
Prof. Alexander Knebe

Unit 2

Matrices and Advanced Plotting/Scripting

Computational Physics I Unit 2

Prof. Alexander Knebe

§ every variable in MATLAB is a matrix

>> a=1 1x1 matrix
>> b=[1, 2] 1x2 matrix
>> c=[1; 2] 2x1 matrix
>> d=[1, 2; 3, 4] 2x2 matrix
>> A=[10, -3, 7; 2, 12, 0] 2x3 matrix

A(n,m) n=rown, m=column

Ø exercise:

• define various matrices (1x1, 1x3, 3x1, 3x3) and check the results of…

>> transpose(d)
>>d’
>> size(d)
>> diag(d)

• Note that diag() can extract and generate diagonal matrix elements!
• use help to learn about the commands diag(), zeros(), eye(), ones(), numel()

§ matrix multiplication:

• A(n,m) * B(m,k) = C(n,k) mathematical
• A(n,m) .* B(n,m) = C(n,m) component-wise

Ø exercise:

• perform the following operations on A=[1,2;3,4] and B=[5,6;7,8]

>> A+B
>> A-B
>> A*B
>> A.*B
>> A./B

• Note: the operations A/B and A\B will be explained later!

Ø exercise:

• use A and B from the previous exercise to generate the following matrix C with one command
>> C = ???
C =

1 2 0 0
3 4 0 0
0 0 5 6
0 0 7 8

MATLAB matrices

Computational Physics I Unit 2

€

A =
A(1,1) A(1,2) A(1,3)
A(2,1) A(2,2) A(2,3)
"

$

%

&
'

Day 1

Prof. Alexander Knebe

§ matrix elements can be accessed individually

>> A = [10, -3, 7; 2, 12, 0]
A(1,3)=7
A(2,1)=2
A(2) =2

Ø exercise:

• extract the second column of A into a vector c with one command
• extract the second row of A into a vector r with one command

• Note: do not write [A(1,2),A(2,2)] or [A(2,1),A(2,2),A(2,3)] but use the colon operator ‘:’ instead

§ useful function find():

>> a = [0.1, 7.3, 0.5, 3.2, 2.8, 6.9]
>> find(a>3.5)
>> find(a<3.5)
>> use help find to learn more about find() and its mode of operation!

Ø exercise:

• fill all zero elements of the following matrix A with -1

>> a = [1, 2, 3, 4, 5, 6]
>> A = diag(a)

>> ???
A =

1 -1 -1 -1 -1 -1
-1 2 -1 -1 -1 -1
-1 -1 3 -1 -1 -1
-1 -1 -1 4 -1 -1
-1 -1 -1 -1 5 -1
-1 -1 -1 -1 -1 6

hint: you have to use find()

§ just like with vectors, you can easily remove columns and/or rows from a matrix, e.g.
>> A(:,1) = []
>> A(end,:) = []

Ø exercise:

• adjust the script for the cannonball trajectory to plot the ascending trajectory in blue (vy>0) and
the descending in red (vy<0)
• hint: you have to use find() again…

€

A =
A(1,1) A(1,2) A(1,3)
A(2,1) A(2,2) A(2,3)
"

$

%

&
'

=
A(1) A(3) A(5)
A(2) A(4) A(6)
"

$

%

&
'

MATLAB matrices

Computational Physics I Unit 2

(more about conditions like “<“ and “>” later on page 16)

Day 1

Prof. Alexander Knebe

MATLAB

§ we intend to visualize a function of multiple variables, e.g.

f(x,y) = x2 + y2 with

• we need to cover the following area in the xy-plane:

• we need to generate two matrices of dimension MxN:

>> xm = linspace(a,b,N)
>> ym = linspace(c,d,M)
>> [x,y] = meshgrid(xm,ym)

where now index (i,j) will give the corresponding x and y values:

x = y =

• the 2D mesh covered by x and y can then be used to calculate f(x,y),
i.e. generate another MxN matrix that contains the function values

>> f = x.^2+y.^2 f =

• the matrix f() can then be visualized using one of the following MATLAB functions:

>> contour(x,y,f)
>> mesh(x,y,f)
>> surf(x,y,f)
>> surfc(x,y,f)
>> surfl(x,y,f)

plotting scalar fields

Computational Physics I Unit 2

(a,d) (b,d)

(a,c) (b,c)

€

a

€

b

€

c

€

d

€

M = 3

€

x ∈[a,b]
y ∈[c,d]

€

N = 5

a b

a b

a b

c c c c c

...

d d d d d

f(a,c) f(b,c)

...

f(a,d) f(b,d)

Day 1

y

x

this memory element has index (i,j),
but needs to give both x and y

Prof. Alexander Knebe

MATLAB plotting scalar fields

Computational Physics I Unit 2

Day 1

Ø exercise:

• write a script potential2D.m that visualizes the potential of an electric charge:

• place the charge at position (x0,y0) within the range [-1.25,+1.00]x[-0.75,+1.15]
• generate a 2D mesh covering this x-y range using meshgrid()
• use the following formula for the potential where e = -1 is the charge:

• visualize the potential using contour(), mesh(), surf(), etc. either in
multiple figures (figure()) or in one figure (subplot())

Ø exercise:

• write a new script potentials2D.m where you add a second charge e = +1 at position (-x0, -y0)

• Note: the potential is additive, i.e. Utotal = U- + U+

€

U =
e

(x − x0)
2 + (y − y0)

2

Ø exercise:

• write a script x2+y2.m that plots f(x,y)=x2+y2 within the range [-100,100]x[-100,100]
• use subplot() or figure() to view all possible contours and surfaces simultaneously
• use colorbar, axis, and shading to modify the figure
• use help to find out more about mesh(), waterfall(), surf(), surfc(), surfl()
• use help to learn more about colorbar, axis, shading

Ø exercise:

• write a script sinxcosx.m that visualizes f(x,y)=sin(x)cos(y) within the range [0,2p]x[0,2p]

Prof. Alexander Knebe

MATLAB

§ MATLAB can attach vectors to (a grid of) points with quiver(x,y,Vx,Vy):

>> quiver(x,y, Vx,Vy)

§ example script vectorfield2D.m:

%================================
% vectorfield.m: 2D random vector field
%================================

% range and # of points
Nmesh = 10;

xmin = -2.6;
xmax = +3.2;
ymin = -1.6;
ymax = +2.8;

% generate a linearly spaced mesh in x and y
xmesh = linspace(xmin,xmax,Nmesh);
ymesh = linspace(ymin,ymax,Nmesh);
[x,y] = meshgrid(xmesh,ymesh);

% generate a 2D random vector field
vx = rand(Nmesh,Nmesh)-0.5;
vy = rand(Nmesh,Nmesh)-0.5;

quiver(x,y,vx,vy)
axis image

Ø exercise:

• generate the example script vectorfield2D.m as given above
• what is the output of rand() and rand()-0.5, respectively?
• how can you change the length of the vectors?
• hint: help quiver

Ø exercise:

• write a script vectorfield3D.m that plots a random vector field in 3D using quiver3()

plotting vector fields

Computational Physics I Unit 2

voluntary exercis
e!

Day 1

Prof. Alexander Knebe

MATLAB

§ recall the exercises on numerical derivatives, e.g. the calculation of dx and df for df/dx

>> il = [1:N-1], ir = [2:N];
>> dx = x(ir)-x(il);
>> df = f(ir)-f(il);

§ as this is a rather important operation MATLAB has a simple command for this that does not need the
index vectors:

>> dx = diff(x);
>> df = diff(f);

Ø exercise:

• adjust your derivation.m scipt to now use diff() instead of index vectors

§ for functions of multiple variables we have derivatives with respect to every variable,
e.g. the force is the gradient of the potential:

§ MATLAB can calculate the gradient of a given scalar field

>> [Fx, Fy] = gradient(U) 2D gradient
>> [Fx, Fy, Fz] = gradient(U) 3D gradient

Ø exercise:

• write a new script force2D.m by adjusting potential2D.m that now plots the force field.

Ø exercise:

• write a script force3D.m that now plots the 3D force field of the same electric charge

• hint: you now need to add a 3rd dimension (i.e. z) to all calculations including meshgrid(),
the actual potential and the gradient.

gradients

€

!
F = −

!
∇ U = −

∂U
∂x
, ∂U
∂y
, ∂U
∂z

%

&
'

(

)
*

Computational Physics I Unit 2

voluntary exercis
e!

Day 1

Prof. Alexander Knebe

§ the rotation of a 2D vector can be described by a matrix operation

§ the matrix M is determined as follows:

€

! v rotated = ˆ M ! v

MATLAB rotation via matrices

Computational Physics I Unit 2

€

! v rotated =
vx
rotated

vy
rotated

"

$

%

&
'

€

! v =
vx

vy

"

$

%

&
'

€

ϕ

€

β

€

α
€

vx = v cosα ; vx
rotated = v cosβ ; β = α +ϕ

vy = v sinα ; vy
rotated = v sinβ

€

vx
rotated = v cos(α +ϕ) = v cosα cosϕ − sinα sinϕ[] = vx cosϕ − vy sinϕ

vy
rotated = v sin(α +ϕ) = v sinα cosϕ + cosα sinϕ[] = vy cosϕ + vx sinϕ

=> =>

€

ˆ M =
cosϕ −sinϕ
sinϕ cosϕ
$

%
&

'

(
)

Ø exercise:

• write a script that rotates a given 2D vector about a pre-defined angle (given in degrees!) using
the rotation matrix
• proof that the original and rotated vectors have the same norm.
• graphically display the two vectors using the MATLAB function quiver()

§ the rotation of a 3D vector can be described by successive matrix operations

€

Mx =

1 0 0
0 cosϕ −sinϕ
0 sinϕ cosϕ

$

%

&
&
&

'

(

)
)
)

€

My =

cosϕ 0 −sinϕ
0 1 0
sinϕ 0 cosϕ

$

%

&
&
&

'

(

)
)
)

€

Mz =

cosϕ −sinϕ 0
sinϕ cosϕ 0
0 0 1

$

%

&
&
&

'

(

)
)
)

rotation about x-axis rotation about y-axis rotation about z-axis

Ø exercise:

• write a script that rotates a given 3D vector about two pre-defined angles (given in degrees!),
i.e. one rotation about the x-axis and another rotation about the z-axis.
• show that rotations are non-permutative, i.e. first rotating about the x- and then the z-axis is

not the same as first rotating about the z- and then the x-axis.
• proof that all (rotated) vectors have the same norm.
• graphically display all vectors using the MATLAB function quiver3()

Day 1

Ø exercise:

• write a script that rotates x = sin(t) (for t∈[0,2p]) about 32o

• hints:
• put the vectors t() and x() into a matrix S=[t; x]
• rotate that matrix via R*S where R is the rotation matrix
• extract the new vectors t() and x() from the rotated matrix and plot them

Prof. Alexander Knebe

MATLAB

§ MATLAB comes with a suite of pre-defined and ready to use functions

>> sin(), cos(), exp(), log(), plot(), linspace(), meshgrid(), …

§ we can also define our own functions, e.g. generate a file statistic.m

%===
% statistic(x): calculate median, mean and standard deviation of all elements in x
%===
function [med, avg, stddev] = statistic(x)
% Calculate the median, mean, and standard deviation of all elements in vector x
med = median(x);
avg = mean(x);
stddev = std(x);

§ to use the function we need to write a script use-statistic.m that, for instance, generates a vector filled
with random numbers and calculates the median, mean and standard deviation of the elements of that
vector by calling the function statistic()

%===
% use-statistic.m: calculate the median, mean and standard deviation of random numbers
%===
% generate a vector h filled with 1000 random numbers
h = 100*rand(1000,1);

% call our own function statistic()
[a, b, c] = statistic(h);

% print the result
a, b, c

§ Note:
• avoid using names that already exist in MATLAB
• functions can return single or multiple variables (or even no variable at all)

− [a] = your_function(x) => returns a single variable “a”
− [a,b] = your_function(x) => returns two variables “a” and “b”

• functions can depend on a single or multiple variables
− [a] = your_function(x,y,z) => makes use of x, y and z (but only returns “a”!)

• a,b,x,y,z can be variables, but also vectors or multi-dimensional matrices
• the return value(s) must be assigned in the function
• the names of the variables inside your function do not need to be the same as the names of the
variables you pass to the function!
• if you modify “x” in your_function() this will not be known by the program calling your_function()

Ø exercise:

• use both statistic.m and use-statistic.m, and understand these scripts…
• what happens if you type help statistics in the command window?
• hint:

• check next page to better understand how to use your own function statistic()
• use help median, help mean, help std, help rand

functions

Computational Physics I Unit 2

Day 2

Prof. Alexander Knebe

MATLAB

§ before being able to use a function you must tell MATLAB where that function can be found:

functions

Computational Physics I Unit 2

1. click “Set Path...”

2. “Add Folder...” and select the folder where your your_function.m files is located

3. “Save” to save the changes you just made

Day 2

Prof. Alexander Knebe

MATLAB

Ø exercise:

• write a script use-oplot.m that calls your own function oplot(x,y) defined in oplot.m
• your function oplot() is supposed to “overplot” some data (x,y) in an existing plot, e.g.

%===
% use-oplot.m: plot two functions in the same figure using oplot()
%===
x = linspace(0,2*pi,100);
figure(1)
plot(x,sin(x)) % use MATLAB’s built-in function plot() to initiate the plot
oplot(x,cos(x)) % use your own function oplot() to add another curve to the plot

• hints:
• the function should look like this:

function [] = oplot(a,b)
% ensure that we can add a new plot to the existing figure
command?
% plot a on the x-axis and b on the y-axis
command?
% return to the situation where plot() does not add to the existing figure
command?

end

• remember hold on and hold off
• the function oplot() does not return anything!

Ø exercise:

• write a script use-ang2rad.m that calls your own function ang2rad(x) defined in
ang2rad.m converting degrees to radians, i.e.

function [y] = ang2rad(x)
% command to convert x in degrees to y in radian
command?

end

• use this function to plot a full period of sin(x)

• Note: this function already exists in MATLAB, but when you write your own version that will
be the one used by MATLAB!

Ø exercise:

• write a new script force2D-dist2D.m by adjusting your script force2D.m to now utilize a
function dist2D() that calculates

• hint: dist2D() has to accept 4 arguments (x,y,x0,y0) and return 1 result (the distance)

functions

€

dist2D = (x − x0)
2 + (y − y0)

2

Computational Physics I Unit 2

Day 2

Prof. Alexander Knebe

MATLAB

§ there are two different types of functions in MATLAB:

• script functions

function [I] = integrate(g, x0, xend, N)

• anonymous functions

g = @(x)(x.^2-exp(-x))

1) script functions:

• script functions require you to write an m-file with the same name as the function

• script functions can return multiple values of different types, e.g.

function [E,V] = ElectricFields(r)

where

E is a 3-component vector (electric field),
V is a 1-component scalar (potential field), and
r the 3-component vector (3D position of electric charge)

• all variables declared as return values must be set inside the function

• a script function can be a block of certain operations that you plan to do repeatedly, e.g.

functions

Computational Physics I

integrate():
integrate the function g(x)
from x0 to xend in N steps

and return its value.

(g,x0,xend,N) [I]

input output

Unit 2

Day 2

Prof. Alexander Knebe

MATLAB

§ there are two different types of functions in MATLAB:

• script functions

function [I] = integrate(g, x0, xend, N)

• anonymous functions

g = @(x)(x.^2-exp(-x))

2) anonymous functions:

• anonymous functions can be defined anywhere in a script

• an anonymous function can be passed to a script function (see example above)

• an anonymous function rather defines a mathematical function than a block of operations

§ Note:

§ you can pass more arguments to a function than actually used, e.g.

g = @(x,v,t)(-1/x.^2)

è this can be very helpful to know when programming general purpose routines! ç

• but when using g(x,v,t) you must call it with all arguments, e.g.

x = linspace(5,10,100);
plot(x, g(x,v,t))

…even though v and t are not used in this particular case!

functions

Computational Physics I Unit 2

Day 2

Prof. Alexander KnebeDr. Alexander Knebe

MATLAB

§ vectors vs. functions:

functions

Computational Physics I Unit 2

%========================
% f as a vector
%========================
a = 1.5;
b = 7.8;
n = 5;

x = linspace(a,b,n);

f = x.^2+5.*x;

plot(x,f)

%========================
% f as a function
%========================
a = 1.5;
b = 7.8;
n = 20;

x = linspace(a,b,n);

f = @(x)(x.^2+5.*x);

plot(x,f(x))

a ... bf f(x)
1 2 3 4 5

f is a vector whose values f(1)=a, ..., f(n)=b
can be read and used (and even over-written).
Note again, a vector can only be accessed at
the integer values i=1,...,n as they indicate the
position in the vector (=vector index).

f(x) is an anonymous function that can be used
to evaluate f at any given value for x.
Note, the “plot(x,f(x))” command also generates
a vector that contains f(x) at n points, but this
vector will not be stored under any name in the
computer’s memory; it will only be plotted.

Ø exercise:

• return to your script force2D-dist2D.m and use an anonymous function for dist2D() now.

Ø exercise:

• write a script function for log3() and use it on the command line to calculate log3(108).
• write an anonymous function for log3() and use it on the command line to calculate log3(108).

§ Note:
•MATLAB does not distinguish syntax-wise between accessing a vector and evaluating a function
• both commands are written as f():

- if f is a vector, f(i) accesses element i in f()
- if f is a function, f(i) evaluates f() at the argument i

• other programming languages (like C) use, for instance, f[] for accessing vectors and f() for evaluating
functions to distinguish between these cases...

Day 2

Prof. Alexander Knebe

MATLAB conditions

Computational Physics I Unit 2

Day 2

• x > a x is greater than a
• y >= z y is greater or equal z
• q < 5.3 q is smaller than 5.3
• p <= b p is smaller or equal b
•m == n m is equal n
• z ~= c z is not equal c

§ it is possible to compare the content of two variables, vectors, or even matrices:

§ the result of any comparison is either 1 (true) or 0 (false), e.g.

>> 5 == 3
ans = 0
>> 7 > 2
ans = 1

§ if you compare vectors (matrices) the result will be a vector (matrix) containing the results of a
component-wise comparison, e.g.

>> a = [1:2:10]; b = [10:-2:1];
>> a > b
ans = 0 0 0 1 1

>> A = [1,2; 3,4]; B = [1,1; 4,4];
>> A == B
ans = 1 0

0 1

§ a common application of conditions is to use them together with MATLAB’s function find()

>> x=rand(1,10);
x = 0.8147 0.9058 0.1270 0.9134 0.6324 0.0975 0.2785 0.5469 0.9575 0.9649

>> i=find(x>0.5);
i = 1 2 4 5 8 9 10 i() now contains all the positions of the vector x()whose

values are larger than 0.5

§ logical conditions can be combined:

& : condition #1 AND condition #2 are true
| : condition #1 OR condition #2 is true

• example:
x = input(’please give a number x = ’);
if(1 < x & x < 10)

disp(‘the number you entered lies between 1 and 10’)
if(x < 0 | x > 2^32)

disp('very large or negative number’)
end

Prof. Alexander Knebe

MATLAB conditions

Computational Physics I Unit 2

Day 2

Ø exercise:

• write a script sine-positive.m by adjusting sine.m that sets all negative values of sin() to zero.

Ø exercise:

• write a script that generates a vector containing 106 uniformly distributed random numbers on
the intervall [1,100] and calculate what fraction of numbers lies on the intervall [20,30].

0 1 2 3 4 5 6 7 8
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

x

y

Ø exercise:

• write a script cannonball-maximum.m by adjusting the cannonball.m script to also calculate the
maximum height ymax of the cannonball
• how long does it take to reach this height (i.e. calculate the corresponding tmax, too)?
• at what x-position xmax does the cannonball reach this height?
• generate a plot that indicates the maximum by red lines on top of the actual trajectory:

• hints:
• use the following idea to finding the maximum in vector y():

for increasing values of y() the difference (calculated with diff()) between two neighbouring
points in y() is greater than zero and less than zero for decreasing values of y()

Prof. Alexander Knebe

MATLAB

Computational Physics I Unit 2

Day 2

Ø exercise:

• write a script function my_abs.m that returns the absolute value of a scalar input argument.

Ø exercise:

• write a function calculation.m that calculates either a+b, a-b, a*b or a/b depending on a
variable action that either contains 1 (for ‘add’), 2 (for ‘subtract’), 3 (for ‘multiply’) or 4 (for
‘divide’). The function should work like this:

function [result] = calculation(a,b,action)

• Note: you should use a combination of if-elseif-else-end that also checks if the action
is valid (i.e. valid means action∈[1,4]).

§ execute different commands depending on some (combination of) logical condition again, e.g.

%============ %================ %================
% if-clause % if-else clause % if-elseif clause
%============ %================ %================
if condition if condition if condition

command; command; command;
end else elseif condition

some other command; some other command;
end else

another command;
end

§ Note:
• a condition used in an if(-else)-end clause should only compare scalar values and not vectors!
• but: you can also compare two string variables (see exercise below)

if-else-end clause

§ Note: never compare floating variables (i.e. real numbers) using == or ~= ; use the following instead:

do not use: x==a instead use: abs(x-a) < e for ‘is equal’
do not use: x~=a instead use: abs(x-a) > e for ‘is not equal’

where e defines your desired accuracy, e.g.

will not work will work
if tan(0.7) == sin(0.7)/cos(0.7) if abs(tan(0.7)-sin(0.7)/cos(0.7)) < 1e-10

disp(‘success’) disp(‘success’)
end end

(check help disp to learn more about disp())

Prof. Alexander Knebe

MATLAB

Computational Physics I Unit 2

Day 2/3

§ you want to repeat a certain operation while some logical condition remains true:

while condition
command;

end

§ example: we want to determine how often a number can be divided by 2

%======================================
% simple log2() function
%======================================
f = 32
n = 0;
while f > 1

f = f / 2;
n = n + 1;

end
2^n

§ Note: as the title of the script suggests, this is a very simple (and crude!) form for calculating n=log2(f)
§ Note: a condition used in while-loop should only compare scalar values and not vectors!

Ø exercise:

• use the above idea to write a script that evaluates log3() for several values of f (e.g. 27, 243,
531411) and compare to the real log3(f)

while-loops

Ø exercise:

• write a script that evaluates whether or not a natural number is a prime number.

• hints:
• a prime number is a number that can only be divided by 1 and by itself
• use mod(n,div) or rem(n,div) to evaluate the remainder of the division n/div
• if rem(n,div)==0 for any 1<div<n then n cannot be a prime number

• advanced scripting hints:
• use input() to let the user input the natural number:

n = input(‘give a natural number n = ’)

• use disp() to print whether or not n is a prime number:
if your_condition_for_prime_number

disp(‘prime number’)
else

disp(‘not a prime number’)
end

Prof. Alexander Knebe

MATLAB for-loops

Computational Physics I Unit 2

€

fn = fn−1 + fn−2

€

f1 =1 , f2 =1

Ø exercise:

• write a script fibonacci.m that calculates the first N Fibonacci numbers using a for-loop
• show in the same script that Binet’s formula for the Fibonacci numbers is correct:

with

€

fn =
ϕn −ψ n

5

€

ϕ =
1+ 5
2

,ψ =
1− 5
2

Day 3

§ imagine you want to do same operation with every element of a vector, e.g.

• x() and f() are vectors of the same length and you want to store in f() the numbers x2

è for every i: f(i) = x(i).^2

•MATLAB is doing this operation automatically when you type

>> f = x.^2

•MATLAB is hiding from you a so-called for-loop:

%======================== %========================
% example for-loop % example without for-loop
%======================== %========================
x = linspace(0,2*pi,5); x = linspace(0,2*pi,5);

f = zeros(1, length(x));
for i=1:length(x) f = x.^2;

f(i) = x(i)^2;
end

• Note:
• f = zeros(1, length(x)) generates a vector f() with the same length as x() filling it with zeros
• the ‘.’ in front of ‘/’, ‘*’, and ‘^’ always means that MATLAB will perform a for-loop for you

§ an example where MATLAB does not provide a simplified syntax for you is:

The Fibonacci Series: with

§ Advise:
• you can use the loop-index to access the elements of a vector/matrix
• you can use the loop-index as a variable in formulae…
• ...but never change the value of the loop-index within the loop!
• always use integer values for the loop-index

Prof. Alexander Knebe

MATLAB

Ø exercise:

• write a function my_sum() that calculates the sum of all elements in a vector using a for-loop:
input argument: a vector x, output: the sum of all elements in x

Ø exercise:

• write a function my_find() that works like MATLAB’s “find(x>0)”.

Ø exercise:

• write a script fac.m that calculates f = n!
• remember: n! is an expression for n*(n-1)*(n-2)*(n-3)*…*2*1
• hints:

• store the result in a variable f that needs to be initialized to f=1 prior to the loop
• you can loop from 2:n

• compare your result to MATLAB’s in-built function factorial()

Ø exercise:

• remember MATLAB’s two different (matrix) multiplication operators * and .*
>> A * B = C ; mathematical multiplication
>> A .* B = D ; component-wise multiplication

• use for-loops instead of the operator * to calculate C for
A=[1,2; 3,4; 5,6] and B=[7,8,9; 10,11,12]

• compare your results to the results when using the * operator
• hints:

• the formula for a matrix multiplication is
• you need to use 3(!) nested for-loops
• you need to use MATLAB’s function size()

• use for-loops instead of the operator .* to calculate D for
A=[1,2; 3,4; 5,6] and B=[7,8; 9,10; 11,12]

• compare your results again to the results when using the .* operator

for-loops

Computational Physics I Unit 2

€

Ci, j = Ai,kBk, j
k
∑

Day 3

§ Note: both the for- and while-loop can be terminated with a break statement:

x = linspace(0,2*pi,100);
y = cos(x); % generated vector containing cosine curve on [0,2p]
for i=1:length(y) % loop through whole vector

if(y(i)<0) % at first negative value...
break; % ...terminate the for-loop

end
end
plot(x(1:i-1),y(1:i-1) % only plot the (first) positive part of the cosine-curve

Prof. Alexander Knebe

MATLAB switch statement

Computational Physics I Unit 2

§ in case you have multiple options, there exist the switch statement

switch expression:
case A,

command,
command,
...

case B,
command,
command,
...

...
...

otherwise,
command,
command,
...

end

Ø exercise:

• write a script that uses input() to take a number between 1 and 7 from the user
• use the switch statement to display (using disp())

• ‘Monday’ if that number was 1,
• ‘Tuesday’ if that number was 2,
• ‘Wednesday’ if that number was 3,
• etc.

• use the ‘otherwise’ statement to display an error message in case the number is not in the
allowed range

§ the switch expression can also be a string!

Ø exercise:

• write a script that uses input() to take both a number and a string from the user:
• x = variable for the number
• unit = string variable for either ‘meter’ or ‘inch’

• use a switch for unit to decide whether to convert x to meter or inch
• case ‘inch’, y = x/39.3701 (converion to meter)
• case ‘meter’, y = x*39.3701 (conversion to inch)

• use the ‘otherwise’ statement to display an error message in case unit does neither contain
‘meter’ nor ‘inch’

Day 3

Prof. Alexander Knebe

MATLAB application – matrix generation

Computational Physics I Unit 2

Day 4

Ø exercise:

• write a script that generates a matrix M that contains the following elements

𝑀!,# = #
0 , 𝑖 < 𝑗
𝑖 − 1
𝑗 − 1 , 𝑖 ≥ 𝑗

where the non-zero elements are defined as follows

𝑛
𝑚 =

𝑛!
𝑚! 𝑛 − 𝑚 !

You can use MATLAB’s function factorial() to calculate n!

The matrix should have the dimensions NxN with N=15.

Ø exercise:

• use the matrix M to create a new matrix N with the following elements

𝑁!,# = 0
𝑀#,! , when 𝑀#,! is even
−𝑀#,! , when 𝑀#,! is odd

Ø exercise:

• visualize both matrices, e.g. generate plots similar to these one:

0
15

500

1000

1500

15

M

10

2000

2500

i

10

3000

j

3500

5
5

0 0

-4000
15

-3000

-2000

-1000

15

0N

10

1000

2000

i

10

3000

j

4000

5
5

0 0

Prof. Alexander Knebe

MATLAB application – gravity

Computational Physics I Unit 2

Day 4

We want to determine the value of the gravitational constant g on Earth. For that we have obtained
the following experimental data:

h = [2.0000, 4.0161, 5.5282, 6.5363, 7.0403, 7.0403, 6.5363, 5.5282, 4.0161, 2.0000]
t = [0, 0.2268, 0.4536, 0.6804, 0.9073, 1.1341, 1.3609, 1.5877, 1.8145, 2.0413]

where h measures the height above the Earth and t the time of the respective measurement.

Ø exercise:

• write a script with the name gravity.m in which you plot h(t).

Ø exercise:

• write a script function derivative(f,x) that calculates the numerical derivative of h(t).
This function should work as follows:

function [dfdx,xmid] = derivative(f,x)

⟹ input values: (f,x)
x = vector containing the values of x
f = vector containing the values of f(x) at the positions stored in x

⟸ return values: [dfdx, xmid]
xmid = vector containing the mid-points of x
dfdx = vector containing the numerical derivative of f(x) at the mid-points

Ø exercise:

• use your script function derivative() to calculate the numerical velocity v=dh/dt and
plot it into the same figure as h(t).

Ø exercise:

• use derivative() again to calculate the numerical acceleration a=dv/dt and plot it into
a new figure.
• add another line to this plot that shows the mean value of a(t) as a straight line.

§ Note: your final plots should look like this

t [s]
0 0.5 1 1.5 2 2.5

h(
t)

[m
] &

 v
(t)

 [m
/s

]

-10

-8

-6

-4

-2

0

2

4

6

8

10
experimental position
numerical velocity

t [s]
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

a
[m

/s
2]

-9.804

-9.802

-9.8

-9.798

-9.796

-9.794

-9.792

-9.79
numerical acceleration
mean acceleration

this is the sought-after value of g

Prof. Alexander Knebe

MATLAB

§ The Maxwell-Boltzmann distribution:

• f(v) = distribution of velocities of atoms with mass m at temperature T

application – Maxwell-Boltzmann distribution

Computational Physics I Unit 2

€

f (v) = 4π m
2πkBT

$
%

&

'
(

3 / 2

v 2e
−
mv 2

2kBT

temperature T

m

Day 4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

3.5
x 10�4

v [m/s]

f

Ø exercise:

• write the script MaxwellBoltzmann.m that plots the distribution function f(v) for a proton

…and determines the maximum vmax by using a function

function [xmax, imax] = vecmax(x)

where x() is a vector and xmax the maximum value of that vector found at index imax.
The function should also work in case there are multiple maxima/minima in x() and hence
you need to use a for-loop in combination with an if-statement.

Note:
• MATLAB has in-built functions to determine max- and min-values that you can use from

now on:
>> help max
>> help min

Prof. Alexander Knebe

MATLAB

§ Coulomb charge distribution:

application – charge distribution

Computational Physics I Unit 2

Day 4

Four charges q1, q2, q3 y q4 are placed on a 2D plate, but only along the x-axis:

The electric potential is given as follows:

€

q1

€

q2

€

q3

€

q4
€

+lim

€

−lim€

+lim

€

−lim

€

x
€

y

V (!r) = 1
4πε0

qi!ri −
!ri

∑

€

x1

€

x2

€

x3

€

x4

Ø exercise:

• visualize the potential for the region x ∈ [-lim, lim] and y ∈ [-lim, lim].
• calculate and visualize the force field in the same region.
• rotate the charge distribution by 23.5o counter-clockwise and repeat the two plots.

(the relevant values are
x1=−4.3·10-2 m, x2=−1.5·10-2 m, x3=1.29·10-2 m, x4=4.7·10-2 m,
q1=−2.07·10-12 C, q2=9.08·10-12 C, q3=−16.99·10-12 C, q4=12.48·10-12 C,
lim=0.98·10-2 m)

potential of rotated distribution force field of rotated distribution

Prof. Alexander Knebe

§ Lissajous curves

The Lissajous curves are described by the following parametric equations

where the curves are centered on the origin of the coordinate system.

Ø exercise:

• write a script that calculates the Lissajous curves for the following values

A=1, B=1, a=5, b=3, but centered at (2,2)

• plot them rotated by 45o:

MATLAB application – Lissajous curves

x = A ⋅cos(a ⋅θ)
y = B ⋅sin(b ⋅θ)

Computational Physics I Unit 2

Day 4

Prof. Alexander Knebe

MATLAB application – particle trajectory

Computational Physics I Unit 2

A particle moves in one dimension along the x-axis with the velocity

𝑣 𝑡 = 𝑣! + 𝐴!𝑒"#/% cos 𝜔𝑡 − 𝜔𝑡 𝑠𝑖𝑛 𝜔𝑡

Day 4

Ø exercises:

• calculate the velocity for a given interval 𝑡 ∈ [𝑡&'(, 𝑡&)*] using an anonymous function for v(t);
this anonymous function has to take v0, A0, t, and w as arguments, too!

• plot v(t) into a new figure.

• numerically calculate the acceleration and plot it into a new figure.

• numerically calculate the particle trajectory x(t) and plot it into a new figure.

Use the following data:

tmin=1.8 s, tmax=4.3 s, v0=1.5 m/s, A0=-1 m/s, w=4.5 s-1, t=3.3 s, x0=-7.5 m

Prof. Alexander Knebe

MATLAB application – damped harmonic oscillator

Computational Physics I Unit 2

Day 4

The Newtonian equation for the damped harmonic oscillator reads as

where m is the mass, c the friction constant, and k the spring constant. The exact solution (for
v(t=0)=v0=0) is given as follows

with

m d 2x(t)
dt2

+ c dx(t)
dt

+ kx(t) = 0

Ø exercise #1:

• create an external function [x]=dho_x(k,m,c,x0,t) that calculates the solution of
the damped harmonic oscillator on the time interval specified by input time vector t().

x(t) = x0
1−ζ 2

e−γt cos(1−ζ 2ω0t −ϕ)

γ =
c
2m

ζ =
c

2 mk

ω0 =
k
m

ϕ = arccos(1−ζ 2)

Ø exercise #2:

• plot x(t) using m=1.4kg, k=6.5kg/s2, c=0.8kg/s, x0=2.8m, t0=0s, tend=18s.

Ø exercise #3:

• calculate by numerical differentiation v(t) and plot into the same figure of exercise #2.

Ø exercise #5:

• calculate by numerical integration of dW/dt = - c v2 the frictional work of the oscillator.

Ø exercise #6:

• plot the total energy E(t)=1/2 (mv2+kx2) into the same figure of exercise #5.
• Note: to match the frictional work with the total energy you need to add E0 to it.

Ø exercise #4:

• numerically calculate a(t)=dv/dt and plot into the same figure of exercise #2.

Prof. Alexander Knebe

MATLAB application – Leibniz series

Computational Physics I Unit 2

Day 4

Consider the following numerical series (Leibniz formula) defining p

(−1)n

2n+1
=
π
4n=0

∞

∑

Ø exercise #1:

• evaluate the finite sum

and plot it as a function of N and checking that it converges to p/4.

Ø exercise #2:

• consider now the equivalent form

plotting it into the same figure as for exercise #1.

f (N) = (−1)n

2n+1n=0

N

∑

g(N) = 2
(4n+1)(4n+3)n=0

N

∑

Prof. Alexander Knebe

§Monte Carlo integration is a technique for numerical integration using random numbers. Here
we will see it in action using a Lissajous curve as the function to be integrated:

The points of a Lissajous curve with period ratio 1:2 and phase p/2 can be described as follows:

4 𝑥$ − 𝑥% + 𝑦% = 0

Examples

Computational Physics I Unit 2

Day 4

application – Monte Carlo integration

Ø exercise:

• Calculate via numerical integration (as learnt in Unit 1) the area covered by the curve.

Ø exercise:

• Plot the Lissajous curve on the interval 𝑥 ∈ [−1,+1].

Ø exercise:

• Calculate the area via Monte Carlo integration:

- generate a pair of random numbers (rx,ry) from a uniform distribution

- so that 𝑟& ∈ 𝑥'!(, 𝑥')& and 𝑟* ∈ 𝑦'!(, 𝑦')& .

- check, if that point lies within y(x).

- repeat this process N times where Nin will count how often (rx,ry) lies inside y(x)

- the area will then be 𝐴 ≈ +!"
+ 𝑥'!(− 𝑥')& 𝑦'!(− 𝑦')&

• Compare the values for the areas

• If you add the points inside y(x) the plot will eventually look like this:

Prof. Alexander Knebe

MATLAB summary

matrix functions
size diff gradient max min prod diag sort

length size numel transpose / inv gradient

ones zeros eye meshgrid norm

plotting
meshgrid mesh surf surfc surfl contour quiver quiver3

colormap colorbar shading waterfall

script commands
for while if else end function return switch/ca

se

input disp break

useful functions
rand randn rem mod median mean mode std

factorial find

§ you further need to know the following...

• basic matrix operations

• plotting surfaces and multi-dimensional functions, respectively

• defining and using own functions with one or multiple arguments

• using for-loops

• using if-then-else statements

Computational Physics I Unit 2

§ please familiarize yourself with all of these commands, functions, variables, etc.,
even if they have not been discussed in class:

from now on you must know how to use them all!

