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how can we be sure to actually model the Universe?



Computational Cosmology 

Code Testing the equations 

•  collisionless matter (e.g. dark matter)	


•  collisional matter (e.g. gas)	
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•  Poisson’s equation	


•  Maxwell’s equation	


•  ideal gas equations	
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time integration lecture	


•  collisionless matter (e.g. dark matter)	


•  collisional matter (e.g. gas)	
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gravity solvers lectures	
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time integration lecture	


•  collisionless matter (e.g. dark matter)	


•  collisional matter (e.g. gas)	
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•  Poisson’s equation	


•  Maxwell’s equation	


•  ideal gas equations	


gravity solvers lectures	


2 possible error sources!	
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  stationary problems
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  code cross-comparison
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  time step criteria

•  cosmological criterion

•  acceleration/velocity criterion

Time Integration 
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H

≈ the time step should be smaller than the age of the Universe

≈  particles should not move farther than some preselected threshold ε
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vmax

ε of order the force resolution
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Code Testing 

  time step criteria

•  cosmological criterion

•  acceleration/velocity criterion

Time Integration 
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  the time integration
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true value error due to numerics
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•  second order accurate leap-frog:
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= ...= 1
k 2
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let : Δtl = kΔtm = k 2Δtn (most obvious choice: k=2)

applicable to test any scheme…

Time Integration 
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  the time integration

  

€ 

 x n =
 x +  e n

numerically obtained value
(at end of simulation!)

true value error due to numerics

•  second order accurate leap-frog - test in practice:

-  run full simulation with three different choices for (constant!) time step:

  Δt, 2Δt, and 4Δt	


-  calculate 

-  repeat exercise for  (2Δt, 4Δt, and 8Δt),  (4Δt, 8Δt, and 16Δt), … 	
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  the time integration
•  how to verify the time integration scheme?

  stationary problems
•  how accurate is the Poisson solver?

  evolutionary problems
•  how do both act together?

  code cross-comparison

  convergence studies
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  static test scenarios

•  Hernquist sphere

•  Zel’dovich wave
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  Hernquist sphere

•  analytic representation

Stationary Problems 
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Code Testing 

  Hernquist sphere

•  particle representation and AMR refinement hierarchy

Stationary Problems 
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  Hernquist sphere

•  recovering densities

Stationary Problems 
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ρ(r) = Hernquist profile
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  Hernquist sphere

•  recovering densities

Stationary Problems 
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  Hernquist sphere

•  recovering forces

Stationary Problems 
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  Hernquist sphere

•  recovering forces: trade off between bias and variance

Stationary Problems 
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  Hernquist sphere

•  recovering forces variance due to discrete particles…

€ 

1
± N (< r)

Stationary Problems 
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Code Testing 

  Hernquist sphere

•  recovering forces unavoidable bias due to smoothing…

Stationary Problems 
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variance

bias

  Hernquist sphere

•  recovering forces

Stationary Problems 
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variance

bias

  Hernquist sphere

•  recovering forces

softer forces -> stronger bias, lower variance

Stationary Problems 
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variance

bias

  Hernquist sphere

•  recovering forces

optimum choice?

Stationary Problems 
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  Hernquist sphere

•  recovering forces

Stationary Problems 
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•  analytic representation
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  Zel’dovich wave

•  analytic representation
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Lagrangian coordinates,
e.g. unperturbed particle positions on a regular grid…

Stationary Problems 
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  Zel’dovich wave

•  analytic representation
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Stationary Problems 
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•  analytic representation
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  Zel’dovich wave

•  analytic representation - 1D
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  Zel’dovich wave

•  analytic representation - 1D
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•  analytic representation - 1D
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  Zel’dovich wave

•  analytic representation - 1D
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  Zel’dovich wave

•  numerical recovery - 1D

∴  put down particles on regular lattice q	


∴  superimpose Zel’dovich wave  x	

∴  numerically calculate forces on lattice F(q)	


∴  compare to analytical forces  Ftrue(q)	


Stationary Problems 
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  Zel’dovich wave

•  numerical recovery - 1D

AMR code
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  Zel’dovich wave

•  numerical recovery - 1D

AMR code

€ 

Ftrue (q) =
a
k
cos(kq)

2-body interactions…

Stationary Problems 
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  Zel’dovich wave

•  numerical recovery - 1D
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Ftrue (q) =
a
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AP3M code

Stationary Problems 
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  Zel’dovich wave

•  numerical recovery - 1D
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AP3M code 2-body interactions…

Stationary Problems 



Computational Cosmology 
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  Zel’dovich wave

•  numerical recovery - 1D

€ 

Ftrue (q) =
a
k
cos(kq)

AP3M code 2-body interactions…

Stationary Problems 

too small force resolution introduces 2-body interactions!
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  the time integration
•  how to verify the time integration scheme?

  stationary problems
•  how accurate is the Poisson solver?

  evolutionary problems
•  how do both act together?

  code cross-comparison

  convergence studies
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Code Testing Evolutionary Problems 

  evolutionary test scenarios

•  check for momentum conservation

•  Layzer-Irvine Energy conservation

•  Zel’dovich wave, again…
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  momentum conservation
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=> development of net momentum during simulation?
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•  practical test:

Evolutionary Problems 
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  Layzer-Irvine energy conservation

•  Hamiltonian (= total energy)

   … with comoving energies as follows: (remember Hamilton formalism…)
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Evolutionary Problems 
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  Layzer-Irvine energy conservation

•  Hamiltonian (= total energy) 
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  Layzer-Irvine energy conservation

•  Hamiltonian (= total energy) 
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  Layzer-Irvine energy conservation
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+

1
a
(2T +U)da

t init

t

∫

accuracy at “a few percent” level

Evolutionary Problems 
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  Layzer-Irvine energy conservation

accuracy at “a few percent” level

errors due to time integration and Poisson solver…

Evolutionary Problems 
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  Zel’dovich wave

•  analytic representation - 1D
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x = q +
a(t)
k
cos(kq)
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  Zel’dovich wave

•  analytic representation - 1D

€ 

x = q +
a(t)

k
cos(kq)

˙ x = ˙ a (t)
k

cos(kq)
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  Zel’dovich wave

•  analytic representation - 1D
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x = q +
a(t)
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˙ x = ˙ a (t)
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check rms errors 
as function of k and a
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  the time integration
•  how to verify the time integration scheme?

  stationary problems
•  how accurate is the Poisson solver?

  evolutionary problems
•  how do both act together?

  code cross-comparison

  convergence studies
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•  comparable parameter setup
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Code Testing Code Comparison 

  ΛCDM simulation run with various codes
•  identical initial conditions
•  comparable parameter setup

GADGET AP3M AMIGA AMIGA  (refinements) 
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Code Testing Code Comparison 

  ΛCDM simulation run with various codes
•  identical initial conditions
•  comparable parameter setup

AMIGA 

pure PP code 

PM domain (FFT !) 

PP domain 
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Code Testing Code Comparison 

  ΛCDM simulation run with various codes
•  identical initial conditions
•  comparable parameter setup

more recent comparison by Heitmann et al. (2005)…
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  “Santa Barbara Cluster” (Frenck et al. 1999)

they all seem to agree more or less…
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  “Santa Barbara Cluster” (incl. gas physics…)

(Frenck et al. 1999)

grid based codes

particle based codes

particle based codes

grid based codes

temperature profile entropy profile
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  mass segregation
•  run simulation with 2 mass species and check for segregation

AMIGA 

AMIGA 

   GADGET (tree code)   => expels lighter particles from halos

  AMIGA   (AMR code) => ratio always about unity
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Code Testing Code Comparison 

  major differences

•   tree codes: spatially     fixed    force resolution

•   AMR codes spatially  adaptive  force resolution

  resolve the local inter-particle separation at all times and at all places 

     … nor more, no less!

  particles are “phase-space” markers rather than interacting “billiard balls”
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  the time integration
•  how to verify the time integration scheme?

  stationary problems
•  how accurate is the Poisson solver?

  evolutionary problems
•  how do both act together?

  code cross-comparison

  convergence studies
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Code Testing 

stability and credibility of (scientific) results…
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  the relation between…

→  particle number, time step and softening?

in-depth study by Power et al., MNRAS 338, 14 (2003)
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Code Testing Credibility of Results 

  time step and softening

increasing the force resolution
(without adjusting the time step…)

(Knebe et al. 2000)
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Code Testing 

increasing the force resolution
(without adjusting the time step…)

unphysical two-body scattering

(Knebe et al. 2000)

  time step and softening

Credibility of Results 
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simultaneously decreasing the time step
remedies the problem

(Knebe et al. 2000)

  time step and softening

Credibility of Results 
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Code Testing 

simultaneously decreasing the time step
remedies the problem

(Knebe et al. 2000)

  time step and softening

choose time step and softening wisely…

Credibility of Results 
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Code Testing Convergence Study 

  the relation between…

→  particle number, time step and softening?

  convergence study:

in-depth study by Power et al., MNRAS 338, 14 (2003)

run the same simulation again and again 
gradually varying one of the technical parameters…
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  particle number

we aim at solving the collisionless Boltzmann equation
using particles as phase-space markers1…

…and hence their dynamics should be determined
by the mean field and not two-body interactions!

1cf. “The N-Body Approach” lecture…
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  particle number

we aim at solving the collisionless Boltzmann equation
using particles as phase-space markers1…

…and hence their dynamics should be determined
by the mean field and not two-body interactions!

1cf. “The N-Body Approach” lecture…

how can we be sure to use enough particles in this approach?
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result (i.e. density contrast) 
has converged to a finite value

⇒  further increasing the number of particles
won’t improve the result…

density profile of individual dark matter halo
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•  relaxation time
“When a finite number of particles is used to represent a system,
individual particle accelerations will inevitably deviate from the
mean-field value when particles pass close each other.”

                         (Power et al. 2003)
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  collisional relaxation

•  relaxation time
“When a finite number of particles is used to represent a system,
individual particle accelerations will inevitably deviate from the
mean-field value when particles pass close each other.”

                         (Power et al. 2003)

€ 

trelax
tcross

≈
N(< r)
8ln(r /ε)

≈
N

8lnN
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  collisional relaxation

•  relaxation time

number of encounters required to change
a particle’s velocity by of order itself…

              (cf. Binney & Tremaine 1987)
€ 

trelax
tcross

≈
N(< r)
8ln(r /ε)

≈
N

8lnN

“When a finite number of particles is used to represent a system,
individual particle accelerations will inevitably deviate from the
mean-field value when particles pass close each other.”

                         (Power et al. 2003)

tcross = r/v	
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  collisional relaxation

•  relaxation time

€ 

r
ε
≈
rv 2

Gm
≈
r GNm

r
Gm

≈ N

a close encounter ε entails Δv≈v

€ 

trelax
tcross

≈
N(< r)
8ln(r /ε)

≈
N

8lnN

“When a finite number of particles is used to represent a system,
individual particle accelerations will inevitably deviate from the
mean-field value when particles pass close each other.”

                         (Power et al. 2003)
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  collisional relaxation

•  relaxation time

⇒  the relaxation time trelax should exceed the age of the Universe t0:

Convergence Study 

€ 

trelax r,N,ε( ) ≥ 0.6t0

€ 

trelax
tcross

≈
N(< r)
8ln(r /ε)

≈
N

8lnN

“When a finite number of particles is used to represent a system,
individual particle accelerations will inevitably deviate from the
mean-field value when particles pass close each other.”

                         (Power et al. 2003)
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  empirically derived relations meeting this requirement:

•  choose gravitational softening to ensure  a2body < ameanfield

•  regard those regions as converged where the circular orbit time-scales exceeds€ 

ε ≈ 4 × Rvir

Nvir

€ 

Δt
t0

=
1

Nsteps

€ 

tcirc (rconverged ) >15 × Δt
t0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

5 / 6

tcirc (Rvir )
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  do trustworthy science…


