
Prof. Alexander Knebe

Computational Physics I

Unit 1

Basic Numerical Concepts & First Applications

Unit 1

Prof. Alexander Knebe

MATLAB ...in general

Computational Physics I Unit 1

primary command window

Day 1

§ MATLAB...

• ...is an interactive program to perform calculations
• ...uses a high level programming language
• ...is highly tuned for vector operations
• ...can be operated via a user-friendly interface:

§ MATLAB can perform the following calculations...
+ addition, e.g. 2.5+3.1
- subtraction, e.g. 3.7-1.6
* multiplication, e.g. 5.1*8.2
/ division, e.g. 7.3/3.2
^ power, e.g. 3.1^2.5 (=3.12.5)

...following the elementary arithmetic rules

§ MATLAB has a library of functions (e.g. sin(), log(), tan(), ...), but allows for user-defined functions, too

§ MATLAB comes with an in-built help system:
>> help name

...where name is the function you like to know more about.

Ø exercise:

• try >> help help
• try >> help sin
• try >> help exp

• Note: whenever you are uncertain about anything in MATLAB, use help to find out about it!

Prof. Alexander Knebe

MATLAB

Ø exercise:

• use MATLAB as a calculator to perform the following calculations (in the command window)…

>> 4+5/12
>> (4+5)/12
>> 1000000000+1
>> 1000000000-1
>> 1.278e-2+0.23
>> 1.5^5.8
>> -2^2
>>(-2)^2
>> 2*pi
>> 103^2.4+4*3.7e-2-1.2/4^1.2
>> …

• is MATLAB always obeying the correct rules?
• understand the results you obtain
• try to find examples where the answer is “wrong”, i.e. not what you expected!
• Note: 3.7e-2 is a shortcut for 3.7 x 10-2

Ø exercise:

• use help to find out which mathematical functions (e.g. sin(), asin(), sqrt(), …)
are available in MATLAB

Ø exercise:

• perform the following calculations:

• do you get the expected answer?
• what happens when you increase the accuracy of your calculations?

Ø exercise:

• how to increase the accuracy of your calculations? try >> help format
• perform some more calculations switching between various formats, e.g.

switch on >> format long and try 1000000000+1 again

…as a calculator

Computational Physics I Unit 1

€

log3(108) exp(log(9)) sin(asin(0.7)) tan(0.7) -
sin(0.7)
cos(0.7)

3 − 3*5
1.5

5 −
4
3

$
%

&

'
(

3
2*(4−1

3
)

e−2*34 −π * ln(3.5) sin(π /2)*cos(2.4 *10−3)

Day 1

Prof. Alexander Knebe

MATLAB

§ MATLAB can store numbers in variables

>> a=4
>> b=5
>> c=12
>> a+b/c

you can choose whatever name you prefer for variables:
ALWAYS USE MEANINGFUL VARIABLE NAMES!

Ø exercise:

• repeat your previous calculations utilizing variables this time…

Ø exercise:

• why is
>> 4=a

not working?

§ useful commands
>> clear variable
>> clear all
>> who
>> clc (try help on them, i.e. help clear)

Ø exercise:

• are there any predefined variables in MATLAB?
• what happens when you use MATLAB’s variables as your own?
• how can you recover MATLAB’s values?

variables

Computational Physics I Unit 1

5 12

b c

a “piece” of computer memory (RAM) will be called “c”
and is reserved for storing any number, e.g. “12”

a “piece” of computer memory (RAM) will be called “b”
and is reserved for storing any number, e.g. “5”

Day 1

Prof. Alexander Knebe

§ the last element of a vector can be easily accessed in two different ways:
>> a(length(a))
>> a(end)

MATLAB

§ MATLAB can also store complex numbers in variables

>> c=4.5+14.75i
>> d=complex(4.5,14.75)
>> real(c)
>> imag(c)

Ø exercise:

• define various complex variables
• perform mathematical operations with those complex variables

complex variables

Computational Physics I Unit 1

§ MATLAB can store multiple numbers as a vector:
§ "[]" generates a vector and
§ ", " or "; " separates its elements (coma creates row vector, semi-colon creates column vector)

>> a = [1.3, 5.7, 3.3, 2.8, sqrt(9.67), 0.67, 4.23]
>> b = [3, 4, 2]
>> c = [3; -4; 2]
>> d = [15, 73, 65]
>> e = [d, b]

1.3 5.7 3.3 2.8a:

1 2 3 4 5 6

§ a vector is a consecutive row/column of variables that all have the same name, e.g. “a”

§ the individual elements of the vector can be obtained by properly “indexing” the vector name

>> a(1)
ans = 1.3
>> a(4)
ans = 2.8

index

vector name

Note: the index of a vector is always an integer number!!

a(4)≡2.8

vectors

§ the number of elements of a vector are obtained with length()
>> length(a)

Day 1

§ you can easily add elements to an existing vector, e.g. add 5 as the new last element:
>> a = [a, 5]

§ you can also remove any element from a vector, e.g. completely remove element at position i
>> a(i)=[]

Prof. Alexander Knebe

MATLAB vectors

Computational Physics I Unit 1

Ø exercise:

• define various vectors, e.g.
>> a = [15.7, sin(0.7), exp(-1.5), 2*pi]
>> b = [2/3, a, 104.7]
>> c = [9.5; 7.14; cos(0.23)]
>> d = [tan(0), -3.5, 15.4*2.9]

• perform several mathematical operations on them, e.g.
>> 2*a
>> a-pi
>> c/2-2.3*d
>> sin(5.34*d)
>> sort(c)
>> norm(a)
>> max(b)
>> min(d)
>> sum(a)
>> …

§ you can also define vectors for accessing certain elements of another vector

>> a = [1.3, 5.7, 3.3, 2.8, sqrt(9.67), 0.67, 4.23]
>> i = [3, 4, 2]
>> a(i)

§ Note: the index of a vector is always an integer number!

§ Note: MATLAB favours the use of vectors and hence we will use such index vectors very often!

§ MATLAB also allows the definition of text vectors (called ‘strings’)

>> s = [‘text 1’]
>> c = [‘text 2’]
>> t = [s, ‘ together with ‘, c]

§ you can also access individual elements of a string

>> s(3),t(15)

§ you can ‘add’ strings together

>> newstring = strcat(s,c)

§ and you can convert numbers to strings (which can be useful when generating legends!)
>> n = num2str(5.78)

t e x t 1s:

Day 1

Prof. Alexander Knebe

§ MATLAB distinguishes between column and row vectors

>> a = [1, 5, 10] (row vector)
>> b = [1; 5; 10] (column vector)
>> transpose(a)
>> a’

Ø exercise:

• perform several mathematical operations on row and column vectors
• are there new operations possible that previously were not allowed?

§ MATLAB distinguishes between mathematical and numerical vector products:

>> a * b is a mathematical vector multiplication (result = either scalar or matrix)
>> a .* b is a component-wise multiplication (result = vector)

Ø exercise:

• try various possibilities and understand the results
• when is it possible to perform a*b and when not?

MATLAB vectors

Computational Physics I Unit 1

a * b
>> a = [5.3, 7.8, 1.9];
>> b = [9.8, 3.7, 2.6];

>> a*b’
ans =

85.74

>> a'*b
ans =

51.94 19.61 13.78
76.44 28.86 20.28
18.62 7.03 4.94

>> a*b
??? Error using ==> mtimes
Inner matrix dimensions must agree.

a .* b
>> a = [5.3, 7.8, 1.9];
>> b = [9.8, 3.7, 2.6];

>> a.*b
ans =

51.94 28.86 4.94
a(1)b(1)+a(2)b(2)+a(3)b(3)

a(1)b(1)
a(2)b(2) a(3)b(3)

matrix multiplication

Day 1

Prof. Alexander Knebe

§ Advise!

• inner vector product: dot(a,b)
• outer vector product: cross(a,b) vs. component-wise multiplication: a.*b

§ MATLAB also performs component-wise division and powers:

>> a ./ b
>> a .^ b

Ø exercise:

• perform several component-wise divisions and powers of row and column vectors
• are there new operations possible that previously were not allowed?

§ Note: a/b (without the ‘dot’) is a special matrix operation to be explained later!

MATLAB vectors

Computational Physics I Unit 1

a ./ b
>> a = [5.3, 7.8, 1.9];
>> b = [9.8, 3.7, 2.6];

>> a ./ b
ans =

0.5408 2.1081 0.7308

a .^ b
>> a = [5.3, 7.8, 1.9];
>> b = [0.5, 1.1, 0.7];

>> a .^ b
ans =

2.3022 9.5786 1.5672

a(1)b(1)
a(2)b(2) a(3)b(3)a(1)/b(1)

a(2)/b(2) a(3)/b(3)

Day 1

Prof. Alexander Knebe

§ MATLAB can generate vectors containing equally spaced values, option 1: ":” (colon operator)

>> a = [0:2:10]
>> b = [0.5:0.1:1.2]
>> c = [1:3:10]
>> help colon
>> help length

Ø exercise:

• generate a vector running from 100 down to 0 in steps of 2
• extract every 10th element of that vector (in one command only!)
• calculate the product of all those 10th elements (hint: help prod)

§ Advice: sometimes it is more convenient to generate an index vector:

>> a = [0:2:10]
>> i = [1:2:5]
>> a(i)

we will use index vectors a lot throughout the course!

Ø exercise:

• repeat the previous exercise using an index vector
• generate an index vector that accesses every element but the first and last
• Note: you might have done the previous exercise already like this, then there

is no need to repeat it again...

MATLAB vectors

Computational Physics I Unit 1

Day 1

Prof. Alexander Knebe

MATLAB vectors

Computational Physics I Unit 1

Day 1

§ MATLAB can generate vectors containing equally spaced values, option 2: linspace()

>> x = linspace(xmin, xmax, N)
>> …
>> help linspace

§ MATLAB uses vectors like variables in functions

>> x = linspace(0, 2*pi, 75)

>> y = sin(x)

Ø exercise:

• is there a difference between sin(x) and sin(x’)?
• why do we need to write x.^3.5 and not x^3.5?

§ Note: linspace() is a very useful function that will be frequently used throughout the course!

§ there is also a function in MATLAB that generates logarithmically spaced vectors: logspace()

>> x = logspace(log10(xmin), log10(xmax), N)
>> …
>> help logspace

>> x = logspace(log10(1), log10(100), 75)
>> y = x.^3.5

not relevant for exams...

=> x 0 2pi

=> y sin(0) sin(2pi)

(75 elements)

(75 elements)

Prof. Alexander Knebe

§ MATLAB can plot vectors for you

>> x = linspace(0,2*pi,100)
>> y = sin(x)
>> plot(x,y)

§ plot() is plotting a point (dot, cross, ...) for each and every pair of variables stored in the two vectors

§ Notes:
• both vector must have the same lengths (otherwise there are obviously no pairs)
• the first vector will be used as x-axis, the second as y-axis
• plot() connects the points with a line (unless you specify this differently)
• plot() takes various additional arguments to specify line-style and line-colour

>> plot(x,sin(x),’y+’)

§ there are various commands to add legends, labels, etc.

>> legend(‘sine curve’)
>> title(‘MATLAB course example’)
>> xlabel(‘angle [rad]’)
>> ylabel(‘sin(angle)’)

Ø exercise:

• use help to learn more about plot()
• plot sin(x) where the x-axis is the angle in degrees and label the plot correctly
• plot various other mathematical functions, e.g. 𝑒! , 𝑙𝑜𝑔" 𝑥 , 5𝑥", cos 𝑥 / sin 𝑥 , …

Ø exercise:

• generate a plot that shows f(x)=x3.5 for 20 points on the intervall x=[1,100] using linspace()
• add to the same plot f(x)=x3.5 on the same intervall, but now using logspace()
• what is the difference between using linspace() and logspace()?

MATLAB plotting

Computational Physics I Unit 1

Day 2

... ... 1x:

... ... 3y:

pair with index i 1

3
(x(i),y(i))

=>

index: 1 … i … length(x)

Prof. Alexander Knebe

§ you can save the plot in various formats to disk
by using ‘Save As...’ the ‘File’ menu from the
figure window:

§ as mentioned before, power-laws are very common in physics and best plotted on a logarithmic scale

>> x = logspace(log10(1),log10(1000),100)
>> plot(log10(x),log10(x.^3),’o’)
>> loglog(x,x.^3,’+’)

Ø exercise:

• why is the logarithmically scaled plot better than a linear plot?
• what is the difference between plot(log10(x),log10(y)) and loglog(x,y)?
• what happens when you use linspace() instead of logspace()?
• how can you determine the power-law exponent from the log-plot?

MATLAB plotting

Computational Physics I Unit 1

advanced exercise

(voluntary!)

Day 2

Prof. Alexander Knebe

MATLAB

§ figure(n) generates a new window #n for a plot, e.g.

>> x = linspace(0,2*pi,100);
>> figure(1)
>> plot(x,sin(x))
>> figure(2)
>> plot(x,cos(x))

§ close(n) closes window #n again.

§ hold on/off allows to use multiple plot() commands in a sequence for the same figure, e.g.

>> x = linspace(0,2*pi,100);
>> plot(x,sin(x))
>> hold on
>> plot(x,cos(x))
>> hold off

§ axis controls the axis scaling and appearance

§ xlim, ylim, and zlim set (or even retrieve) the axis limits

§ grid places a grid on top of an existing plot

§ subplot() (followed by plot()) generates multiple plot windows in one figure window, e.g.

>> x = linspace(0,2*pi,100);
>> subplot(1,2,1), plot(x,sin(x))
>> subplot(1,2,2), plot(x,cos(x))

where the first argument is the total number of rows, the second the total number of columns and the third
the identifier of the actual subplot

§ plot3(x,y,z) connects the points (x,y,z) in a 3D plot, e.g.

>> t = linspace(0,8*pi,100);
>> plot3(cos(t), sin(t), t)

§ experimental data with error bars is best plotted with errorbar(x,y,e), e.g.

>> x = linspace(0,8*pi,100);
>> y = sin(x);
>> e = randn(1,length(x));
>> errorbar(x,y,e)

Ø exercise:

• repeat the exercise with the errorbars assigning 0.1 as the error for every single point

plotting

Computational Physics I Unit 1

we assign random error values using MATLAB’s randn() function (more later!)

Day 2

Prof. Alexander Knebe

§ MATLAB reads and executes multiple commands from a given file with extension *.m

Ø exercise:

• write a script that plots sin(x) and cos(x) in one figure window next to each other
• hint: use figure() and subplot()

§ pause causes a script to wait until you press any key (can be useful for debugging...)

§ % is used for placing comments into the script

§ %% structures the script into blocks (also very useful for debugging your script!)

MATLAB scripts

Computational Physics I Unit 1

from now write a script for every exercise!

1. open the editor “New Script”

3. evaluate script “Run Section”
(“Run Section” executes until the next %%)

2. write commands into script

4. save script: “Save”

Day 2

Please start every script with the lines

clear all
close all
clc

→ removes all variables
→ closes all plot windows
→ clears command window

Prof. Alexander Knebe

MATLAB

§ Numerical Derivatives – arbitrary functions

Given two data vectors x() and f() we aim at determining the derivative

f ’ (x) = df/dx

§ Note:
• the function in this example is tabulated in an array at N=6 points, i.e. i=1:6
• the derivative can only be tabulated in an array at M=N-1 points, i.e. j=1:5
• the derivative will be given at the midpoints xmidi = a + (i-0.5) dx
• the midpoint can also be calculated as xmidi = (xi+1+xi)/2

Ø exercise: (solution on next page...)

• numerically differentiate the function f(x)=x2+5x, defined on interval [a,b] with a=1.5 and b=15.6

• hints:
• define two new vectors df and dx to then calculate f_deriv = df./dx
• remember the usage of index vectors to access x() and f()
• remember that the length of df, dx, and f_deriv will be N-1
• remember that the derivative f’(x) will be given at the midpoints

Ø exercise:

• numerically differentiate the function x(t)=5sin(t)cos2(t) on interval [a,b] with a=-p/4 and b=3p/4

numerical derivatives

€

x

€

f (x)

€

a

€

b
€

dx

€

(N = 6)

€

df

€

i =

€

1

€

2

€

3

€

4

€

5

€

6

€

(M = N −1)

€

1

€

2

€

3

€

4

€

5

€

j =

Computational Physics I Unit 1

Day 3

𝑥𝑚𝑖𝑑𝑖 = 𝑎 + 𝑖 −
1
2 𝑑𝑥

Prof. Alexander Knebe

MATLAB

§ Numerical Derivatives – how to realise the project

numerical derivatives

Computational Physics I Unit 1

• define interval [a,b]

• choose number of sampling points N

• generate vector where

• generate vector where

• calculate vector where

• calculate vector where

• calculate vector where

• calculate vector where

• plot the pairs

• plot analytical derivative at

€

! x

€

xi ∈[a,b],∀i∈N

€

!
f

€

fi = f (xi),∀i∈N

€

d! x

€

dxi = xi+1 − xi,∀i∈N −1

€

d
!
f

€

dfi = f i+1 − f i,∀i∈N −1

€

!
f deriv

€

fi
deriv = dfi /dxi,∀i∈N −1

€

! x mid

€

xi
mid = (xi+1 + xi) /2,∀i∈N −1

€

(xi
mid , f i

deriv),∀i∈N −1

1. algorithm
(independent of programming language!)

% parameters
a = 1.5;
b = 15.6;
N = 10;

% the function
x = linspace(a,b,N);
f = x.^2+5.*x;

% the derivative
il = 1:N-1;
ir = 2:N;
dx = x(ir)-x(il);
df = f(ir)-f(il);

fderiv = df./dx;
xmid = (x(ir)+x(il))./2;

% plot numerical derivative
plot(xmid,fderiv,’r’), hold on

% and compare to analytical result
plot(xmid,2.*xmid+5,’bo’)

2. program
(depends on programming language!)

“translation”

€

! x mid

Day 3

Prof. Alexander Knebe

€

Inum
mid ≈

f (xi) + f (xi+1)
2

dxi
i=1

N −1

∑

MATLAB

§ Numerical Integration

Given two data vectors x() and f() we aim at determining the integral

numerical integration

€

I = f (x)dx
a

b

∫

€

x

€

f (x)

€

a

€

b
€

dxi = xi+1 − xi
€

N = 6

Computational Physics I Unit 1

€

x

€

f (x)

€

a

€

b

€

x

€

f (x)

€

a

€

b

€

x

€

f (x)

€

a

€

b

fi at left points

fi at right points

mid-point integration:

€

Inum
edge ≈ f (xi)

i=1

N −1

∑ dxi ≈ f (xi)
i=2

N

∑ dxi−1

Day 3

averaged f value

Prof. Alexander Knebe

MATLAB

Ø exercise:

• write a script that evaluates the integral of cos(x) between two angles 0<a<b<2π.
• use all three options to numerically evaluate the integral.
• compare those three options against each other.
• which methods gives the best results and why?
• what happens when you in-/decrease the number of sampling points N?

• hints:
• remember sum()
• to access the vector y() generate an index vector i()
• the difference between consecutive elements of a vector is best calculated with diff()

>> dx = diff(x)

numerical integration

Computational Physics I Unit 1

Day 3

§ Numerical Integration

Prof. Alexander Knebe

MATLAB numerical integration

Computational Physics I Unit 1

Day 3

Ø exercise:

• write a script integratecos.m that calculates the antiderivative of cos(x) on an interval x∈[a,b]

• use the formula together with cumsum() and compare the results to the analytical solution.

€

g(x) = cos(s)ds
a

x

∫

€

Inum
mid

...x: y:...

y(1)=x(1)

y(2)=x(1)+x(2)

etc.

y(x) = f (s)ds
a

x

∫

§cumsum() can be used to numerically construct the antiderivative:

€

x

€

f (x)

x1

A1 A2 A3
…

x2 x3 xN

AN-1

y(x2) = Ai
i=1

1

∑ = A1

y(x3) = Ai
i=1

2

∑ = A1 + A2

y(x2) = Ai
i=1

3

∑ = A1 + A2 + A3

...

y(xN) = Ai
i=1

N−1

∑

Ai =

fi (xi+1 − xi)
fi+1(xi+1 − xi)

fi+1 + fi
2

"

#
$

%

&
'(xi+1 − xi)

→ y(1)

→ y(2)

→ y(3)

…

→ y(N-1)

§ Numerical Integration

Given two data vectors x() and f() we aim at constructing the antiderivative

§ MATLAB has an in-built function helping to solve for antiderivatives of functions: cumsum()

>> y=cumsum(x) generates a vector y() with the elements:

€

y(i) = x(j)
j=1

i

∑ ∀i∈[1,length(x)]

§ Note:
• when using cumsum() like described above, you get the anti-derivative at the points x2,...,xN
• if you want the anti-derivative at all points xi, you can add a 0 as the first element to the vector:

>> y = [0, cumsum()];
• y() now contains the same number of points as x() where the first element is correctly 0

Prof. Alexander Knebe

We want to study the function

and its (anti-)derivative on the interval [x1, x2].

Ø exercise:

• write a script with the name function.m in which you calculate and plot f(x)
on the interval x1=3, x2=10 using N=200 points.

Ø exercise:

• calculate the numerical derivative of f(x) inside your script and plot the numerical derivative
into the same figure using a line with a different colour.

Ø exercise:

• write a script-function antiderivative.m that returns the numerically determined anti-
derivative for a function provided in a vector f(); the values of the anti-derivative should be
given at the same values x() as the function f(). The function should work as follows:

function [antideriv] = antiderivative(f, x)
% x(): vector containing the values of the independent variable xi
% f() : vector containing the function values f (xi)
% antideriv(): vector containing the value of the anti-derivative at all xi

• use that function to calculate (and plot into the same figure) the anti-derivative

of your numerically obtained df/dx

§ Note: your final plot should look like this

MATLAB application – study of function

Computational Physics I Unit 1

Day 4

f (x) = −5x2 sin(x)+ ex/2 x

f (x) = df
dx
dx∫

x
3 4 5 6 7 8 9 10

f(x
),

its
 fi

rs
t d

er
iv

at
iv

e
&

∫
f(x

)d
x

-200

-100

0

100

200

300

400

500

600

700

800
study of f(x)=ex/2sqrt(x)+5x2sin(x)

function
numerical derivative
analytical derivative
numerically integrated derivative

Prof. Alexander Knebe

MATLAB

§ Cannonball Fever

We intend to calculate and plot the flight path of a cannon ball

application – law of gravity

€

x

€

y

€

α

€

! r 0

€

! v 0

€

!
F = −G mM

r2
! e r

€

!
F = m d2! r

dt 2

law of gravity

equation of motion

§ the solution to the equations of motions for the cannonball is:

§ an initial position

§ an initial velocity

§ an initial angle

§ the value of the acceleration 𝑔⃗ felt by any object on the surface of the earth

€

! r 0

€

! v 0 = v0
cosα
sinα

$
%

&

'
(

€

α

th
e

ce
nt

re
 o

f t
he

 E
ar

th

Computational Physics I Unit 1

Day 4

€

d2! r
dt 2

= −G M
r2
! e r

𝑟 𝑡 = 𝑟$ + 𝑣⃗$𝑡 +
1
2
𝑔⃗𝑡%

𝑣⃗ 𝑡 = 𝑣⃗$ + 𝑔⃗𝑡

𝑔⃗ = 0 𝑘𝑚/𝑠%

−9.81 𝑘𝑚/𝑠%

Prof. Alexander Knebe

MATLAB

§ Cannonball Fever

We intend to calculate and plot the flight path of a cannon ball

application – law of gravity

Ø exercise:

• using the analytial solution (see previous page), plot the cannonball trajectory using a time
intervall 𝑡 ∈ [0, −2𝑣&,$/𝑔&].
• plot x(t) and y(t) into a different figure.
• using the analytical solution for the velocityies, verify energy conservation:

Ø exercise:
• use your MATLAB vectors for x(t) & y(t) to obtain their numerical derivatives, i.e. vx(t) & vy(t)
• compare the numerical velocities to the analytical ones by plotting them in the same figure.
• use your numerical vectors for velocities and positions to verify energy conservation again.

Ø exercise:

• use the numerical velocities to obtain the accelerations, too.
• compare the numerical accelerations against the analytical solution 𝑎! = 0, 𝑎& = −𝑔&
• hint: you may have to use ones()

Ø exercise:

• place your cannon on the Moon and calculate the flight path
• compare the flight paths on Earth and Moon

€

E(t) =
1
2
mv 2(t) −mgy(t) = const.

Computational Physics I Unit 1

Day 4

Ø Note: use your favourite values for x0, y0, v0, m, and a, but all different from zero.

Prof. Alexander Knebe

Ø exercise:

• write a script that calculates the position, velocity, and acceleration; velocities and accelerations
have to be calculated numerically!

Computational Physics I Unit 1

MATLAB application – trajectories

Day 4

xa = v ⋅ t

ya = 0

xb = v ⋅ t − d ⋅ tanh
v ⋅ t
d

#

$
%

&

'
(

yb = d ⋅sech
v ⋅ t
d

#

$
%

&

'
(

particle #1: particle #2:

§ trajectory of two particles

Consider two particles with the following parametrized trajectories:

Ø exercise:

• calculate and plot the distance traversed by both particles as a function of time. This distance is
calculated by either of the following two integrals:

d(t) = d!r =
0

t

∫ !v("t) d "t
0

t

∫

Ø exercise:

• plot the trajectories into one figure, the absolute value of the velocities in a second figure, and the
absolute value of the acceleration in a third figure; use v=0.5m/s, D=5.0m, tf=50s.

D
D

D
D

Prof. Alexander Knebe

§ harmonic oscillator

• a harmonic oscillator obeys a 2nd order ordinary differential equation:

...which describes the motion of a mass m which, displaced from its
equilibrium position, experiences a restoring force proportional to the
displacement x, i.e. F = −kx (Hooke’s law).

• the initial conditions x0 and v0 need to specified as follows

• the solution for the velocity is given by

Ø exercises:

• plot v(t) for t0=0s, x0=1.2m, v0=3.7m/s, k=1.5kg/s2, m=1.4kg

• numerically obtain and plot it into the same figure

• numerically obtain and plot it into the same figure

• plot the analytical x(t) and a(t) into the same figure, too

Computational Physics I Unit 1

MATLAB application – harmonic oscillator

€

d2x
dt 2

= −
k
m
x

€

k

€

m

€

v(t) = Aω 0 cos(ω 0t +ϕ)

€

ω 0 =
k
m

A = x0
2 +

v0
ω 0

$
%

&

'
(

2

ϕ = arctan ω 0
x0
v0

$
%

&

'
(

with

€

x0 = x(t = 0)

v0 = v(t = 0) =
dx
dt t=0

€

x(t)

Day 4

€

x(t) = x0 + v(s)ds
t0

t

∫

€

a(t) = dv /dt

Prof. Alexander Knebe

§ Tully-Fisher relation in Astronomy

It has been observed that the more luminous a galaxy is the faster it rotates!

Lgalaxy1 < Lgalaxy2

vgalaxy1 < vgalaxy2

Ø exercises:

• plot the data in an appropriate way
• try to determine the exponent p of the power-law
• is there a way to sort the data prior to plotting?

• Note: the absolute magnitude M relates to the luminosity like

M31 M33 M81 NGC2403 NGC4236 IC 2574 NGC 2366 NGC 5585 NGC 5204 Ho IV

v 546 242 530 306 202 126 129 214 151 110

M -20.96 -18.66 -20.01 -19.17 -17.53 -16.69 -16.34 -18.05 -17.78 -16.35

original data from Tully & Fisher (1977)

€

L∝v p

€

M ∝−log10(L)

Computational Physics I Unit 1

MATLAB application – galaxy observations

Day 4

Prof. Alexander Knebe

MATLAB summary

mathematical/numerical operations

+ - * / ^ .* ./ .^

in-built functions
sqrt() log() log10() exp() sin()/asi

n()
cos()/ac

os()
tan()/ata

n()
rem()

floor() ceil() complex() real() img() sign() abs()

in-built variables
pi eps inf nan i ans

vector operations

= : () [] linspace() length() diff() sum()

max() min() prod() cumsum()

interactive/script commands

; , % clear clc home pause who

help format close

plotting
figure close plot subplot hold legend xlabel ylabel

axis xlim ylim grid errorbar plot3 text

advanced commands
logspace loglog semilogx semilogy fplot

§ please familiarize yourself with all of these commands, functions, variables, etc.,
even if they have not been discussed in class:

from now on you must know how to use them all!

Computational Physics I Unit 1

Prof. Alexander Knebe

MATLAB summary

§ you further need to know the following...

• dealing with vectors

- generating vectors using “:” as well as linspace()
- vectors as arguments of functions, e.g. sin(x)
- selecting and modifying individual elements of a vector

• writing and executing scripts

• calculating a numerical derivative

• calculating a numerical integral

• plotting functions (of one variable)

• using plot(), subplot(), hold
• adjusting and polishing a figure, e.g. axis, grid, …

Computational Physics I Unit 1

