COMPUTATIONAL COSMOLOGY

Alexander Knebe, Universidad Autonoma de Madrid

THE UNIVERSE IN A COMPUTER

full set of equations

• collisionless matter (e.g. dark matter)

$$\frac{d\vec{x}_{DM}}{dt} = \vec{v}_{DM} \qquad \qquad \Delta \phi = 4\pi G \rho_{tot} \\ \frac{d\vec{v}_{DM}}{dt} = -\nabla \phi$$

• collisional matter (e.g. gas)

• ideal gas equations

• Poisson's equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \qquad p = (\gamma - 1)\rho\varepsilon$$

$$\frac{\partial (\rho \vec{v})}{\partial t} + \nabla \cdot \left(\rho \vec{v} \otimes \vec{v} + \left(p + \frac{1}{2\mu}B^2\right)\vec{1} - \frac{1}{\mu}\vec{B} \otimes \vec{B}\right) = \rho \ (-\nabla\phi) \qquad \rho\varepsilon = \rho E - \frac{1}{2}\rho v^2$$

$$\frac{\partial (\rho E)}{\partial t} + \nabla \cdot \left(\left[\rho E + p + \frac{1}{2\mu}B^2\right]\vec{v} - \frac{1}{\mu}\left[\vec{v} \cdot \vec{B}\right]\vec{B}\right) = \rho \vec{v} \cdot (-\nabla\phi) + (\Gamma - L) \qquad \bullet \text{Maxwell's equation}$$

$$\frac{\partial \vec{B}}{\partial t} = -\nabla \times \left(\vec{v} \times \vec{B}\right)$$

full set of equations

• collisionless matter (e.g. dark matter)

gravity solvers lectures

Poisson's equation
$$\Delta \phi = 4\pi G \rho_{tot}$$

• collisional matter (e.g. gas)

• ideal gas equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \qquad p = (\gamma - 1)\rho\varepsilon$$

$$\frac{\partial (\rho \vec{v})}{\partial t} + \nabla \cdot \left(\rho \vec{v} \otimes \vec{v} + \left(p + \frac{1}{2\mu}B^2\right)\vec{1} - \frac{1}{\mu}\vec{B} \otimes \vec{B}\right) = \rho \ (-\nabla\phi) \qquad \rho\varepsilon = \rho E - \frac{1}{2}\rho v^2$$

$$\frac{\partial (\rho E)}{\partial t} + \nabla \cdot \left(\left[\rho E + p + \frac{1}{2\mu}B^2\right]\vec{v} - \frac{1}{\mu}\left[\vec{v} \cdot \vec{B}\right]\vec{B}\right) = \rho \vec{v} \cdot (-\nabla\phi) + (\Gamma - L) \qquad \bullet \text{Maxwell's equation}$$

$$\frac{\partial \vec{B}}{\partial t} = -\nabla \times \left(\vec{v} \times \vec{B}\right)$$

full set of equations

• collisionless matter (e.g. dark matter)

gravity solvers lectures

time integration lecture

2 possible error sources!

• collisional matter (e.g. gas)

• ideal gas equations

• Poisson's equation

 $\Delta \phi = 4\pi G \rho_{tot}$

$$\begin{aligned} \frac{\partial \rho}{\partial t} &+ \nabla \cdot \left(\rho \vec{v}\right) &= 0 \qquad p = (\gamma - 1)\rho\varepsilon \\ \frac{\partial (\rho \vec{v})}{\partial t} &+ \nabla \cdot \left(\rho \vec{v} \otimes \vec{v} + \left(p + \frac{1}{2\mu}B^2\right)\vec{1} - \frac{1}{\mu}\vec{B} \otimes \vec{B}\right) &= \rho \left(-\nabla \phi\right) \qquad \rho\varepsilon = \rho E - \frac{1}{2}\rho v^2 \\ \frac{\partial (\rho E)}{\partial t} &+ \nabla \cdot \left(\left[\rho E + p + \frac{1}{2\mu}B^2\right]\vec{v} - \frac{1}{\mu}\left[\vec{v} \cdot \vec{B}\right]\vec{B}\right) &= \rho \vec{v} \cdot \left(-\nabla \phi\right) + (\Gamma - L) \qquad \bullet \text{Maxwell's equation} \\ \frac{\partial \vec{B}}{\partial t} &= -\nabla \times \left(\vec{v} \times \vec{B}\right) \end{aligned}$$

- the time integration
 - how to verify the time integration scheme?
- stationary problems
 - how accurate is the Poisson solver?
- evolutionary problems
 - how do both act together?
- code cross-comparison
- convergence studies

• the time integration

- how to verify the time integration scheme?
- stationary problems
 - how accurate is the Poisson solver?
- evolutionary problems
 - how do both act together?
- code cross-comparison
- convergence studies

TIME INTEGRATION

• time step criteria

• cosmological criterion

$$\Delta t \leq \frac{1}{H}$$

 \approx the time step should be smaller than the age of the Universe

• acceleration/velocity criterion

$$\Delta t \le \sqrt{\frac{\varepsilon}{a_{\max}}} \quad \Delta t \le \frac{\varepsilon}{v_{\max}}$$

 \thickapprox particles should not move farther than some preselected threshold ε_{\searrow}

arepsilon of order the force resolution

TIME INTEGRATION

• time step criteria

• cosmological criterion

$$\Delta t \le \frac{1}{H} = \frac{a}{a} = \frac{a}{\Delta a} \Delta t \Rightarrow 1 \le \frac{a}{\Delta a}$$

$$\Delta t \le \frac{1}{H} \iff \frac{\Delta a}{a} \le 1$$

 \approx the time step should be smaller than the age of the Universe

• acceleration/velocity criterion

$$\Delta t \le \sqrt{\frac{\varepsilon}{a_{\max}}} \quad \Delta t \le \frac{\varepsilon}{v_{\max}}$$

 \thickapprox particles should not move farther than some preselected threshold ε

numerically obtained value (at end of simulation!) error due to numerics

• second order accurate leap-frog:

 $\vec{e}_n = C(\Delta t_n)^2$

$$\vec{x}_n - \vec{x}_m = \vec{x} + \vec{e}_n - (\vec{x} + \vec{e}_m) \qquad \qquad \vec{x}_m - \vec{x}_l = \vec{x} + \vec{e}_m - (\vec{x} + \vec{e}_l)$$
$$= \vec{e}_n - \vec{e}_m \qquad \qquad \qquad = \vec{e}_m - \vec{e}_l$$
$$= C(\Delta t_n^2 - \Delta t_m^2) \qquad \qquad \qquad = C(\Delta t_m^2 - \Delta t_l^2)$$

numerically obtained value (at end of simulation!)

• second order accurate leap-frog:

 $\vec{e}_n = C(\Delta t_n)^2$

$$\vec{x}_n - \vec{x}_m = \vec{x} + \vec{e}_n - (\vec{x} + \vec{e}_m) \qquad \qquad \vec{x}_m - \vec{x}_l = \vec{x} + \vec{e}_m - (\vec{x} + \vec{e}_l)$$
$$= \vec{e}_n - \vec{e}_m \qquad \qquad \qquad = \vec{e}_m - \vec{e}_l$$
$$= C(\Delta t_n^2 - \Delta t_m^2) \qquad \qquad \qquad = C(\Delta t_m^2 - \Delta t_l^2)$$

let: $\Delta t_l = k \Delta t_m = k^2 \Delta t_n$

• second order accurate leap-frog:

 $\vec{e}_n = C(\Delta t_n)^2$

$$\frac{\vec{x}_n - \vec{x}_m}{\vec{x}_m - \vec{x}_l} = \dots = \frac{1}{k^2}$$

let:
$$\Delta t_l = k \Delta t_m = k^2 \Delta t_n$$

- the time integration
 - how to verify the time integration scheme?

stationary problems

- how accurate is the Poisson solver?
- evolutionary problems
 - how do both act together?
- code cross-comparison
- convergence studies

STATIONARY PROBLEMS

- static test scenarios
 - Hernquist sphere
 - Zel'dovich wave

STATIONARY PROBLEMS

- Hernquist sphere
 - analytic representation

$$\rho(x) = \frac{Mx_0}{2\pi} \frac{1}{x(x_0 + x)^3}$$

$$\nabla \cdot \vec{F}(\vec{x}) = 4\pi G(\rho - \overline{\rho})$$

$$\vec{F}(\vec{x}) = -\left(\frac{GM}{(x_0 + x)^2} \frac{1}{x} + \frac{4\pi G}{3}\overline{\rho}\right)\vec{x}$$

STATIONARY PROBLEMS

• particle representation and AMR refinement hierarchy

STATIONARY PROBLEMS

- Hernquist sphere
 - recovering densities

STATIONARY PROBLEMS

- Hernquist sphere
 - recovering densities

STATIONARY PROBLEMS

- Hernquist sphere
 - recovering forces

Hernquist sphere

Hernquist sphere

Hernquist sphere

- Hernquist sphere
 - recovering forces

- Hernquist sphere
 - recovering forces

- Hernquist sphere
 - recovering forces

STATIONARY PROBLEMS

- Hernquist sphere
 - recovering forces

STATIONARY PROBLEMS

- Zel'dovich wave
 - analytic representation

$$\vec{x} = \vec{q} + a(t)\frac{\vec{k}}{k^2}\cos(\vec{k}\cdot\vec{q})$$

- Zel'dovich wave
 - analytic representation

Lagrangian coordinates, e.g. unperturbed particle positions on a regular grid...

STATIONARY PROBLEMS

- Zel'dovich wave
 - analytic representation

$$\vec{x} = \vec{q} + a(t)\frac{\vec{k}}{k^2}\cos(\vec{k}\cdot\vec{q})$$

$$\downarrow \vec{F}(\vec{q}) = ?$$

- Zel'dovich wave
 - analytic representation

$$\vec{x} = \vec{q} + a(t) \frac{\vec{k}}{k^2} \cos(\vec{k} \cdot \vec{q})$$
$$\bigvee_{\mathbf{V}} \vec{F}(\vec{q}) = ?$$

$$\Delta_x \Phi(\vec{x}) = (\rho - \overline{\rho}) \implies \nabla_x \vec{F}(\vec{x}) = -(\rho - \overline{\rho})$$

- Zel'dovich wave
 - analytic representation

$$\vec{x} = \vec{q} + a(t) \frac{\vec{k}}{k^2} \cos(\vec{k} \cdot \vec{q})$$
$$\downarrow \vec{F}(\vec{q}) = ?$$

STATIONARY PROBLEMS

Zel'dovich wave

• analytic representation - 1D

STATIONARY PROBLEMS

Zel'dovich wave

• analytic representation - 1D

$$x = q + \frac{a(t)}{k}\cos(kq)$$

$$\frac{dF(q)}{dq} = -dx/dq \left(\frac{1}{dq/dq}\rho(q) - \overline{\rho}(q)\right)$$
$$= -dx/dq \left(\frac{1}{dx/dq}\overline{\rho}(q) - \rho(q)\right)$$
$$= -dx/dq \left(\frac{1}{dx/dq} - 1\right)\overline{\rho}(q)$$
$$\rho(q) = \overline{\rho}(q) = 1$$
$$= dx/dq - 1$$

STATIONARY PROBLEMS

Zel'dovich wave

• analytic representation - 1D

$$x = q + \frac{a(t)}{k}\cos(kq)$$

$$\frac{dF(q)}{dq} = -\frac{dx}{dq} \left(\frac{1}{\frac{dx}{dq}} \rho(q) - \overline{\rho}(q) \right)$$

$$= -\frac{dx}{dq} \left(\frac{1}{\frac{dx}{dq}} \overline{\rho}(q) - \rho(q) \right)$$

$$= -\frac{dx}{dq} \left(\frac{1}{\frac{dx}{dq}} - 1 \right) \overline{\rho}(q)$$

$$= -\frac{dx}{dq} - 1$$

$$\downarrow$$

$$dx/dq = 1 - a\sin(kq)$$

- Zel'dovich wave
 - analytic representation 1D

$$x = q + \frac{a(t)}{k}\cos(kq)$$

$$\frac{dF(q)}{dq} = 1 - a\sin(kq) - 1 = -a\sin(kq)$$

- Zel'dovich wave
 - analytic representation 1D

$$x = q + \frac{a(t)}{k}\cos(kq)$$

$$\frac{dF(q)}{dq} = 1 - a\sin(kq) - 1 = -a\sin(kq)$$

$$\downarrow$$

$$F(q) = \frac{a}{k}\cos(kq)$$

- Zel'dovich wave
 - analytic representation 1D

$$x = q + \frac{a(t)}{k}\cos(kq)$$

$$\frac{dF(q)}{dq} = 1 - a\sin(kq) - 1 = -a\sin(kq)$$

$$\downarrow$$

$$F(q) = \frac{a}{k}\cos(kq)$$

recall "initial conditions" lecture: $\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})$ $\vec{S}(\vec{q}) = -\nabla \Psi$ $\Delta \Psi = \delta_0$

STATIONARY PROBLEMS

F(q)

- Zel'dovich wave
 - numerical recovery 1D

- \therefore put down particles on regular lattice q
- \therefore superimpose Zel'dovich wave x
- : numerically calculate forces on lattice
- \therefore compare to analytical forces $F_{\text{true}}(q)$

STATIONARY PROBLEMS

Zel'dovich wave

$$F_{true}(q) = \frac{a}{k}\cos(kq)$$

- the time integration
 - how to verify the time integration scheme?

stationary problems

• how accurate is the Poisson solver?

evolutionary problems

- how do both act together?
- code cross-comparison
- convergence studies

- evolutionary test scenarios
 - check for momentum conservation
 - Layzer-Irvine Energy conservation
 - Zel'dovich wave, again...

Evolutionary Problems

momentum conservation

$$\left|\sum_{i=1}^{N} \vec{F}_{i}\right| = 0$$

=> development of net momentum during simulation?

• practical test:

$$\frac{\left|\sum_{i=1}^{N} \vec{F}_{i}\right|}{\sum_{i=1}^{N} \left|\vec{F}_{i}\right|} \approx 10^{-4}$$

- Layzer-Irvine energy conservation
 - Hamiltonian (= total energy)

$$\mathcal{H} = \frac{1}{2ma^2}p^2 + m\frac{\Phi(\vec{x})}{a}$$

... with comoving energies as follows: (remember Hamilton formalism...)

$$T = \frac{1}{2} \sum_{i=1}^{N} \frac{p_i^2}{m_i a^2}$$

$$U = -\frac{1}{2a} \iiint_{\text{Box}} (\rho(\vec{x}) - \overline{\rho}) \Phi(\vec{x}) d^3 x \qquad \Delta \Phi = 4\pi G(\rho_x - \overline{\rho}_x)$$

- Layzer-Irvine energy conservation
 - Hamiltonian (= total energy)

$$\frac{d\mathcal{H}}{dt} = \frac{\partial\mathcal{H}}{\partial t}$$
$$= -\frac{1}{2}\sum_{i=1}^{N}\frac{p_i^2}{m_i}\frac{2\dot{a}}{a^3} + \frac{1}{2}\frac{2\dot{a}}{a^2}\iiint_{\text{Box}}(\rho(\vec{x}) - \overline{\rho})\Phi(\vec{x})d^3x$$
$$= -\frac{\dot{a}}{a}(2T + U)$$

$$\implies 0 = \frac{d(T+U)}{dt} + \frac{\dot{a}}{a} (2T+U)$$

$$C = (T + U)_{t} - (T + U)_{t_{\text{init}}} + \int_{t_{\text{init}}}^{t} \frac{1}{a}(2T + U)da$$

- Layzer-Irvine energy conservation
 - Hamiltonian (= total energy)

$$\frac{d\mathcal{H}}{dt} = \frac{\partial\mathcal{H}}{\partial t}$$
$$= -\frac{1}{2}\sum_{i=1}^{N}\frac{p_i^2}{m_i}\frac{2\dot{a}}{a^3} + \frac{1}{2}\frac{2\dot{a}}{a^2}\iiint_{\text{Box}}(\rho(\vec{x}) - \overline{\rho})\Phi(\vec{x})d^3x$$
$$= -\frac{\dot{a}}{a}(2T + U)$$

$$\implies 0 = \frac{d(T+U)}{dt} + \frac{\dot{a}}{a} \underbrace{(2T+U)}_{}$$

= 0 ?! (virial theorem)

$$C = (T + U)_{t} - (T + U)_{t_{\text{init}}} + \int_{t_{\text{init}}}^{t} \frac{1}{a}(2T + U)da$$

- Zel'dovich wave
 - analytic representation 1D

$$x = q + \frac{a(t)}{k}\cos(kq)$$

- Zel'dovich wave
 - analytic representation 1D

$$x = q + \frac{a(t)}{k}\cos(kq)$$
$$\dot{x} = \frac{\dot{a}(t)}{k}\cos(kq)$$

- Zel'dovich wave
 - analytic representation 1D

$$x = q + \frac{a(t)}{k}\cos(kq)$$
$$\dot{x} = \frac{\dot{a}(t)}{k}\cos(kq)$$

check rms errors as function of k and a

- the time integration
 - how to verify the time integration scheme?
- stationary problems
 - how accurate is the Poisson solver?
- evolutionary problems
 - how do both act together?
- code cross-comparison
- convergence studies

CODE COMPARISON

- GADGET-1

http://www.mpa-garching.mpg.de/gadget

- fully particle based force derivation
- combining distant particles into aggregates (i.e. tree code)

• AMIGA

http://www.aip.de/People/Aknebe/AMIGA

- fully grid based force derivation
- places finer and finer grids of arbitrary shape in high density regions (i.e. AMR code)

- HYDRA/AP³M

http://hydra.mcmaster.ca/hydra

- combination of particle and grid based force derivation
- no refined grids, no tree structures

- Λ CDM simulation run with various codes
 - identical initial conditions
 - comparable parameter setup

- Λ CDM simulation run with various codes
 - identical initial conditions
 - comparable parameter setup

COMPUTATIONAL COSMOLOGY

- Λ CDM simulation run with various codes
 - identical initial conditions
 - comparable parameter setup

- Λ CDM simulation run with various codes
 - identical initial conditions
 - comparable parameter setup

more recent comparison by Heitmann et al. (2005)...

CODE COMPARISON

CODE COMPARISON

• "Santa Barbara Cluster" (Frenck et al. 1999)

Heitmann et al. (2005)

• "Santa Barbara Cluster" (Frenck et al. 1999)

- mass segregation
 - run simulation with 2 mass species and check for segregation

CODE COMPARISON

major differences

- tree codes: spatially fixed force resolution
- AMR codes spatially adaptive force resolution

 \checkmark resolve the local inter-particle separation at all times and at all places

... nor more, no less!

 \checkmark particles are "phase-space" markers rather than interacting "billiard balls"

- the time integration
 - how to verify the time integration scheme?
- stationary problems
 - how accurate is the Poisson solver?
- evolutionary problems
 - how do both act together?
- code cross-comparison
- convergence studies
| CODE | <i>TESTING</i> |
|------|-----------------------|
|------|-----------------------|

stability and credibility of (scientific) results...

CREDIBILITY OF RESULTS

• the relation between...

 \rightarrow particle number, time step and softening?

in-depth study by Power et al., MNRAS 338, 14 (2003)

CREDIBILITY OF RESULTS

CREDIBILITY OF RESULTS

CODE TESTING

CREDIBILITY OF RESULTS

CREDIBILITY OF RESULTS

CONVERGENCE STUDY

• the relation between...

 \rightarrow particle number, time step and softening?

convergence study:

run the same simulation again and again gradually varying one of the technical parameters...

in-depth study by Power et al., MNRAS 338, 14 (2003)

particle number

we aim at solving the collisionless Boltzmann equation using particles as phase-space markers¹...

...and hence their dynamics should be determined by the mean field and not two-body interactions!

¹cf. "The N-Body Approach" lecture...

particle number

we aim at solving the collisionless Boltzmann equation using particles as phase-space markers¹...

...and hence their dynamics should be determined by the mean field and not two-body interactions!

how can we be sure to use enough particles in this approach?

¹cf. "The N-Body Approach" lecture...

CONVERGENCE STUDY

particle number

CONVERGENCE STUDY

particle number

particle number

particle number

density profile of individual dark matter halo

particle number

particle number

density profile of individual dark matter halo

- collisional relaxation
 - relaxation time

"When a finite number of particles is used to represent a system, individual particle accelerations will inevitably deviate from the mean-field value when particles pass close each other." (Power et al. 2003)

collisional relaxation

• relaxation time

"When a finite number of particles is used to represent a system, individual particle accelerations will inevitably deviate from the mean-field value when particles pass close each other." (Power et al. 2003)

$$\frac{t_{relax}}{t_{cross}} \approx \frac{N(< r)}{8\ln(r/\varepsilon)} \approx \frac{N}{8\ln N}$$

- collisional relaxation
 - relaxation time

"When a finite number of particles is used to represent a system, individual particle accelerations will inevitably deviate from the mean-field value when particles pass close each other." (Power et al. 2003)

$$\frac{t_{relax}}{t_{cross}} \approx \frac{N(< r)}{8\ln(r/\varepsilon)} \neq \frac{N}{8\ln N}$$

 $t_{cross} = r/v$

number of encounters required to change a particle's velocity by of order itself... (cf. Binney & Tremaine 1987)

collisional relaxation

• relaxation time

"When a finite number of particles is used to represent a system, individual particle accelerations will inevitably deviate from the mean-field value when particles pass close each other." (Power et al. 2003)

$$\frac{t_{relax}}{t_{cross}} \approx \frac{N(< r)}{8\ln(r/\varepsilon)} \approx \frac{N}{8\ln N}$$
$$\frac{r}{\varepsilon} \approx \frac{rv^2}{Gm} \approx \frac{r\frac{GNm}{r}}{Gm} \approx N$$

a close encounter ε entails $\Delta v \approx v$

collisional relaxation

• relaxation time

"When a finite number of particles is used to represent a system, individual particle accelerations will inevitably deviate from the mean-field value when particles pass close each other." (Power et al. 2003)

$$\frac{t_{relax}}{t_{cross}} \approx \frac{N(< r)}{8\ln(r/\varepsilon)} \approx \frac{N}{8\ln N}$$

 \Rightarrow the relaxation time t_{relax} should exceed the age of the Universe t_0 :

$$t_{relax}(r,N,\varepsilon) \ge 0.6t_0$$

• empirically derived relations meeting this requirement:

• choose gravitational softening to ensure $a_{2body} < a_{meanfield}$

$$\varepsilon \approx 4 \times \frac{R_{vir}}{\sqrt{N_{vir}}}$$

• regard those regions as converged where the circular orbit time-scales exceeds

$$t_{circ}(r_{converged}) > 15 \times \left(\frac{\Delta t}{t_0}\right)^{5/6} t_{circ}(R_{vir})$$
$$\frac{\Delta t}{t_0} = \frac{1}{N_{steps}}$$

CONVERGENCE STUDY

• do trustworthy science...

