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how can we be sure to actually model the Universe?
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Code Testing the equations 

•  collisionless matter (e.g. dark matter)	



•  collisional matter (e.g. gas)	
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•  Poisson’s equation	



•  Maxwell’s equation	



•  ideal gas equations	
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Code Testing the equations 

time integration lecture	



•  collisionless matter (e.g. dark matter)	



•  collisional matter (e.g. gas)	
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•  Poisson’s equation	



•  Maxwell’s equation	



•  ideal gas equations	



gravity solvers lectures	
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time integration lecture	



•  collisionless matter (e.g. dark matter)	



•  collisional matter (e.g. gas)	
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•  Poisson’s equation	



•  Maxwell’s equation	



•  ideal gas equations	



gravity solvers lectures	



2 possible error sources!	
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  the time integration

•  how to verify the time integration scheme?


  stationary problems

•  how accurate is the Poisson solver?


  evolutionary problems

•  how do both act together?


  code cross-comparison


  convergence studies




Computational Cosmology 

Code Testing 

  the time integration

•  how to verify the time integration scheme?


  stationary problems

•  how accurate is the Poisson solver?
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Code Testing 

  time step criteria


•  cosmological criterion


•  acceleration/velocity criterion


Time Integration 

€ 

Δt ≤ 1
H

≈ the time step should be smaller than the age of the Universe


≈  particles should not move farther than some preselected threshold ε

€ 

Δt ≤ ε
amax

€ 

Δt ≤ ε
vmax

ε of order the force resolution
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Code Testing 

  time step criteria


•  cosmological criterion


•  acceleration/velocity criterion


Time Integration 

€ 

Δt ≤ 1
H

≈ the time step should be smaller than the age of the Universe


≈  particles should not move farther than some preselected threshold ε
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  the time integration


Time Integration 
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 x n =
 x +  e n

true value
 error due to numerics
numerically obtained value

(at end of simulation!)
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  the time integration
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 x n =
 x +  e n

numerically obtained value

(at end of simulation!)


true value
 error due to numerics
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  the time integration
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  the time integration


  

€ 

 x n =
 x +  e n

numerically obtained value

(at end of simulation!)


true value
 error due to numerics


  

€ 

 e n = C(Δtn )
2

•  second order accurate leap-frog:


  

€ 

 x n −
 x m x m −
 x l

= ...= 1
k 2

  

€ 

let : Δtl = kΔtm = k 2Δtn

Time Integration 



Computational Cosmology 

Code Testing 

  the time integration


  

€ 

 x n =
 x +  e n

numerically obtained value

(at end of simulation!)


true value
 error due to numerics


  

€ 

 e n = C(Δtn )
2

•  second order accurate leap-frog:
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 x n −
 x m x m −
 x l

= ...= 1
k 2

  

€ 

let : Δtl = kΔtm = k 2Δtn (most obvious choice: k=2)


applicable to test any scheme…


Time Integration 
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  the time integration


  

€ 

 x n =
 x +  e n

numerically obtained value

(at end of simulation!)


true value
 error due to numerics


•  second order accurate leap-frog - test in practice:


-  run full simulation with three different choices for (constant!) time step:


 
 
Δt, 2Δt, and 4Δt	



-  calculate 


-  repeat exercise for  (2Δt, 4Δt, and 8Δt),  (4Δt, 8Δt, and 16Δt), … 	
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Time Integration 
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Code Testing 

  the time integration

•  how to verify the time integration scheme?


  stationary problems

•  how accurate is the Poisson solver?


  evolutionary problems

•  how do both act together?


  code cross-comparison


  convergence studies
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Code Testing Stationary Problems 

  static test scenarios


•  Hernquist sphere


•  Zel’dovich wave




Computational Cosmology 

Code Testing 

  Hernquist sphere


•  analytic representation


Stationary Problems 
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Code Testing 

  Hernquist sphere


•  particle representation and AMR refinement hierarchy


Stationary Problems 
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Code Testing 

  Hernquist sphere


•  recovering densities


Stationary Problems 
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€ 

ρ(r) = Hernquist profile
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˜ ρ (r) = W (r − ʹ′ r )ρ( ʹ′ r )d ʹ′ r ∫

  Hernquist sphere


•  recovering densities


Stationary Problems 
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Code Testing 

  Hernquist sphere


•  recovering forces


Stationary Problems 
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F ( ʹ′ r )d ʹ′ r ∫

  Hernquist sphere


•  recovering forces: trade off between bias and variance


Stationary Problems 
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Code Testing 

  Hernquist sphere


•  recovering forces
 variance due to discrete particles…


€ 

1
± N (< r)

Stationary Problems 



Computational Cosmology 

Code Testing 

  Hernquist sphere


•  recovering forces
 unavoidable bias due to smoothing…


Stationary Problems 
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variance


bias


  Hernquist sphere


•  recovering forces


Stationary Problems 



Computational Cosmology 

Code Testing 

variance


bias


  Hernquist sphere


•  recovering forces


softer forces -> stronger bias, lower variance


Stationary Problems 
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Code Testing 

variance


bias


  Hernquist sphere


•  recovering forces


optimum choice?


Stationary Problems 
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Code Testing 

  Hernquist sphere


•  recovering forces


Stationary Problems 
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  Zel’dovich wave


•  analytic representation
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Stationary Problems 
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  Zel’dovich wave


•  analytic representation
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cos(
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Lagrangian coordinates,

e.g. unperturbed particle positions on a regular grid…


Stationary Problems 
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  Zel’dovich wave


•  analytic representation
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 
F ( q ) = ?

Stationary Problems 
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  Zel’dovich wave


•  analytic representation
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Stationary Problems 
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•  analytic representation
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  Zel’dovich wave


•  analytic representation - 1D
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Stationary Problems 
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  Zel’dovich wave


•  analytic representation - 1D
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ρ(q) = ρ (q) =1

Stationary Problems 
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  Zel’dovich wave


•  analytic representation - 1D
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  Zel’dovich wave


•  analytic representation - 1D


€ 

x = q +
a(t)
k
cos(kq)

€ 

dF(q)
dq

=1− asin(kq) −1= −asin(kq)

Stationary Problems 
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  Zel’dovich wave


•  analytic representation - 1D


€ 

x = q +
a(t)
k
cos(kq)

€ 

F(q) =
a
k
cos(kq)
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dF(q)
dq

=1− asin(kq) −1= −asin(kq)

Stationary Problems 



Computational Cosmology 

Code Testing 

  Zel’dovich wave


•  analytic representation - 1D


€ 

x = q +
a(t)
k
cos(kq)

€ 

F(q) =
a
k
cos(kq)

€ 

dF(q)
dq

=1− asin(kq) −1= −asin(kq)

recall “initial conditions” lecture:
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 x (t) =
 q + D(t)

 
S ( q )   
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 
S ( q ) = −∇Ψ
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Stationary Problems 
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  Zel’dovich wave


•  numerical recovery - 1D


∴  put down particles on regular lattice 
q	



∴  superimpose Zel’dovich wave 
 
x	


∴  numerically calculate forces on lattice 
F(q)	



∴  compare to analytical forces 
 
Ftrue(q)	



Stationary Problems 
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  Zel’dovich wave


•  numerical recovery - 1D


AMR code


€ 

Ftrue (q) =
a
k
cos(kq)

Stationary Problems 
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  Zel’dovich wave


•  numerical recovery - 1D


AMR code


€ 

Ftrue (q) =
a
k
cos(kq)

2-body interactions…


Stationary Problems 
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  Zel’dovich wave


•  numerical recovery - 1D


€ 

Ftrue (q) =
a
k
cos(kq)

AP3M code


Stationary Problems 
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  Zel’dovich wave


•  numerical recovery - 1D


€ 

Ftrue (q) =
a
k
cos(kq)

AP3M code
 2-body interactions…


Stationary Problems 
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  Zel’dovich wave


•  numerical recovery - 1D


€ 

Ftrue (q) =
a
k
cos(kq)

AP3M code
 2-body interactions…


Stationary Problems 

too small force resolution introduces 2-body interactions!
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  the time integration

•  how to verify the time integration scheme?


  stationary problems

•  how accurate is the Poisson solver?


  evolutionary problems

•  how do both act together?


  code cross-comparison


  convergence studies
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  evolutionary test scenarios


•  check for momentum conservation


•  Layzer-Irvine Energy conservation


•  Zel’dovich wave, again…
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  momentum conservation


  

€ 

 
F i

i=1

N

∑ = 0

=> development of net momentum during simulation?


  

€ 

 
F i

i=1

N

∑
 
F i

i=1

N

∑
≈10−4

•  practical test:


Evolutionary Problems 
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  Layzer-Irvine energy conservation


•  Hamiltonian (= total energy)


   … with comoving energies as follows: (remember Hamilton formalism…)


    

€ 

T =
1
2

pi
2

mia
2

i=1

N

∑

U = −
1
2a

(ρ( x ) − ρ )Φ(  x )d3x
Box

∫∫∫

€ 

ΔΦ = 4πG(ρx − ρ x )

    

€ 

H =
1

2ma2
p2 + mΦ( x )

a

Evolutionary Problems 
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  Layzer-Irvine energy conservation


•  Hamiltonian (= total energy) 


  

€ 

C = (T +U)t − (T +U)tinit
+

1
a
(2T +U)da

t init

t

∫

    

€ 

dH
dt

=
∂H
∂t

= −
1
2

pi
2

mi

2 ˙ a 
a3

i=1

N

∑ +
1
2

2 ˙ a 
a2 (ρ(  x ) − ρ )Φ( x )d3x

Box
∫∫∫

= −
˙ a 
a

2T + U( )

0 =
d(T + U)

dt
+

˙ a 
a

2T + U( )=>	



Evolutionary Problems 
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  Layzer-Irvine energy conservation


•  Hamiltonian (= total energy) 


  

€ 

C = (T +U)t − (T +U)tinit
+

1
a
(2T +U)da

t init

t

∫

=>	



= 0 ?!  (virial theorem)

    

€ 

dH
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=
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= −
1
2
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2
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2 ˙ a 
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i=1

N

∑ +
1
2

2 ˙ a 
a2 (ρ(  x ) − ρ )Φ( x )d3x

Box
∫∫∫

= −
˙ a 
a

2T + U( )

0 =
d(T + U)

dt
+

˙ a 
a

2T + U( )

Evolutionary Problems 
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  Layzer-Irvine energy conservation


  

€ 

C = (T +U)t − (T +U)tinit
+

1
a
(2T +U)da

t init

t

∫

accuracy at “a few percent” level


Evolutionary Problems 
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  Layzer-Irvine energy conservation


accuracy at “a few percent” level


errors due to time integration and Poisson solver…


Evolutionary Problems 
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  Zel’dovich wave


•  analytic representation - 1D


€ 

x = q +
a(t)
k
cos(kq)
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  Zel’dovich wave


•  analytic representation - 1D


€ 

x = q +
a(t)

k
cos(kq)

˙ x = ˙ a (t)
k

cos(kq)
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  Zel’dovich wave


•  analytic representation - 1D


€ 

x = q +
a(t)

k
cos(kq)

˙ x = ˙ a (t)
k

cos(kq)

€ 

σ x
2 =

x i − xtrue( )
i
∑

2

xtrue − q( )
i
∑

2

σ v
2 =

˙ x i − ˙ x true( )
i
∑

2

˙ x true( )
i
∑

2

check rms errors 

as function of k and a
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  the time integration

•  how to verify the time integration scheme?


  stationary problems

•  how accurate is the Poisson solver?


  evolutionary problems

•  how do both act together?


  code cross-comparison


  convergence studies
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  ΛCDM simulation run with various codes

•  identical initial conditions

•  comparable parameter setup
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  ΛCDM simulation run with various codes

•  identical initial conditions

•  comparable parameter setup


GADGET AP3M
 AMIGA AMIGA  (refinements) 
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Code Testing Code Comparison 

  ΛCDM simulation run with various codes

•  identical initial conditions

•  comparable parameter setup


AMIGA 

pure PP code 

PM domain (FFT !) 

PP domain 
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  ΛCDM simulation run with various codes

•  identical initial conditions

•  comparable parameter setup


more recent comparison by Heitmann et al. (2005)…
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  “Santa Barbara Cluster” (Frenck et al. 1999)
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  “Santa Barbara Cluster” (Frenck et al. 1999)
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  “Santa Barbara Cluster” (Frenck et al. 1999)


they all seem to agree more or less…
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  “Santa Barbara Cluster” (incl. gas physics…)


(Frenck et al. 1999)


grid based codes


particle based codes


particle based codes


grid based codes


temperature profile
 entropy profile
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Code Testing Code Comparison 

  mass segregation

•  run simulation with 2 mass species and check for segregation


AMIGA 

AMIGA 

   GADGET (tree code)   
=> expels lighter particles from halos


  AMIGA   (AMR code) 
=> ratio always about unity
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Code Testing Code Comparison 

  major differences


•   tree codes: 
spatially     fixed    force resolution


•   AMR codes 
spatially  adaptive  force resolution


  resolve the local inter-particle separation at all times and at all places 


     … nor more, no less!


  particles are “phase-space” markers rather than interacting “billiard balls”
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Code Testing 

  the time integration

•  how to verify the time integration scheme?


  stationary problems

•  how accurate is the Poisson solver?


  evolutionary problems

•  how do both act together?


  code cross-comparison


  convergence studies
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stability and credibility of (scientific) results…
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Code Testing Credibility of Results 

  the relation between…


→  particle number, time step and softening?


in-depth study by Power et al., MNRAS 338, 14 (2003)
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  time step and softening


increasing the force resolution

(without adjusting the time step…)


(Knebe et al. 2000)
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increasing the force resolution

(without adjusting the time step…)


unphysical two-body scattering


(Knebe et al. 2000)


  time step and softening


Credibility of Results 
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simultaneously decreasing the time step

remedies the problem


(Knebe et al. 2000)


  time step and softening


Credibility of Results 
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simultaneously decreasing the time step

remedies the problem


(Knebe et al. 2000)


  time step and softening


choose time step and softening wisely…


Credibility of Results 
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  the relation between…


→  particle number, time step and softening?


  convergence study:


in-depth study by Power et al., MNRAS 338, 14 (2003)


run the same simulation again and again 

gradually varying one of the technical parameters…
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Code Testing Convergence Study 

  particle number


we aim at solving the collisionless Boltzmann equation

using particles as phase-space markers1…


…and hence their dynamics should be determined

by the mean field and not two-body interactions!


1cf. “The N-Body Approach” lecture…
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  particle number


we aim at solving the collisionless Boltzmann equation

using particles as phase-space markers1…


…and hence their dynamics should be determined

by the mean field and not two-body interactions!


1cf. “The N-Body Approach” lecture…


how can we be sure to use enough particles in this approach?
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  particle number
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  particle number
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  particle number
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density profile of individual dark matter halo
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  particle number
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  particle number
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€ 

ρ =
N(< r)
4π
3
r3

density profile of individual dark matter halo
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  particle number


(P
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l. 
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03
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result (i.e. density contrast) 

has converged to a finite value


⇒  further increasing the number of particles

won’t improve the result…


density profile of individual dark matter halo
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  collisional relaxation


•  relaxation time

“When a finite number of particles is used to represent a system,

individual particle accelerations will inevitably deviate from the

mean-field value when particles pass close each other.”



 
 
                       (Power et al. 2003)
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  collisional relaxation


•  relaxation time

“When a finite number of particles is used to represent a system,

individual particle accelerations will inevitably deviate from the

mean-field value when particles pass close each other.”



 
 
                       (Power et al. 2003)


€ 

trelax
tcross

≈
N(< r)
8ln(r /ε)

≈
N

8lnN
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Code Testing Convergence Study 

  collisional relaxation


•  relaxation time


number of encounters required to change

a particle’s velocity by of order itself…



              (cf. Binney & Tremaine 1987)

€ 

trelax
tcross

≈
N(< r)
8ln(r /ε)

≈
N

8lnN

“When a finite number of particles is used to represent a system,

individual particle accelerations will inevitably deviate from the

mean-field value when particles pass close each other.”



 
 
                       (Power et al. 2003)


tcross = r/v	
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  collisional relaxation


•  relaxation time


€ 

r
ε
≈
rv 2

Gm
≈
r GNm

r
Gm

≈ N

a close encounter ε entails Δv≈v


€ 

trelax
tcross

≈
N(< r)
8ln(r /ε)

≈
N

8lnN

“When a finite number of particles is used to represent a system,

individual particle accelerations will inevitably deviate from the

mean-field value when particles pass close each other.”



 
 
                       (Power et al. 2003)
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  collisional relaxation


•  relaxation time


⇒  the relaxation time trelax should exceed the age of the Universe t0:


Convergence Study 

€ 

trelax r,N,ε( ) ≥ 0.6t0

€ 

trelax
tcross

≈
N(< r)
8ln(r /ε)

≈
N

8lnN

“When a finite number of particles is used to represent a system,

individual particle accelerations will inevitably deviate from the

mean-field value when particles pass close each other.”



 
 
                       (Power et al. 2003)
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  empirically derived relations meeting this requirement:


•  choose gravitational softening to ensure  a2body < ameanfield


•  regard those regions as converged where the circular orbit time-scales exceeds
€ 

ε ≈ 4 × Rvir

Nvir

€ 

Δt
t0

=
1

Nsteps

€ 

tcirc (rconverged ) >15 × Δt
t0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

5 / 6

tcirc (Rvir )



Computational Cosmology 

Code Testing Convergence Study 

  do trustworthy science…



