

- MOND = MOdified Newtonian Dynamics
 - why MOND?
 - what is MOND?
 - MOND in cosmology
 - MOND in **AMIGA**
- MONDian Cosmological Simulations
 - large-scale clustering patterns
 - integral and internal properties galactic haloes

schematic model of a spiral galaxy...

- MOND = MOdified Newtonian Dynamics
 - Newton's Second Law of Motion

$$\vec{F} = m\vec{a}_N$$

• Modified Newtonian Dynamics

$$\vec{F} = m\vec{a}_M \mu (a_M / a_0)$$

will this give a flat rotation curve?

- MOND = MOdified Newtonian Dynamics
 - MONDian accelerations

$$\vec{a}_N = \vec{a}_M \,\mu \big(a_M \,/\, a_0 \big)$$

• Milgrom's interpolation function

$$\mu(x) = \frac{x}{\sqrt{1 - x^2}} \quad \Rightarrow \quad \begin{cases} \mu(x) \to x \quad ; x \to 0 \\ \\ \mu(x) \to 1 \quad ; x \to \infty \end{cases}$$

- MOND = MOdified Newtonian Dynamics
 - MONDian accelerations

$$\vec{a}_N = \vec{a}_M \,\mu \big(a_M \,/\, a_0 \big)$$

• Milgrom's interpolation function

$$\mu(x) = \frac{x}{\sqrt{1 - x^2}} \quad \Rightarrow \quad \begin{cases} \mu(x) \to x \quad ; x \to 0 \\ \\ \mu(x) \to 1 \quad ; x \to \infty \end{cases}$$

• limiting behaviour

$$x \rightarrow 0$$
: weak acceleration limit $a_M = \sqrt{a_N a_0}$

 $x \rightarrow \infty$: strong acceleration limit $a_M = a_N$

- MOND = MOdified Newtonian Dynamics
 - MONDian accelerations strong limit

$$a_M = a_N$$

all is well ;-)

- MOND = MOdified Newtonian Dynamics
 - MONDian accelerations weak limit

$$a_M = \sqrt{a_N a_0}$$

$$a_{M} = \frac{v^{2}}{r}$$

$$\Rightarrow v^{4} = GMa_{0} \Rightarrow \text{ flat rotation curve...}$$

$$a_{N} = \frac{GM(< r)}{r^{2}}$$

- MOND = MOdified Newtonian Dynamics
 - MONDian accelerations weak limit

$$a_M = \sqrt{a_N a_0}$$

$$a_{M} = \frac{v^{2}}{r}$$

$$a_{N} = \frac{GM(\langle r)}{r^{2}}$$

$$\Rightarrow v^{4} = GMa_{0} = Ga_{0}\frac{M}{L}L$$

$$\Rightarrow v^{4} \propto L$$

Tully-Fisher law!

- MOND = MOdified Newtonian Dynamics
 - re-interpretation as modified gravity

$$\nabla \cdot \mu(a_M / a_0) \vec{a}_M = -4\pi G \rho(\vec{r})$$

- relation between $a_{\scriptscriptstyle \mathrm{M}}$ and $a_{\scriptscriptstyle \mathrm{N}}$

$$\vec{a}_N = \mu(a_M / a_0)\vec{a}_M + \nabla \times \vec{h}$$

- MOND = MOdified Newtonian Dynamics
 - re-interpretation as modified gravity

$$\nabla \cdot \mu(a_M / a_0) \vec{a}_M = -4\pi G \rho(\vec{r})$$

• relation between $a_{\scriptscriptstyle \mathrm{M}}$ and $a_{\scriptscriptstyle \mathrm{N}}$

$$\vec{a}_N = \mu(a_M / a_0)\vec{a}_M + \underbrace{\nabla \times \vec{h}}_{\swarrow}$$

vanishes for spherical, planar or cylindrical symmetry

- MOND = MOdified Newtonian Dynamics
 - re-interpretation as modified gravity

$$\vec{a}_N = \vec{a}_M \, \mu \big(a_M \, / \, a_0 \big)$$

- MOND = MOdified Newtonian Dynamics
 - re-interpretation as modified gravity

$$\vec{a}_N = \vec{a}_M \, \mu \big(a_M \, / \, a_0 \big)$$

• Milgrom's interpolation function

$$\mu(x) = \frac{x}{\sqrt{1 - x^2}}$$

$$a_{M} = a_{N} \left[\frac{1}{2} + \frac{1}{2} \sqrt{1 + \left(\frac{2a_{0}}{a_{N}}\right)^{2}} \right]^{1/2}$$

. . .

assumptions

- the term $\,
 abla imes oldsymbol{h}\,$ can be neglected
- MOND only affects *peculiar* accelerations

$$\boldsymbol{r} = R\boldsymbol{x}$$
 $\nabla \cdot \boldsymbol{a}_{\text{pec}} = -4\pi G \left(\rho(\boldsymbol{x}) - <\rho \right)$

$$r'' = Rx'' + 2R'x' + R''x$$
 $Rx'' + 2R'x' = a_{pec}/R^2$

(R: cosmic expansion factor)

assumptions

- the term $\nabla imes oldsymbol{h}$ can be neglected
- MOND only affects *peculiar* accelerations

r = Rx

```
\nabla \cdot \boldsymbol{a}_{\text{pec}} = -4\pi G \left( \rho(\boldsymbol{x}) - <\rho \right)
```

```
r'' = Rx'' + 2R'x' + R''x \qquad Rx'' + 2R'x' = a_{pec}/R^2
(R: cosmic expansion factor)
(R: cosmic expansion factor)
```

$$r'' = \frac{a_{pec}}{R^2} - \frac{4\pi G}{3} \frac{<\rho>}{R^2} x$$

COMPUTATIONAL COSMOLOGY

AIP

assumptions

- the term $\nabla imes oldsymbol{h}$ can be neglected
- MOND only affects *peculiar* accelerations

r = Rx

 $\nabla \cdot \boldsymbol{a}_{\rm pec} = -4\pi G \left(\rho(\boldsymbol{x}) - <\rho \right)$

- the competing cosmological models
- the large-scale structure
- galactic haloes:
 - abundance in raw numbers
 - rotational properties
 - internal structures
 - density profiles
- summary
 - any consensus?

• the competitors

- other parameters:
 - -128^3 particles
 - 32 h^{-1} Mpc box
 - force resolution 11 h^{-1} kpc

large scale clustering pattern

large scale clustering pattern

large scale clustering pattern

- MOND features:
 - ahead on large scales
 - behind on small scales
 - no "non-linear break"

dark matter power spectrum

dark matter power spectrum

large scale clustering pattern

2-point correlation of virialized objects

galactic haloes

abundance of objects with $M > 10^{11} M_{\odot}$

- MOND features:
 - very late evolution
 - hardly any objects beyond $z \ge 3$

abundance of objects with $M > 10^{11} M_{\odot}$

galactic haloes

spin parameter distribution

• MOND features:

- hardly any differences

• galactic halo of mass $M \approx 10^{13} M_{\odot}$

density profile of the most massive object

- lower central density
- lower concentration
- ... but sill NFW shape!

ACDM	$c_{\rm NFW} = 8.7$
OCBMond	$c_{\rm NFW} = 2.1$
OCBM	$c_{\rm NFW} = 14.1$

MONDIAN COSMOLOGICAL SIMULATIONS

KNEBE & GIBSON, 2004, MNRAS 347, 1055

summary

- similar LSS clustering patterns yet indicating late evolution
- stronger correlation of objects on small scales
- less substructure
- same spin parameter distribution
- hardly any objects beyond $z \ge 5$
- still NFW density profiles

MONDIAN COSMOLOGICAL SIMULATIONS

KNEBE & GIBSON, 2004, MNRAS 347, 1055

summary

- similar LSS clustering patterns yet indicating late evolution
- stronger correlation of objects on small scales
- less substructure
- same spin parameter distribution
- hardly any objects beyond $z \ge 5$
- still NFW density profiles

howling at the moon?!

