Computational Physics | Unit 2

Unit 2

Matrices and Advanced Plotting/Scripting

Prof. Alexander Knebe

Computational Physics | Unit 2

MATLAB matrices

= every variable in MATLAB is a matrix

>> a=1 1x1 matrix
>> b=[1, 2] 1x2 matrix
>> c=[1l; 2] 2x1 matrix
> d=[1, 2; 3, 4] 2x2 matrix
>> A=[10, -3, 7; 2, 12, 0] 2x3 matrix

(2D AQ2) AL3)
lae)y a2 a3

A(n,m) n=rown, m=column

> exercise:

~

* define various matrices (1x1, 1x3, 3x1, 3x3) and check the results of...

>>transpose(d)
>>d’

>>size(d)
>>diag(d)

* Note that diag() can extract and generate diagonal matrix elements!
\. use help to learn about the commands diag(), zeros(), eye(),ones(), numel()

= matrix multiplication:

* A(n,m) * B(m,k) = C(n,k) mathematical
* A(n,m) .* B(n,m) = C(n,m) component-wise
> exercise:
errform the following operationsonA=[1,2;3,4]and B=[5,6;7,8] \

>>A+B
>>A-B
>>A*B
>>A.*B
>>A./B

* Note: the operations A/B and A\B will be explained later!

> exercise:

/

\

* use A and B from the previous exercise to generate the following matrix C with one command
>C = 227
C =
1200
3400
0056
0078

v,

Day 1 Prof. Alexander Knebe

Computational Physics | Unit 2

MATLAB matrices

= matrix elements can be accessed individually

> A = [10, -3, 7; 2, 12, 0] A Al A2 A3
A(1,3)=7 _ae)) a2 aR2)3)
A(2,1)=2 <
A(2) =2

A a3 AO)
A(4) A(6)

> exercise:

* extract the second column of A into a vector ¢ with one command
* extract the second row of A into a vector r with one command

* Note: do not write [A(1,2),A(2,2)] or [A(2,1),A(2,2),A(2,3)] but use the colon operator “:" instead

> exercise:

f' fill all zero elements of the following matrix A with -1 \

>>a=1[1, 2, 3, 4, 5, 6]
>> A diag(a)

>> 2272
A =
1-1-1-1-1-1
-1 2 -1 -1 -1 -1
-1 -1 3 -1 -1 -1
-1 -1 -1 4 -1 -1
-1 -1 -1-1 5 -1
-1 -1 -1-1-1 6

\hint: you have to use £ind () /

= just like with vectors, you can easily remove columns and/or rows from a matrix, e.g.
>> A(:,1) =[]
>> A(end,:) = []

> exercise:

* adjust the script for the cannonball trajectory to plot the ascending trajectory in blue (vy>0) and
the descending in red (vy<0)
* hint: you have to use £ind () again...

Day 1 Prof. Alexander Knebe

Computational Physics |

Unit 2

MATLAB plotting scalar fields
= we intend to visualize a function of multiple variables, e.g.
>) X x Ela,b]
Sfixy) =x*+y*> with S Eled]
* we need to cover the following area in the xy-plane:
y
A
d
(a.d) (b.d) ﬂthis memory element has index (i, Jj),
but needs to give both x and y
M=3 “t |
(a,c) (b,c)
c
a N5 b R
ToXx

* we need to generate two matrices of dimension MxN:
>> xm = linspace(a,b,N)
>> ym = linspace(c,d,M)

>> [x,y] = meshgrid(xm,ym)

where now index (i, j) will give the corresponding x and y values:

a b c c c c c
X = a b Y =
a b d d d d d
* the 2D mesh covered by x and y can then be used to calculate f(x.y),
i.e. generate another MxN matrix that contains the function values
fla,c) fib,c)
>> f = x."2+y."2 f =
fla,d) fib,d)

* the matrix £ () can then be visualized using one of the following MATLAB functions:

>> contour(x,y,f)
>> mesh(x,y,f)
>> surf(x,y,£f)
>> surfc(x,y,f)
>> surfl(x,y,f)

Day 1

Prof. Alexander Knebe

Computational Physics | Unit 2

MATLAB plotting scalar fields

> exercise:

* write a script x2+y2.m that plots f{x,y)=x2+y? within the range [-100,100]x[-100,100]

* use subplot () or figure() to view all possible contours and surfaces simultaneously

* use colorbar, axis, and shading to modify the figure

* use help to find out more about mesh (), waterfall(), surf(), surfc(), surfl()
* use help to learn more about colorbar, axis, shading

> exercise:
(° write a script sinxcosx.m that visualizes f(x,y)=sin(x)cos(y) within the range [0,27t]x[0,27])
» exercise:
mrite a script potential2D.m that visualizes the potential of an electric charge: \
* place the charge at position (x,yo) within the range [-1.25,+1.00]x[-0.75,+1.15]
* generate a 2D mesh covering this x-y range using meshgrid()
* use the following formula for the potential where e = -1 is the charge:
e
U - 2 2
V= x)+ (-)
* visualize the potential using contour (), mesh (), surf (), etc. eitherin
K multiple figures (Eigure()) orin one figure (subplot ()) /
» exercise:

* write a new script potentials2D.m where you add a second charge e = +1 at position (-xo, -Yo)

* Note: the potential is additive, i.e. Uor, = U+ U,

Day 1 Prof. Alexander Knebe

Computational Physics |

Unit 2

MATLAB

= MATLAB can attach vectors to (a grid of) points with quiver (x,y,Vx,Vy):

>> quiver(x,y, Vx,Vy)

= example script vectorfield2D.m:

%:::: —+— ——
% vectorfield.m: 2D random vector field

%==== == ==

% range and # of points

Nmesh = 10;
Xmin =-2.6;
Xxmax =+3.2;
ymin =-1.6;
ymax =+2.8;

% generate a linearly spaced mesh in xand y
xmesh = linspace(xmin,xmax,Nmesh);
ymesh = linspace(ymin,ymax,Nmesh);

[x,y] = meshgrid(xmesh,ymesh);

% generate a 2D random vector field
vx = rand(Nmesh,Nmesh)-0.5;
vy = rand(Nmesh,Nmesh)-0.5;

quiver(x,y,vx,vy)
axis image

> exercise:

plotting vector fields

* generate the example script vectorfield2D.m as given above

* what is the output of rand () and rand ()-0.5, respectively?
* how can you change the length of the vectors?

* hint: help quiver

> exercise:

\.
e

[* write a script vectorfield3D.m that plots a random vector field in 3D using quiver3 ()N eF
O

q°\°(\\

Day 1

Prof. Alexander Knebe

Computational Physics | Unit 2

MATLAB gradients

= recall the exercises on numerical derivatives, e.g. the calculation of dx and df for df/dx

>> il = [1:N-1], ir = [2:N];
>> dx = x(ir)-x(il);
>> df = f(ir)-£f(il);

® as this is a rather important operation MATLAB has a simple command for this that does not need the
index vectors:

>> dx = diff(x);
>> df = diff(f);
» exercise:
[* adjust your derivation.m scipt to now use diff () instead of index vectors]

= for functions of multiple variables we have derivatives with respect to every variable,
e.g. the force is the gradient of the potential:

F ooy {7U U U
ox’ ay’ dz

= MATLAB can calculate the gradient of a given scalar field

>> [Fx, Fy] = gradient(U) 2D gradient
>> [Fx, Fy, Fz] gradient (U) 3D gradient

> exercise:

[* write a new script force2D.m by adjusting potential2D.m that now plots the force field.]

> exercise:
* write a script force3D.m that now plots the 3D force field of the same electric charge 6\
* hint: you now need to add a 3" dimension (i.e. z) to all calculations including meshgrid(), (C\s
the actual potential and the gradient. (2
oS
(\\'
q°\°

Day 1 Prof. Alexander Knebe

Computational Physics | Unit 2

MATLAB rotation via matrices

= the rotation of a 2D vector can be described by a matrix operation
rotated

— rotated Cr —
1% = M 1% A —rotated _ Vs
4 - rotated

= the matrix M is determined as follows: y

v.=vcosa ; v =vcosp ; B=a+@ (v,
VvV =
. . ted .
v, =vsina ; v’ =vsinf v,
>
v =y cos(a + @) = v[cosacosqo —-sina sintp] =V, cos@p -V, sing R (coscp —sin(p)
=> = M=
vt = ysin(a + @) = v[sinacos<p+ cosa sinqy] =V COsSQ+V, sing siIn@ Cos@
> exercise:
* write a script that rotates a given 2D vector about a pre-defined angle (given in degrees!) using
the rotation matrix
* proof that the original and rotated vectors have the same norm.
* graphically display the two vectors using the MATLAB function quiver ()
> exercise:
* write a script that rotates x = sin(¢) (for t€[0,2x]) about 32°
* hints:
* put the vectors t () and x () intoa matrix S=[t; x]
* rotate that matrix via R*S where R is the rotation matrix
* extract the new vectors t () and x () from the rotated matrix and plot them
= the rotation of a 3D vector can be described by successive matrix operations
rotation about x-axis rotation about y-axis rotation about z-axis
1 0 0 cosp 0 -—sing cosep -sing O
M =0 cosp -sing M, =l 0 1 0 M_=|sing cosep O
0 sing cosg sing 0 cosg 0 0 1
> exercise:
. . . . —
* write a script that rotates a given 3D vector about two pre-defined angles (given in degrees!),
i.e. one rotation about the x-axis and another rotation about the z-axis.
* show that rotations are non-permutative, i.e. first rotating about the x- and then the z-axis is
not the same as first rotating about the z- and then the x-axis.
* proof that all (rotated) vectors have the same norm.
\° graphically display all vectors using the MATLAB function quiver3 ())

Day 1 Prof. Alexander Knebe

Computational Physics | Unit 2

MATLAB functions

= MATLAB comes with a suite of pre-defined and ready to use functions

>> sin(), cos(), exp(), log(), plot(), linspace(), meshgrid(),

= we can also define our own functions, e.g. generate a file statistic.m

= to use

%———— - - I JE— R

% statistic(x): calculate median, mean and standard deviation of all elements in x
%———— [J— J— J— —_—

function [med, avg, stddev] = statistic(x)

% Calculate the median, mean, and standard deviation of all elements in vector x
med = median(x);

avg = mean(x);

stddev = std(x);

the function we need to write a script use-statistic.m that, for instance, generates a vector filled

with random numbers and calculates the median, mean and standard deviation of the elements of that
vector by calling the function statistic()

= Note:

%==== == == == === == ===

% use-statistic.m: calculate the median, mean and standard deviation of random numbers

%———— - J— I JE— JE— _

% generate a vector h filled with 1000 random numbers
h = 100*rand(1000,1);

% call our own function statistic()
[a, b, c] = statistic(h);

% print the result
a,b,c

* avoid using names that already exist in MATLAB
* functions can return single or multiple variables (or even no variable at all)
—[a] =vyour_function(x) => returns a single variable “a”
— [a,b] =your_function(x) => returns two variables “a” and “b”
* functions can depend on a single or multiple variables
—[a] =vyour_function(x,y,z) => makes use of x, y and z (but only returns “a”!)
* a,b,x,y,z can be variables, but also vectors or multi-dimensional matrices
* the return value(s) must be assigned in the function
* the names of the variables inside your function do not need to be the same as the names of the
variables you pass to the function!
* if you modify “x” in your_function() this will not be known by the program calling your_function()

> exercise:

* use both statistic.m and use-statistic.m, and understand these scripts...

* what happens if you type help statistics inthe command window?

* hint:
* check next page to better understand how to use your own function statistic()
*use help median, help mean, help std, help rand

Day 2

Prof. Alexander Knebe

Computational Physics |

Unit 2

MATLAB functions
= before being able to use a function you must tell MATLAB where that function can be found:
8 00 MATLAB R2012b e
HOME PLOTS APPS (2SN (Ml Q Search Documentation

e g ~, New Variable < Analyze Code] | .
L SF U [gFindFies & B o= ¥ (@5 0 © &) g
{1/ Open Variable v [Run and Time
New New Open | |Compare Import Save Simulink Layout [/ Set Path Help 3 Request Support
Script v - Data {7 Clear v |/ Clear Ci v ibrary - -
FILE il s VARIABLE gl CODE SIMULINK INMENT RESOURCES
&1 % [/ » Users » aknebe » Documents » MATLAB v|L
Current Folder [GBl Command Window Workspace ®
N P = .
5 bi::‘ce{i‘onroot.m () New to MATLAB? Watch this Video, see Examples, or read Gett X Names Valug
7 errorbarlogy.m fe>> |
] euler.m
[2] file.dat
[2] GalaxiesInTheUniverse.dat
7 integral.m
[oscillator.dat
[oscillator2.dat
7] p4interpol.m . P, ” -
Elrk2.m 1. click “Set Path... Command History _____ ©
run('/Users/aknebe/0f
v %-- 25/09/2013 09:37 --
x=linspace(1,35,50);
my_sum(x)
clear all, clc
x=linspace(1,35,50);
my_sum(x)
%-- 25/09/2013 09:51 -~
Details ~
Ready

MATLAB R2012b

2SI FREONEN I (2)l Q Search Documentation

7~ bisectionroot.m
7] errorbarlogy.m
] euler.m
[2] file.dat

ﬁ£>>
6 00

. - ~, New Variable « Analyze Code] -

L 57 U [gFindFies & B 2 Ly Aozl & 0 © P Q) gic
(> Open Variable {7 Run and Time
New New Open |i|Compare Import Save o Simulink Layout [Set Path Help 3 Request Support
Script v - Data (7 Clear - u Clear C ~ Library - -
FILE VARIABLE CODE SIMULINK ENVIRONMENT RESOURCES
= = (5 & [/ » Users » aknebe » Documents » MATLAB -0
Current Folder ® Command Window ® Workspace ®
N: - = oo .
A,/ Name (@) New to MATLAB? Watch this Video, see Examples, or read Getting Started. x [[fiiamess Value

Set Path

[2] GalaxiesInThey
) integral.m

[] oscillator.dat
[] oscillator2.dat
7] p4interpol.m

{ Add Folder...

7] rk2.m Subfolders... |
Move to Top
Move Up
Details

Ready Move Down

Move j@gm |

Remove

All changes take effect immediately.

MATLAB search path: g
imand History

(&) /Users /aknebe/Desktop

4\ /Applications/MATLAB_R2012b.app/toolbox/matlab/demos

4\ /Applications/MATLAB_R2012b.app/toolbox/matlab/graph2d
4\ /Applications /MATLAB_R2012b.app/toolbox/matlab/graph3d
4\ /Applications/MATLAB_R2012b.app/toolbox/matlab/graphics
4\ /Applications /MATLAB_R2012b.app/toolbox/matlab/plottools
4\ /Applications /MATLAB_R2012b.app/toolbox/matlab/scribe

4\ /Applications/MATLAB_R2012b.app/toolbox/matlab/specgraph
4\ /Applications /MATLAB_R2012b.app/toolbox/matlab/uitools

4\ /Applications/MATLAB_R2012b.app/toolbox/local

4\ /Applications/MATLAB_R2012b.app/toolbox/matlab/optimfun
4\ /Applications /MATLAB_R2012b.app/toolbox/matlab/codetools
4\ /Applications/MATLAB_R2012b.app/toolbox/matlab/datafun
4\ /Applications/MATLAB_R2012b.app/toolbox/matlab/datamanager
4\ /Applications/MATLAB_R2012b.app/toolbox/matlab/datatypes
4\ /Applications/MATLAB_R2012b.app/toolbox/matlab/elfun

4\ /Applications/MATLAB R2012b.app/toolbox/matlab/elmat

run('/Users/aknebe/Of
g= 25/09/2013 09:37
x=linspace(1,35,50);
my_sum(x)

clear all, clc
x=linspace(1,35,50);
my_sum(x)

B= 25/09/2013 09:51
=

Save | | Close | Revert [

ad

2. “Add Folder...” a

elect the folder where your your_function.m files is located

3. “Save” to save the changes you just made

Day 2

Prof. Alexander Knebe

Computational Physics |

Unit 2

MATLAB

> exercise:

functions

/° write a script use-oplot.m that calls your own function oplot (x,y) defined in oplot.m \

* your function oplot() is supposed to “overplot” some data (x,y) in an existing plot, e.g.

%:::: == == == == ==

% use-oplot.m: plot two functions in the same figure using oplot()

%:::: == == == == ==

x = linspace(0,2*pi,100);

figure(1)

plot(x,sin(x)) % use MATLAB's built-in function plot() to initiate the plot
oplot(x,cos(x)) % use your own function oplot() to add another curve to the plot

* hints:
* the function should look like this:

function [] = oplot(a,b)
% ensure that we can add a new plot to the existing figure
command?
% plot a on the x-axis and b on the y-axis
command?
% return to the situation where plot() does not add to the existing figure
command?

end

*remember hold on and hold off

\ * the function oplot () does not return anything!

J

> exercise:

* write a script use-ang2rad.m that calls your own function ang2rad (x) defined in
ang2rad.m converting degrees to radians, i.e.

function [y] = ang2rad(x)
% command to convert x in degrees to y in radian
command?

end

* use this function to plot a full period of sin(x)

* Note: this function already exists in MATLAB, but when you write your own version that

\be the one used by MATLAB!

~

will

J

> exercise:

* write a new script force2D-dist2D.m by adjusting your script force2D.m to now utilize a
function dist2D () that calculates
dist2D = \/(x - xo)2 +(y- yo)2

* hint: dist2D () has to accept 4 arguments (x,y,x0,y0) and return 1 result (the distance)

Day 2

Prof. Alexander Knebe

Computational Physics | Unit 2

MATLAB functions

= there are two different types of functions in MATLAB:
* script functions
function [I] = integrate(g, x0, xend, N)
* anonymous functions

g = @(x)(x."2-exp(-x))

1) script functions:
* script functions require you to write an m-file with the same name as the function
* script functions can return multiple values of different types, e.g.
function [E,V] = ElectricFields(r)

where
E is a 3-component vector (electric field),
Vis a 1-component scalar (potential field), and
r the 3-component vector (3D position of electric charge)

« all variables declared as return values must be set inside the function

* a script function can be a block of certain operations that you plan to do repeatedly, e.g.

(g,x0,xend,N) [I]
> —>
output

input

and return its value.

Day 2 Prof. Alexander Knebe

Computational Physics | Unit 2

MATLAB functions

= there are two different types of functions in MATLAB:
* script functions
function [I] = integrate(g, x0, xend, N)
* anonymous functions

g = @(x)(x."2-exp(-x))

2) anonymous functions:
* anonymous functions can be defined anywhere in a script
* an anonymous function can be passed to a script function (see example above)

* an anonymous function rather defines a mathematical function than a block of operations

= Note:
= yOu can pass more arguments to a function than actually used, e.g.
g = @(x,v,t)(-1/x."2)
=> this can be very helpful to know when programming general purpose routines! €=
* but when using g(x, Vv, t) you must call it with all arguments, e.g.

x = linspace(5,10,100);
plot(x, g(x,v,t))

...even though v and t are not used in this particular case!

Day 2 Prof. Alexander Knebe

Computational Physics |

MATLAB functions
= vectors vs. functions:
%:::: —+— % - —_———
% f as a vector % f as a function
%:::: —+— % - —_———
a=1.5; a=1.5;
b=7.8; b=7.8;
n=>5; n=20;
x = linspace(a,b,n); x = linspace(a,b,n);
f = x.A2+45.%x; f= @(x)(x.A2+5.*%x);
plot(x,f) plot(x,f(x))
f f(x)
1 2 3 4 5
fis a vector whose values f(1)=a, ..., f(n)=b f(x) is an anonymous function that can be used
can be read and used (and even over-written). to evaluate f at any given value for x.
Note again, a vector can only be accessed at Note, the “plot(x,f(x))” command also generates
the integer values i=1,...,n as they indicate the a vector that contains f(x) at n points, but this

vector will not be stored under any name in the
computer’s memory; it will only be plotted.

position in the vector (=vector index).

= Note:
* MATLAB does not distinguish syntax-wise between accessing a vector and evaluating a function
* both commands are written as f():
- if fis a vector, f(i) accesses elementiin f()
- if fis a function, f(i) evaluates f() at the argument i
* other programming languages (like C) use, for instance, f[] for accessing vectors and f() for evaluating
functions to distinguish between these cases...

> exercise:

[* return to your script force2D-dist2D.m and use an anonymous function for dist2D () now. j

> exercise:

* write a script function for log3() and use it on the command line to calculate log3(108).
* write an anonymous function for log3() and use it on the command line to calculate log3(108).

Day 2 Priof. Alexander Knebe

Computational Physics | Unit 2

MATLAB conditions

= it is possible to compare the content of two variables, vectors, or even matrices:

*Xx>a X is greater than a
cy>=72 y is greater or equal z
*q<5.3 g is smaller than 5.3
*p<=b p is smaller or equal b
*m==n m is equal n

ez~=¢ zis not equal c

= the result of any comparison is either 1 (true) or 0O (false), e.g.

>>5==
ans=0
>>7>2
ans=1

= if you compare vectors (matrices) the result will be a vector (matrix) containing the results of a
component-wise comparison, e.g.

>>a=[1:2:10]; b = [10:-2:1];
>>a>b
ans=00011

>>A=[1,2;3,4]; B=1[1,1; 4,4];
>>A ==
ans=10

01

= |ogical conditions can be combined:

&: condition #1 AND condition #2 are true
| : condition #1 OR condition #2 is true

* example:
x = input(’please give a number x =’);
if(1<x&x<10)
disp(‘the number you entered lies between 1 and 10’)
if(x<0 | x>2/32)
disp('very large or negative number’)
end

= a common application of conditions is to use them together with MATLAB's function £ind ()

>> x=rand(1,10);
x=0.8147 0.9058 0.1270 0.9134 0.6324 0.0975 0.2785 0.5469 0.9575 0.9649

>> j=find(x>0.5);
i=1 2 4 5 8 9 10 —» 1i() now contains all the positions of the vector x () whose
values are larger than 0.5

Day 2 Prof. Alexander Knebe

Computational Physics |

Unit 2

MATLAB

> exercise:

conditions

* write a script sine-positive.m by adjusting sine.m that sets all negative values of sin() to zero.

> exercise:

* write a script that generates a vector containing 10 uniformly distributed random numbers on
the intervall [1,100] and calculate what fraction of numbers lies on the intervall [20,30].

> exercise:

* hints:

Kwrite a script cannonball-maximum.m by adjusting the cannonball.m script to also calculate the\
maximum height ymax of the cannonball

* how long does it take to reach this height (i.e. calculate the corresponding tmax, too)?

* at what x-position xmax does the cannonball reach this height?

* generate a plot that indicates the maximum by red lines on top of the actual trajectory:

0.9
0

* use the following idea to finding the maximum in vector y ():

for increasing values of y () the difference (calculated with diff ()) between two neighbouring
points in y (') is greater than zero and less than zero for decreasing values of y ()

J

Day 2

Prof. Alexander Knebe

Computational Physics | Unit 2

MATLAB if-else-end clause

= execute different commands depending on some (combination of) logical condition again, e.g.

%============ %================ % ==
% if-clause % if-else clause % if-elseif clause
%============ %================ % ==
if condition if condition if condition
command; command; command;
end else elseif condition
some other command; some other command;
end else
another command;
end
= Note:

* acondition used in an if(-else)-end clause should only compare scalar values and not vectors!
* but: you can also compare two string variables (see exercise below)

> exercise:

[° write a script function my_abs.m that returns the absolute value of a scalar input argument.]

> exercise:

Kwrite a function calculation.m that calculates either a+b, a-b, a*b or a/b depending on}
variable action that either contains 1 (for ‘add’), 2 (for ‘subtract’), 3 (for ‘multiply’) or 4 (for
‘divide’). The function should work like this:

function [result] = calculation(a,b,action)

* Note: you should use a combination of if-elseif-else-end that also checks if the action

Qvalid (i.e. valid means action€[1,4]). j

= Note: never compare floating variables (i.e. real numbers) using == or ~= ; use the following instead:

do not use: x==a instead use: abs(x-a) < e for ‘is equal’
do not use: x~=a instead use: abs(x-a) > e for ‘is not equal’

where e defines your desired accuracy, e.g.

will not work will work

if tan(0.7) == sin(0.7)/cos(0.7) if abs(tan(0.7)-sin(0.7)/cos(0.7)) < 1e-10
disp(‘success’) disp(‘success’)

end end

(check help disp tolearn more aboutdisp())

Day 2 Prof. Alexander Knebe

Computational Physics |

Unit 2

MATLAB while-

= you want to repeat a certain operation while some logical condition remains true:
while condition
command;

end

= example: we want to determine how often a number can be divided by 2

%==== == == ==
% simple log2() function
%==== == == ==
f=32
n=0;
whilef>1
f=f/2;
n=n+1;
end
2"n

= Note: as the title of the script suggests, this is a very simple (and crude!) form for calculating n=log2(f)

= Note: a condition used in while-loop should only compare scalar values and not vectors!

> exercise:

* use the above idea to write a script that evaluates log3() for several values of f (e.g. 27, 243,
531411) and compare to the real log3(f)

> exercise:

/ * write a script that evaluates whether or not a natural number is a prime number.

* hints:
* a prime number is a number that can only be divided by 1 and by itself
*usemod(n,div) or rem(n,div) to evaluate the remainder of the division n/div
*if rem(n,div)==0 for any 1<div<n then n cannot be a prime number

* advanced scripting hints:
* use input () to let the user input the natural number:
n = input(‘give a natural number n = ')

*usedisp() to print whether or not n is a prime number:
if your _condition_for prime_number
disp(‘prime number’)
else

d
\ en

disp(‘not a prime number’)

~

)

Day 2/3 Prof. Alexander Knebe

loops

Computational Physics | Unit 2

MATLAB for-loops

= imagine you want to do same operation with every element of a vector, e.g.
* x() and f() are vectors of the same length and you want to store in f() the numbers x2
=>» foreveryi: f(i) = x(i).*2
* MATLAB is doing this operation automatically when you type
>f = x.72

* MATLAB is hiding from you a so-called for-loop:

Y%==== == Y%==== ==

% example for-loop % example without for-loop
Y%==== == Y%==== ==

x = linspace(0,2*pi,5); x = linspace(0,2*pi,5);

f = zeros(1, length(x));

for i=1:length(x) f=x.2;
(i) = x(i)"2;

end

* Note:
 f = zeros(1, length(x)) generates a vector f() with the same length as x() filling it with zeros
the ‘" in front of °/’, ‘’, and ‘" always means that MATLAB will perform a for-loop for you

= an example where MATLAB does not provide a simplified syntax for you is:

The Fibonacci Series: f.=f_+f_, with fi=1, f,=1

> exercise:

* write a script fibonacci.m that calculates the first N Fibonacci numbers using a for-loop
* show in the same script that Binet’s formula for the Fibonacci numbers is correct:

LY i oo VS 145
fn_ ’\/g wi (p 2 ’w 2

» Advise:
* you can use the loop-index to access the elements of a vector/matrix
* you can use the loop-index as a variable in formulae...
» ...but never change the value of the loop-index within the loop!
* always use integer values for the loop-index

Day 3 Prof. Alexander Knebe

Computational Physics |

Unit 2

MATLAB

> exercise:

for-loops

* write a function my_sum() that calculates the sum of all elements in a vector using a for-loop:

input argument: a vector x, output: the sum of all elements in x

> exercise:

C- write a function my_find() that works like MATLAB’s “find(x>0)".

> exercise:

/° write a script fac.m that calculates f=n!
* remember: n! is an expression for n*(n-1)*(n-2)*(n-3)*...*2*1
* hints:

* you can loop from 2:n

* compare your result to MATLAB's in-built function factorial ()

_

* store the result in a variable f that needs to be initialized to f=1 prior to the loop

> exercise:

* remember MATLAB’s two different (matrix) multiplication operators * and . *
>A * B = C ; mathematical multiplication
>A .* B = D ; component-wise multiplication

* use for-loops instead of the operator * to calculate C for
A=[1,2; 3,4; 5,6] and B=[7,8,9; 10,11,12]
* compare your results to the results when using the * operator
* hints:
* the formula for a matrix multiplicationis C, ; = EAMBM
* you need to use 3(!) nested for-loops k
* you need to use MATLAB’s function size ()

* use for-loops instead of the operator . * to calculate D for
A=[1,2; 3,4; 5,6] and B=[7,8; 9,10; 11,12]
K. compare your results again to the results when using the .* operator

~

= Note: both the for- and while-loop can be terminated with a break statement:

x = linspace(0,2*pi,100);

y = cos(x); % generated vector containing cosine curve on [0,27]
for i=1:length(y) % loop through whole vector
if(y(i)<0) % at first negative value...
break; % ...terminate the for-loop
end
end
plot(x(1:i-1),y(1:i-1) % only plot the (first) positive part of the cosine-curve

Day 3

Prof. Alexander Knebe

Computational Physics | Unit 2

MATLAB switch statement

® in case you have multiple options, there exist the switch statement

switch expression:

case A,
command,
command,

case B,
command,
command,

otherwise,
command,
command,

end
> exercise:
a write a script that uses input () to take a number between 1 and 7 from the user)

* use the switch statement to display (using disp())

* ‘Monday’ if that number was 1,

* ‘Tuesday’ if that number was 2,

* ‘Wednesday’ if that number was 3,

* etc.
* use the ‘otherwise’ statement to display an error message in case the number is not in the
allowed range

= the switch expression can also be a string!

> exercise:

a write a script that uses input () to take both a number and a string from the user:)
*X = variable for the number
*unit = string variable for either ‘meter’ or ‘inch’
* use a switch for unit to decide whether to convert x to meter or inch
e case ‘inch’, y=x/39.3701 (converion to meter)
* case ‘meter’, y = x*¥39.3701 (conversion to inch)
* use the ‘otherwise’ statement to display an error message in case unit does neither contain
‘meter’ nor ‘inch’

v

Day 3 Prof. Alexander Knebe

Computational Physics | Unit 2

MATLAB application — matrix generation

> exercise:

~

* write a script that generates a matrix M that contains the following elements
0, i <j

M= (021) iz

where the non-zero elements are defined as follows

I
(::l) —m (nn— m)!

You can use MATLAB’s function factorial () to calculate n/

KThe matrix should have the dimensions NxN with N=15. /
> exercise:
')

* use the matrix M to create a new matrix N with the following elements

M;; , when M;;iseven

-M

N;; =)
LJ ;i» when M;; is odd

G J

> exercise:

* visualize both matrices, e.g. generate plots similar to these one:

3500

3000

2500

2000
=

1500

1000

500

15

Day 4 Prof. Alexander Knebe

Computational Physics | Unit 2

MATLAB application — gravity
We want to determine the value of the gravitational constant g on Earth. For that we have obtained
the following experimental data:

h
t

[2.0000, 4.0161, 5.5282, 6.5363, 7.0403, 7.0403, 6.5363, 5.5282, 4.0161, 2.0000]
[0, 0.2268, 0.4536, 0.6804, 0.9073, 1.1341, 1.3609, 1.5877, 1.8145, 2.0413]

where h measures the height above the Earth and t the time of the respective measurement.

> exercise:

[* write a script with the name gravity.m in which you plot A(7). J

> exercise:

[write a script function derivative (£, x) that calculates the numerical derivative of h(t).\
This function should work as follows:

function [dfdx,xmid] = derivative(f,x)

= input values: (f,x)
X = vector containing the values of x
f = vector containing the values of f{x) at the positions stored in x

< return values: [dfdx, xmid]
xmid = vector containing the mid-points of x
dfdx = vector containing the numerical derivative of f{x) at the mid-points /

_

> exercise:

* use your script function derivative () to calculate the numerical velocity v=dh/dt and
plot it into the same figure as h(t).

> exercise:

*use derivative () again to calculate the numerical acceleration a=dv/dt and plot it into
a new figure.
* add another line to this plot that shows the mean value of a(¢) as a straight line.

= Note: your final plots should look like this

hit) [m] & o) [mis]

w <2 this is the sought-after value of g

9804

Day 4 Prof. Alexander Knebe

Computational Physics |

MATLAB

= The Maxwell-Boltzmann distribution:

* f{v) = distribution of velocities of atoms with mass m at temperature T

=
NP RY
FO)=dnl———| Ve 2T .\ ‘\[& 1.\
2nk,T

temperature T

> exercise:

* write the script MaxwellBoltzmann.m that plots the distribution function f{(v) for a proton

x107™
3.5

25

. .
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
v [m/s]

0
0
...and determines the maximum vmax by using a function

function [xmax, imax] vecmax(x)
where x () is a vector and xmax the maximum value of that vector found at index imax.
The function should also work in case there are multiple maxima/minima in x() and hence

you need to use a for-loop in combination with an i f-statement.

Note:
* MATLAB has in-built functions to determine max- and min-values that you can use from
now on:
>> helpmax

>> helpmin

_ /

Day 4

Prof. Alexander Knebe

Unit 2

application — Maxwell-Boltzmann distribution

Computational Physics | Unit 2

MATLAB application — charge distribution

= Coulomb charge distribution:

Four charges g1, ¢», g3 y g4 are placed on a 2D plate, but only along the x-axis:

YA
+lim
q q,) BCE q,
; , —lim +lim I -
1 1 1 1 ¢
X, X, X, X,
~lim
The electric potential is given as follows:
- 1 q.
V({F)= ¢
de, 2|7, 7|

> exercise:

Kvisualize the potential for the region x € [-lim, lim] and y € [-lim, lim].
* calculate and visualize the force field in the same region.
* rotate the charge distribution by 23.5° counter-clockwise and repeat the two plots.

¥im)

x(m) x{m) x10

potential of rotated distribution force field of rotated distribution

(the relevant values are
X,=-4.3-102 m, x,=-1.5-102 m, x3=1.29-102 m, x,=4.7-102 m,
g,=-2.07-102 C, 9,=9.08-10-2 C, 9;=-16.99-1012 C, q,=12.48-1012 C,
lim=0.98:102 m)

_ /

Day 4 Prof. Alexander Knebe

Computational Physics |

Unit 2

MATLAB

= Lissajous curves

The Lissajous curves are described by the following parametric equations

x=A-cos(a-0)
y=B-sin(b-0)

where the curves are centered on the origin of the coordinate system.

> exercise:

application — Lissajous curves

-

* plot them rotated by 45°:

* write a script that calculates the Lissajous curves for the following values

A=1, B=1, a=5, b=3, but centered at (2,2)

25

I
0.5 1

L
3.5

Day 4

Prof. Alexander Knebe

Computational Physics | Unit 2

MATLAB application — particle trajectory

A particle moves in one dimension along the x-axis with the velocity

v(t) = vo + Age " (cos(wt) — (wt)sin(wt))

> exercises:

* calculate the velocity for a given interval t € [t;in, tmax] Using an anonymous function for v(¢);
this anonymous function has to take v,, A,, 7, and o as arguments, too!

* plot v(?) into a new figure.
* numerically calculate the acceleration and plot it into a new figure.

* numerically calculate the particle trajectory x(7) and plot it into a new figure.

Use the following data:

tnin=1.8'8, fnax=4.3 s, vo=1.5 m/s, Aj=-1 m/s, @=4.5s!, 7=3.3s,x=-7.5m

- /

Day 4 Prof. Alexander Knebe

Computational Physics | Unit 2

MATLAB application — damped harmonic oscillator

The Newtonian equation for the damped harmonic oscillator reads as

2
@D L BD iy =0
di di

where m is the mass, ¢ the friction constant, and k the spring constant. The exact solution (for
v(t=0)=v,=0) is given as follows

x(t)= Yo cos(+/1- Czwot -Q)
J1-¢&2
with
2m 0 m

> exercise #1:

* create an external function [x]=dho_x(k,m,c,x0,t) that calculates the solution of
the damped harmonic oscillator on the time interval specified by input time vector t ().

> exercise #2:

* plot x(¢) using m=1.4kg, k=6.5kg/s?, c=0.8kg/s, xo=2.8m, 1,=0s, f.,q=18s.

> exercise #3:

> exercise #4:

[* numerically calculate a(t)=dv/dt and plot into the same figure of exercise #2.

> exercise #5:

[e calculate by numerical integration of dW/dt = - ¢ v? the frictional work of the oscillator.

> exercise #6:

* Note: to match the frictional work with the total energy you need to add E| to it.

[* calculate by numerical differentiation v(r) and plot into the same figure of exercise #2. j

[* plot the total energy E(f)=1/2 (mv>+kx?) into the same figure of exercise #5.

Day 4 Prof. Alexander Knebe

Computational Physics | Unit 2
MATLAB application — Leibniz series
Consider the following numerical series (Leibniz formula) defining 7

i)" =@
~2n+l 4
» exercise #1:
* evaluate the finite sum X (=1)"
(N) =
/ ;2n+1
and plot it as a function of N and checking that it converges to /4.
» exercise #2:
. . N
* consider now the equivalent form
N
2
g(N)=
; (4n+1)(4n+3)
plotting it into the same figure as for exercise #1.
_ /

Day 4 Prof. Alexander Knebe

Computational Physics | Unit 2

Examples application — Monte Carlo integration

= Monte Carlo integration is a technique for numerical integration using random numbers. Here
we will see it in action using a Lissajous curve as the function to be integrated:

The points of a Lissajous curve with period ratio 1:2 and phase p/2 can be described as follows:

4(x* —x¥) +y%2=0

> exercise:

* Plot the Lissajous curve on the interval x € [—1, +1].

> exercise:

* Calculate via numerical integration (as learnt in Unit 1) the area covered by the curve.

> exercise:

/° Calculate the area via Monte Carlo integration: \
- generate a pair of random numbers (r,,r,) from a uniform distribution
- sothat 7y € [Xmin, Xmax] and 1y, € [Ymin, Ymaxl-
- check, if that point lies within y(x).

- repeat this process N times where N;, will count how often (r,,r,) lies inside y(x)
. N;
- the area willthenbe A = ﬁ Xmin — Xmax) Vmin — Ymax)

* Compare the values for the areas

* If you add the points inside y(x) the plot will eventually look like this:

L R T T)

Day 4 Prof. Alexander Knebe

Computational Physics | Unit 2
MATLAB summary
matrix functions
size diff gradient max min prod diag sort
length size numel transpose / inv gradient
ones zeros eye meshgrid norm
plotting
meshgrid mesh surf surfc surfl contour quiver quiver3
colormap | colorbar shading waterfall
script commands
for while if else end function return switch/ca
se
input disp break
useful functions
rand randn rem mod median mean mode std
factorial find

= please familiarize yourself with all of these commands, functions, variables, etc.,
even if they have not been discussed in class:

from now on you must know how to use them all!

= you further need to know the following...

* basic matrix operations

* plotting surfaces and multi-dimensional functions, respectively

* defining and using own functions with one or multiple arguments

* using for-loops

* using if-then-else statements

Prof. Alexander Knebe

