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Computational Physics I Project

rules and regulations

Ø project:

§ you can pick one of the projects from the lists provided below or

§ you can propose your own project, but clearly think about:

• what is the physical problem?

• what are the relevant equations?

• what are your objectives and milestones, i.e. what do you plan to do?

• discuss the project and the objectives with your teacher!

Ø project report:

§ you have to write a report that summarizes your work and the results

• present your results and conclusions

• elaborate on the objectives and your milestones

Ø presentation:

§ you have to orally present the results of your project in class:

• 15min. presentation of your work to the rest of the class

Ø distribution of points:

• quality of project realisation 4 points
• quality of MATLAB script(s) 3 points
• project report 2 point
• presentation of results 1 points

Ø Note: you need to work in teams of 2 students!



Computational Physics I Project

quality guidelines

Ø project:

§ the project is not an exam:

• you should study and investigate a physical problem!

• if you picked one of the suggested projects, the listed workplan is just a guideline: simply 
presenting plots for the listed points will let you pass the project, but not obtain the 
highest possible mark: it is certainly necessary to add your own ideas…

• if you chose to select your own project, you need to have clear objectives in mind and 
synchronize/define all milestones with your teacher: they need to be well-suited and 
feasible!
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quality guidelines

Ø project report:

§ the report needs to feature an introduction, a description of the methods, a presentation of 
the results, a summary and discussion as well as a list of references. Please also provide an 
appendix where you describe your MATLAB code and how the figures in the main text were 
generated with it.

• the introduction needs to explain (to a fellow student!) the idea/history of the project, 
the relevant equations, and the theory behind the physical system in general. Further, 
give some motivation: “Why is this project interesting?”, “What are its applications?” 
Give a general introduction into the field, and also mention of the objectives of the 
actual work (“what are the aims?”).

• in the methods parts you need to explain what methods you have used, e.g. ”What 
numerical integration scheme?”, “What data has been used?”, “How do you analyse the 
data?”, etc. Note, you should not describe you MATLAB code here! 

• in the results part you need to show (key) plots from your investigation and discuss 
them; you do not need to show all plots generated during the investigation, but you 
need to explain clearly all results you found. The results part should be well structured 
primarily following your objectives and milestones. Note that every figure needs to have 
a proper caption and needs to be explained (and discussed) in the text.

• the summary part should contain a brief summary of the main findings and your 
conclusions about the physical system and discuss/interpret the results.

• introduction, results, and summary parts should not exceed 15 pages.

• do not forget a reference list!

• in an appendix please specify which of your scripts serve what purpose and have been 
used for which figure presented in the report, respectively.

• in general, the report should contain sufficient information so that a fellow student could 
repeat it (without your scripts and, in fact, in any programming language).

• Notes: MATLAB scripts are not allowed to appear in the report or the presentation; but 
– as mentioned before – you should explain the purpose of each script in an appendix to 
the report.
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quality guidelines

Ø presentation:

§ the presentation is structured similarly to the report: introduction, methods, results & 
summary/discussion (no appendix!)

§ the presentation should focus on explaining the project to your fellow students and showing 
key results from your study of it; the presentation does not necessarily need to contain 
everything you have put into the report: focus on the most interesting results!

§ the presentation is 15min. long; substantially running overtime (or using far less time) will 
make you loose points!

Prof. Alexander Knebe
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§ Feb 3: choice of project (or submission of proposal) to  alexander.knebe@uam.es

§ Apr  21: submission of complete project:
• project report
• the script(s) used to generate the plots and/or results

§ Apr 24 & 25: oral presentation of projects (15 minutes each)

schedule for academic year 2022/23

project suggestions

you may pick a project from the provided list, 

but you are encouraged to come up with a project on your own!

come and see me in C-8-316 if you have questions and/or 
want to discuss your project!

Prof. Alexander Knebe
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Computational Physics I Project

example projects

€ 

dx
dt

=σ(y − x)

dy
dt

= rx − y − xz

dz
dt

= xy − bz

§ The Butterfly Effect

• the convection rolls of air in the Earth’s atmosphere can be described by the so-called 
Lorenz equation (first published by Edward Lorenz in 1963)

…where s, r, and b are constants. The standard values are s = 10 and b = 8/3 and r is 
treated as a free parameter. These equations are fundamental for the study of deterministic 
chaos; they can be used to demonstrate the so-called butterfly effect where tiny variations 
in the initial conditions lead to vastly different behaviour/solutions.

• workplan:

• we aim at writing a program that demonstrates the butterfly effect

• we will study the solutions to the Lorenz equations for various initial conditions 
and different values for r, b, and s

• we will graphically represent the solutions x(t), y(t), z(t) individually

• we will graphically represent the trajectories (x(t), y(t), z(t)) in a 3D figure

• we will adapt the 4th-order Runge-Scheme to solve the Lorenz equations

• we will use the initial conditions 

x0=5, y0=5, z0=5 and x0=5.001, y0=5.001, z0=5  for r = 28

to demonstrate the butterfly effect by plotting x(t) for both solutions.

• we will show that the solutions start to differ from t ≈ 13 onwards.

• we investigate how changes in r, b, and s affect the solution

• we will visualize various interesting trajectories (x(t), y(t), z(t)) in a 3D figure

• we will study interesting cases in phase-space, too

• we check the influence of the number of integration steps for a given solution

• ...
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§ The Solar System

• the movement of the planets in our solar system is described by

…where i represents a given body of the solar system and the summation is over all other 
bodies i ≠ j. Note that due to the conservation of angular momentum the motion of all bodies 
in the solar system is in a plane and hence we can treat it as a 2-dimensional problem:

and hence the equations of motion to be numerically integrated read as follows:

• workplan:

• we aim at writing a program that calculates the orbits of the Sun and the inner 
planets Mercury, Venus, Earth and Mars.

• we will treat each body identically, i.e. the sun’s position is not fixed in the centre but 
its orbit is also integrated

• we will study the influence of (massive) comets

• we will use the 2nd-order Runge-Scheme to solve the equations-of-motion for each of 
the five bodies under the common gravity of all bodies

• we will plot the orbits for each body for one Earth year.

• we will confirm energy conservation

• we will confirm Kepler’s 2nd law, i.e. angular momentum conservation

• we will confirm Kepler’s 3rd law, i.e. T2/R3=const. where T is the time a planet requires 
for one full orbit and R the radius of that orbit.

• we will investigate what happens when changing the gravitational constant

• we will introduce (massive) comets entering the system arbitrarily

• ...
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example projects
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§ The Lagrange Points of the Sun-Earth System

• there are five equilibrium points found in a system of two orbiting masses M1 and M2:

…where R is the distance between M1 and M2  and a = 3 x 10-6 for the Sun-Earth system.

A satellite placed at one of these positions will remain at a constant distance to the Earth 
orbiting around the sun with the same orbital period as the Earth.

• workplan:

• we aim at writing a program that calculates the orbits of the Sun, the Earth and a 
satellite Msatellite<<Mearth placed at each of the Lagrange points.

• we will treat each body identically, i.e. the sun’s position is not fixed in the centre but 
its orbit is also integrated

• we will use the 2nd-order Runge-Scheme to solve the equations-of-motion for each of 
the three bodies under the common gravity of all bodies (see Solar System project!)

• we will plot the orbits for each body

• we will show that L1, L2, and L3 are less stable than L4 or L5 and hence require much 
more precise numerical integration:

- a satellite at L4 or L5 can be integrated for 6 months with Dt=30 hours
- a satellite at L3 can be integrated for 2 months with Dt=30 hours
- a satellite at L1 or L2 can be integrated for 1 month with Dt=30 hours

• we will show the stability by plotting the distance between the Earth and the satellite

• ...
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example projects

§ Rocket Control System

• a rocket launched on earth will experience the following forces

…where the forces are as follows

• workplan:

• we aim at writing a program that calculates the trajectory of a given missile

• we will graphically represent several interesting trajectories

• we will carefully study the influence of the friction, centripetal, and Coriolis force

• we integrate the equations-of-motions using the 2nd order Runge-Kutta scheme

• we will compare flight paths with/without friction, centripetal and Coriolis force

• given a certain destination we will calculate the launch conditions

• we include a propulsion term that is coupled to the mass loss dm/dt

• we will add an additional friction term representing the parachute

• ...
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example projects

§ The Cyclotron

• in a cyclotron charged particles are accelerated to extremely high velocities which are then 
used to bombard a certain target (e.g. cancer cells in the case of protons)

• the motion of the particle is described by the alternating influence of an electric field E

used to accelerate it and a magnetic field B

used to keep the particle on a (circular) orbit.

• workplan:

• we are going to “construct” a virtual cyclotron in MATLAB

• we will visualize and study the orbits of particles with different charges and masses

• write a script for the movement in the electric field

• write a script for the movement in the magnetic field

• combine both movements using a fixed distance D between the “half-pipes”

• we will visualize the movement of the electron

• we will study the necessary characteristics of a cyclotron capable of accelerating a 
proton to 1MeV (e.g. magnetic field strength in relation to radius R of “half-pipes”)

• we will extend the previous study to differently charged particles, e.g. alpha-particles, 
deuterium ions, etc.)

• ...
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§ The dark side of the Universe

• the observation that supernovae explosions in far distant galaxies are dimmer than expected 
led to the conclusion that the universe is not only filled with dark matter but also dark energy!

• the equation giving the relation between supernova brightness (m) and distance (z) is

…where the variables/parameters have the following meaning

• workplan:

• we plot the function m(z) for various possible combinations of Wm and WL

• we will use the observational data for m and z as found on the Supernova Cosmology 
Project website (http://supernova.lbl.gov/union) to obtain the best values for Wm and WL

• write a script-function for the integral

• write a script-function for g(x)

• write a script-function for m(z)

• read and plot the observational data

• write a script obtaining the best Wm and WL values
using as error estimate

where mi is the observational value and m(Wm, WL,zi) the analytical value
at the observed redshift zi

• ...
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§ Planck photons

• the distribution of photons emitted by a so-called black body is given by the Planck curve

• the Planck curve for different temperatures follows the following laws

• Wien’s displacement law:

• Stefan-Boltzman law:

• workplan:

• numerically verify Wien’s displacement law

• numerically verify the Stefan-Boltzman law

• generate a pool of N photons whose wavelengths are distributed according to the 
Planck curve

• mix two such pools of photons and verify the resulting distribution: is it again a Planck 
curve?

• write a function that determines the constant in Wien’s law

• write a function that determines the constant in the Stefan-Boltzmann law

• write a function that returns the wavelengths of N photons according to an input T

• write a function that finds the best-fit Planck curve to a given pool of photons

• ...
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example projects
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example projects

§ Cepheid stars

• Cepheids are special stars who change their radius (and luminosity) periodically

• these pulsations are described by the differential equation

…where the variables and parameter have the following meaning

• there further exist a relation between the pulsation period and absolute luminosity:

…where Mabsolute is the absolute magnitude (related to the luminosity) and T the period in days.

• workplan:

• we solve the equation under the assumption that the oscillation are adiabatic

• we use the period-luminosity relation to calculate the distance to various Cepheids

• study the extreme case where the Cepheid is a “black hole”

• write a script to solve the differential equation

• plot R(t) for various Cepheids stars

• write a script to obtain the period from the solution R(t)

• plot the observed luminosity as a function of distance for various Cepheids using the 
period-luminosity relation and the so-called “distance modulus” relating observed 
luminosity and distance d in parsecs:

• study the extreme case where the radius approximates the Schwarzschild radius of a 
black hole:

• ...
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§ The Coupled Pendulum

• two pendulums attached to each other are described by the following set of equations:

• workplan:

• we aim at numerically solving the coupled system of equations

• we will visualize and study the movement of the two pendulums

• we modify the 2nd order Runge-Kutta scheme to solve the equations

• we will plot q1(t) and q2(t) for various initial conditions

• we plot x(t) and y(t) for the centre-of-mass of each pendulum

• we plot xl(t) and yl (t) for the end-points of each pendulum

• we will verify energy conservation

• we will additionally determine and visualize a situation where the attached second 
pendulum “tips over”

• ...
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example projects

§ The Physical Pendulum

• if a solid body is pivoted about any other point than its centre-of-mass and displaced by a 
small angle it will start to oscillate corresponding to the following equation

…where I is the moment of inertia tensor, m the total mass of the pendulum, h the distance of 
the centre-of-mass to the suspension point and g the gravitational acceleration.

• workplan:

• we aim at writing a program that calculates the movement of the physical pendulum

• we will also include a damping term that is proportional to the velocity

• we will generalize the program to also allow for an external (oscillatory) force

• we will study resonances for the external forces

• we will plot q(t) for small angles q ≈ sin(q )

• in the absence of an external force (other than gravity) we determine the best 
integration interval when using the Euler method

• we will verify energy conservation

• we will obtain the solution without the small angle assumption

• we graphically illustrate the functionq(t) for the damped and undamped case

• we will determine the critical damping term

• we will study the system in phase-space

• ...
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more possible projects…

§ Earth’s Magnetic Field

• we will visualize Earth’s magnetic field (e.g. IGRF)

• we will calculate the trajectories of charged 
particles in Earth’s magnetic field

• ...
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Lo que nos interesa en realidad no es el vector fuerza, sino el vector aceleración (a) de 
la partícula en ese punto, de forma que se pueda obtener su trayectoria según la Ec. 2: 

 
(2) 

donde m es la masa de la partícula. La trayectoria la obtenemos mediante la 
integración numérica de la ecuación de la aceleración (Ec. 2).  
 
2. Resultados 
 
2.1. Primer objetivo: Observar el campo magnético terrestre.  
Para observar el campo magnético terrestre necesitamos conocerlo primero. Para ello, 
utilizaremos una función descargada de la página de Matlab que nos calcula el campo 
magnético terrestre (con los datos del modelo IGRF) dadas unas coordenadas 
espaciotemporales. Una vez tenemos el campo magnético terrestre en varios puntos, 
podemos representarlo.  
Para representar el campo y la tierra,  hemos utilizado una variación del script de 
Matlab eliminando todo lo que no nos resultaba necesario, y así poder visualizar el 
campo magnético terrestre correctamente.  

Figura 1.- La Tierra con sus líneas de campo magnético representadas en color rojo. 
  

En la Figura 1 se muestra la Tierra con sus líneas de campo magnético, representadas 
en rojo. Las líneas de campo son una serie de puntos donde el campo magnético es 
constante, para una misma línea de campo. Realmente, las líneas campo son mucho 
más numerosas que las que se representan en la Figura 1, pero si representamos todas 
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Analizando las imágenes de la izquierda en la Figura 4.1.2, podemos estudiar el efecto de la 
variación de los valores de m,n en el patrón final. Podemos comprobar así que m determina el 
número de líneas nodales en la dirección y, y n en la dirección x: si observamos la 

 

 

 

 

 

 

 

Fig.4.1.2. Patrones obtenidos en Matlab para los modos (2,2), (1,1), (2,1) y (0,3), y su 
correspondiente representación tridimensional. 

 

§ Chladni Figures

• we will find solutions to the (differential) 
equations describing Chladni figures (i.e.
various modes of vibration on a rigid surface)

• we will represent those figures for various 
configurations

• ...

§ Foucault Pendulum

• we will study the movement of a pendulum in 
the rotating coordinate system of the Earth (i.e.
the Foucault Pendulum)

• we will place the pendulum at various locations 
(e.g. North Pole, Equator, Madrid, ...)

• ...

https://earth-planets-space.springeropen.com/articles/10.1186/s40623-020-01288-x
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more possible projects…

§ Predator-Prey

• we will study the dynamics and evolution of a 
diverse set of biological systems, integrated by 
different setups of predator and prey species 
through the so-called Lotka-Voltera equations.

• ...

Prof. Alexander Knebe

§ Schroedinger Equation

• we will study the time-independent 
Schrödinger equation for the hydrogen atom, 
understanding its theoretical basis

• we will search numerically for wave 
functions that satisfy the boundary 
conditions, and we will compare their 
associated energies with those obtained 
experimentally in the series of Lyman, 
Balmer, Paschen, Brackett, ...

• ...

§ Brownian Motion

• we will study movement of a particle inside a 
fluid by solving the equations of Langevin.

• ...



Computational Physics I Project

more possible projects…

§ Heat Diffusion

• we will temperature changes on a given surface 
by solving the equations of heat diffusion

• ...
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§ Your Faviourite Project

• we will study ???.

• ...

𝜕𝑇
𝜕𝑡 = 𝛼

𝜕!𝑇
𝜕𝑥! +

𝜕!𝑇
𝜕𝑦!


