLAB’s function size()

• use for-loops instead of the operator .* to calculate D for
A=[1,2; 3,4; 5,6] and   B=[7,8; 9,10; 11,12]

• compare your results again to the results when using the .* operator

for-loops

Computational Physics I Unit 2

€ 

Ci, j = Ai,kBk, j
k
∑

Day 3

§ Note: both the for- and while-loop can be terminated with a break statement:

x = linspace(0,2*pi,100);
y = cos(x); % generated vector containing cosine curve on [0,2p]
for i=1:length(y) % loop through whole vector

if(y(i)<0) % at first negative value...
break; % ...terminate the for-loop

end
end
plot(x(1:i-1),y(1:i-1) % only plot the (first) positive part of the cosine-curve
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MATLAB switch statement

Computational Physics I Unit 2

§ in case you have multiple options, there exist the switch statement

switch expression:
case A,

command,
command,
...

case B,
command,
command,
...

...
...

otherwise,
command,
command,
...

end

Ø exercise:

• write a script that uses input() to take a number between 1 and 7 from the user
• use the switch statement to display (using disp())

• ‘Monday’ if that number was 1,
• ‘Tuesday’ if that number was 2,
• ‘Wednesday’ if that number was 3,
• etc.

• use the ‘otherwise’ statement to display an error message in case the number is not in the 
allowed range

§ the switch expression can also be a string!

Ø exercise:

• write a script that uses input() to take both a number and a string from the user:
• x = variable for the number
• unit = string variable for either ‘meter’ or ‘inch’

• use a switch for unit to decide whether to convert x to meter or inch
• case ‘inch’,    y = x/39.3701  (converion to meter)
• case ‘meter’, y = x*39.3701 (conversion to inch)

• use the ‘otherwise’ statement to display an error message in case unit does neither contain 
‘meter’ nor ‘inch’

Day 3
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MATLAB application – matrix generation

Computational Physics I Unit 2

Day 4

Ø exercise:

• write a script that generates a matrix M that contains the following elements

𝑀!,# = #
0 , 𝑖 < 𝑗
𝑖 − 1
𝑗 − 1 , 𝑖 ≥ 𝑗

where the non-zero elements are defined as follows

𝑛
𝑚 =

𝑛!
𝑚! 𝑛 − 𝑚 !

You can use MATLAB’s function factorial() to calculate n!

The matrix should have the dimensions NxN with N=15.

Ø exercise:

• use the matrix M to create a new matrix N with the following elements

𝑁!,# = 0
𝑀#,! , when 𝑀#,! is even
−𝑀#,! , when 𝑀#,! is odd

Ø exercise:

• visualize both matrices, e.g. generate plots similar to these one:
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MATLAB application – gravity

Computational Physics I Unit 2

Day 4

We want to determine the value of the gravitational constant g on Earth. For that we have obtained 
the following experimental data:

h = [2.0000, 4.0161, 5.5282, 6.5363, 7.0403, 7.0403, 6.5363, 5.5282, 4.0161, 2.0000]
t = [0,      0.2268, 0.4536, 0.6804, 0.9073, 1.1341, 1.3609, 1.5877, 1.8145, 2.0413]

where h measures the height above the Earth and t the time of the respective measurement.

Ø exercise:

• write a script with the name gravity.m in which you plot h(t).

Ø exercise:

• write a script function derivative(f,x) that calculates the numerical derivative of h(t). 
This function should work as follows:

function [dfdx,xmid] = derivative(f,x)

⟹ input values: (f,x)
x = vector containing the values of x
f = vector containing the values of f(x) at the positions stored in x

⟸ return values: [dfdx, xmid]
xmid = vector containing the mid-points of x
dfdx = vector containing the numerical derivative of f(x) at the mid-points

Ø exercise:

• use your script function derivative() to calculate the numerical velocity v=dh/dt and 
plot it into the same figure as h(t).

Ø exercise:

• use derivative() again to calculate the numerical acceleration a=dv/dt and plot it into 
a new figure.
• add another line to this plot that shows the mean value of a(t) as a straight line.

§ Note: your final plots should look like this
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this is the sought-after value of g
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MATLAB

§ The Maxwell-Boltzmann distribution:

• f(v) = distribution of velocities of atoms with mass m at temperature T

application – Maxwell-Boltzmann distribution

Computational Physics I Unit 2

€ 

f (v) = 4π m
2πkBT
# 

$ 
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Ø exercise:

• write the script MaxwellBoltzmann.m that plots the distribution function f(v) for a proton

…and determines the maximum vmax by using a function

function [xmax, imax] = vecmax(x)

where x() is a vector and xmax the maximum value of that vector found at index imax.
The function should also work in case there are multiple maxima/minima in x() and hence
you need to use a for-loop in combination with an if-statement.

Note:
• MATLAB has in-built functions to determine max- and min-values that you can use from 

now on:
>> help max
>> help min
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MATLAB

§ Coulomb charge distribution:

application – charge distribution

Computational Physics I Unit 2

Day 4

Four charges q1, q2, q3 y q4 are placed on a 2D plate, but only along the x-axis:

The electric potential is given as follows:

€ 

q1

€ 

q2

€ 

q3

€ 

q4
€ 

+lim

€ 

−lim€ 

+lim

€ 

−lim

€ 

x
€ 

y

V (!r ) = 1
4πε0

qi!ri −
!ri

∑

€ 

x1

€ 

x2

€ 

x3

€ 

x4

Ø exercise:

• visualize the potential for the region x ∈ [-lim, lim] and y ∈ [-lim, lim].
• calculate and visualize the force field in the same region.
• rotate the charge distribution by 23.5o counter-clockwise and repeat the two plots.

(the relevant values are
x1=−4.3·10-2 m, x2=−1.5·10-2 m, x3=1.29·10-2 m, x4=4.7·10-2 m,
q1=−2.07·10-12 C, q2=9.08·10-12 C, q3=−16.99·10-12 C, q4=12.48·10-12 C, 
lim=0.98·10-2 m)

potential of rotated distribution force field of rotated distribution
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§ Lissajous curves

The Lissajous curves are described by the following parametric equations

where the curves are centered on the origin of the coordinate system.

Ø exercise:

• write a script that calculates the Lissajous curves for the following values

A=1, B=1, a=5, b=3, but centered at (2,2)

• plot them rotated by 45o:

MATLAB application – Lissajous curves

x = A ⋅cos(a ⋅θ )
y = B ⋅sin(b ⋅θ )

Computational Physics I Unit 2

Day 4
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MATLAB application – particle trajectory

Computational Physics I Unit 2

A particle moves in one dimension along the x-axis with the velocity

𝑣 𝑡 = 𝑣! + 𝐴!𝑒"#/% cos 𝜔𝑡 − 𝜔𝑡 𝑠𝑖𝑛 𝜔𝑡

Day 4

Ø exercises:

• calculate the velocity for a given interval 𝑡 ∈ [𝑡&'(, 𝑡&)*] using an anonymous function for v(t); 
this anonymous function has to take v0, A0, t, and w as arguments, too!

• plot v(t) into a new figure.

• numerically calculate the acceleration and plot it into a new figure.

• numerically calculate the particle trajectory x(t) and plot it into a new figure.

Use the following data:

tmin=1.8 s, tmax=4.3 s, v0=1.5 m/s, A0=-1 m/s, w=4.5 s-1, t=3.3 s, x0=-7.5 m
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MATLAB application – damped harmonic oscillator

Computational Physics I Unit 2

Day 4

The Newtonian equation for the damped harmonic oscillator reads as

where m is the mass, c the friction constant, and k the spring constant. The exact solution (for 
v(t=0)=v0=0) is given as follows

with

m d 2x(t)
dt2

+ c dx(t)
dt

+ kx(t) = 0

Ø exercise #1:

• create an external function [x]=dho_x(k,m,c,x0,t) that calculates the solution of 
the damped harmonic oscillator on the time interval specified by input time vector t().

x(t) = x0
1−ζ 2

e−γt cos( 1−ζ 2ω0t −ϕ )

γ =
c
2m

ζ =
c

2 mk

ω0 =
k
m

ϕ = arccos( 1−ζ 2 )

Ø exercise #2:

• plot x(t) using m=1.4kg, k=6.5kg/s2, c=0.8kg/s, x0=2.8m, t0=0s, tend=18s.

Ø exercise #3:

• calculate by numerical differentiation v(t) and plot into the same figure of exercise #2.

Ø exercise #5:

• calculate by numerical integration of  dW/dt = - c v2 the frictional work of the oscillator.

Ø exercise #6:

• plot the total energy E(t)=1/2 (mv2+kx2) into the same figure of exercise #5.
• Note: to match the frictional work with the total energy you need to add E0 to it.

Ø exercise #4:

• numerically calculate a(t)=dv/dt and plot into the same figure of exercise #2.
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MATLAB application – Leibniz series
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Day 4

Consider the following numerical series (Leibniz formula) defining p

(−1)n

2n+1
=
π
4n=0

∞

∑

Ø exercise #1:

• evaluate the finite sum

and plot it as a function of N and checking that it converges to p/4.

Ø exercise #2:

• consider now the equivalent form

plotting it into the same figure as for exercise #1.

f (N ) = (−1)n

2n+1n=0

N

∑

g(N ) = 2
(4n+1)(4n+3)n=0

N

∑
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§Monte Carlo integration is a technique for numerical integration using random numbers. Here
we will see it in action using a Lissajous curve as the function to be integrated:

The points of a Lissajous curve with period ratio 1:2 and phase p/2 can be described as follows:

4 𝑥$ − 𝑥% + 𝑦% = 0

Examples

Computational Physics I Unit 2

Day 4

application – Monte Carlo integration

Ø exercise:

• Calculate via numerical integration (as learnt in Unit 1) the area covered by the curve.

Ø exercise:

• Plot the Lissajous curve on the interval 𝑥 ∈ [−1,+1].

Ø exercise:

• Calculate the area via Monte Carlo integration:

- generate a pair of random numbers (rx,ry) from a uniform distribution

- so that 𝑟& ∈ 𝑥'!(, 𝑥')& and 𝑟* ∈ 𝑦'!(, 𝑦')& .

- check, if that point lies within y(x).

- repeat this process N times where Nin will count how often (rx,ry) lies inside y(x)

- the area will then be 𝐴 ≈ +!"
+ 𝑥'!( − 𝑥')& 𝑦'!( − 𝑦')&

• Compare the values for the areas

• If you add the points inside y(x) the plot will eventually look like this:
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MATLAB summary

matrix functions
size diff gradient max min prod diag sort

length size numel transpose / inv gradient

ones zeros eye meshgrid norm

plotting
meshgrid mesh surf surfc surfl contour quiver quiver3

colormap colorbar shading waterfall

script commands
for while if else end function return switch/ca

se

input disp break

useful functions
rand randn rem mod median mean mode std

factorial find

§ you further need to know the following...

• basic matrix operations

• plotting surfaces and multi-dimensional functions, respectively

• defining and using own functions with one or multiple arguments

• using for-loops

• using if-then-else statements

Computational Physics I Unit 2

§ please familiarize yourself with all of these commands, functions, variables, etc.,
even if they have not been discussed in class:

from now on you must know how to use them all!


