Alexander Knebe, Universidad Autonoma de Madrid

Adaptive Mesh Refinement

Poisson's equation

$$\Delta \Phi(\vec{x}) = 4\pi G \rho(\vec{x})$$

 $\vec{F}(\vec{x}) = -m\nabla\Phi(\vec{x})$

 $\Delta \Phi(\vec{x}) = 4\pi G \rho(\vec{x})$

 $\vec{F}(\vec{x}_i) = -\sum_{i \neq j} \frac{Gm_i m_j}{(x_i - x_j)^3} (\vec{x}_i - \vec{x}_j)$ $\frac{\text{grid approach}}{\Delta \Phi(\vec{x}_{i,j,k})} = 4\pi G\rho(\vec{x}_{i,j,k})$ $\vec{F}(\vec{x}_{i,j,k}) = -m \nabla \Phi(\vec{x}_{i,j,k})$

particle approach

 $\vec{F}(\vec{x}) = -m\nabla\Phi(\vec{x})$ $\Delta\Phi(\vec{x}) = 4\pi G\rho(\vec{x})$ $\frac{\text{particle approach}}{\vec{F}(\vec{x}_i) = -\sum_{i \neq j} \frac{Gm_i m_j}{(x_i - x_j)^3} (\vec{x}_i - \vec{x}_j)$ $\frac{\text{grid approach}}{\vec{F}(\vec{x}_{i,j,k}) = 4\pi G\rho(\vec{x}_{i,j,k})}$ $\frac{F(\vec{x}_{i,j,k}) = 4\pi G\rho(\vec{x}_{i,j,k})}{\vec{F}(\vec{x}_{i,j,k}) = -m\nabla\Phi(\vec{x}_{i,j,k})}$

weapon of choice: AMR codes

Particle-Mesh (PM) method

$$\Delta \Phi(\vec{g}_{k,l,m}) = 4\pi G \rho(\vec{g}_{k,l,m})$$

$$\vec{F}(\vec{g}_{k,l,m}) = -m\nabla\Phi(\vec{g}_{k,l,m})$$

 $\vec{x}_i \rightarrow \rho(\vec{g}_{k,l,m})$ I. calculate mass density on grid $\Phi(\vec{g}_{k,l,m})$ 2. solve Poisson's equation on grid 3. differentiate potential to get forces $F(g_{k,l,m})$ 4. interpolate forces back to particles

$$\vec{F}(\vec{a})$$

$$\vec{F}(\vec{g}_{k,l,m}) \rightarrow \vec{F}(\vec{x}_i)$$

- mesh refinements
- adaptive mesh refinement
- adaptive mesh refinement for N-body codes
- handling irregular grids
- adaptive leap-frog integration

mesh refinements

- adaptive mesh refinement
- adaptive mesh refinement for N-body codes
- handling irregular grids
- adaptive leap-frog integration

types of mesh refinement

- *r* refinement: move or stretch the mesh
- *p* refinement: adjust the order of the method
- *h* refinement: change the mesh spacing

- types of mesh refinement r refinement
 - non-uniform mesh
 - = advantages:
 - simple to implement
 - = disadvantages:
 - difference expression for non-constant zone spacing

				COSMOS code (Ricker 2000)

COMPUTATIONAL COSMOLOGY

(refined region is known)

types of mesh refinement – r refinement

- Lagragian mesh
 - = advantages:
 - constant mass resolution
 - sharp resolution of contacts
 - = disadvantages:
 - grid stretching causes numerical dissipation
 - grid tangling in rotational flows

MMH code (Pen 1998)

COMPUTATIONAL COSMOLOGY

(mesh is tied to fluid)

- types of mesh refinement r refinement
 - arbitrary Lagrangian-Eulerion mesh
 - = advantages:
 - Lagrangian mesh where flow is irrotational
 - Eulerian where mesh distortion is problematic
 - = disadvantages:
 - difficult to handle...

(mesh moves arbitrarily fluid)

DJEHUTY code (Dearborn et al. 2002)

■ types of mesh refinement – *p* refinement

not in this course...

- types of mesh refinement *h* refinement
 - nested grids

(static meshes with different resolutions)

- = advantages:
 - easy to handle boundaries between meshes
- = disadvantages:
 - refined region should not move

- types of mesh refinement *h* refinement
 - adaptive mesh refinement

(refined patches are created and destroyed as needed)

- = advantages:
 - fully flexible to problem
- = disadvantages:
 - serious book-keeping for grid hierarchy

density field of simulated galaxy cluster

AMIGA code (Doumler & Knebe 2010)

adaptive grid hierarchy

mesh refinements

• adaptive mesh refinement

- adaptive mesh refinement for N-body codes
- handling irregular grids
- adaptive leap-frog integration

Adaptive Mesh Refinement

- adaptive mesh refinement refinement criterion
 - density

• truncation error

• physics

- adaptive mesh refinement refinement criterion
 - density ID density distribution

- adaptive mesh refinement refinement criterion
 - density ID density distribution

- adaptive mesh refinement refinement criterion
 - density:
 - refine regions of high density

• truncation error:

• physics:

- adaptive mesh refinement refinement criterion
 - density:
 - refine regions of high density

- refine regions of large truncation errors

$$R_{k,l,m}^{i} = \Delta \Phi_{k,l,m}^{i} - \rho_{k,l,m} \leq \varepsilon T_{k,l,m} \quad \text{with} \quad T_{k,l,m} = \mathcal{P} \Big[\Delta \Big(\mathcal{R} \Phi_{k,l,m}^{i} \Big) \Big] - \Big(\Delta \Phi_{k,l,m}^{i} \Big) \Big]$$

• physics:

- adaptive mesh refinement refinement criterion
 - density:
 - refine regions of high density

- refine regions of large truncation errors

$$R_{k,l,m}^{i} = \Delta \Phi_{k,l,m}^{i} - \rho_{k,l,m} \leq \varepsilon T_{k,l,m} \quad \text{with} \quad T_{k,l,m} = \mathcal{P}\left[\Delta \left(\mathcal{R} \Phi_{k,l,m}^{i}\right)\right] - \left(\Delta \Phi_{k,l,m}^{i}\right)$$

• physics:

- compare grid spacing against local critical wavelength

$$\Delta x < \varepsilon \lambda$$

with

 $\lambda = c_s \sqrt{\frac{\pi}{G\rho}}$

- mesh refinements
- adaptive mesh refinement
- adaptive mesh refinement for N-body codes
- handling irregular grids
- adaptive leap-frog integration

- mesh refinements
- adaptive mesh refinement

• adaptive mesh refinement for N-body codes

- gravity
- generating refinements
- density assignment
- solving Poisson's equation
- handling irregular grids
- adaptive leap-frog integration
- mesh refinements
- adaptive mesh refinement
- adaptive mesh refinement for N-body codes
 gravity
 - generating refinements
 - density assignment
 - solving Poisson's equation
- handling irregular grids
- adaptive leap-frog integration

gravity tends to clump matter together...

...and gain a factor of 2 in accuracy (in regions of interest)

gravity tends to clump matter together...

gravity tends to clump matter together...

gravity tends to clump matter together...

- mesh refinements
- adaptive mesh refinement
- adaptive mesh refinement for N-body codes
 - gravity
 - generating refinements
 - density assignment
 - solving Poisson's equation
- handling irregular grids
- adaptive leap-frog integration

- generating refinements
 - *N*-body simulations:

number of particles per cell

x X X X	x x	x x x x
x x x x x	x x x x x x x x x x x x x x x x x x	x x x x x
x x x x	x x x x	x x
refinement criterion: 6 particles/cell		

AMR for N-body

- generating refinements
 - *N*-body simulations:

number of particles per cell

x X X X	x x	x x x x
loop through given grid		
generating refinement by checking each individual cell		
x	X	
x x x	x x x	x x
x	x	

refinement criterion: 6 particles/cell

- generating refinements
 - *N*-body simulations:

number of particles per cell

- generating refinements
 - *N*-body simulations:

number of particles per cell

x x x x	x	x	x x	x x
x x x x x	x x x x x x x x	x x x x x x	x x	x x x
x x x x	x x x	x	х	x
refinement criterion: 6 particles/cell				

- generating refinements
 - *N*-body simulations:

number of particles per cell

x X X X	x x	x x x x
x x x x x	x x x x x x x x x x x x	x x x x x
x x x x	x x x x	x x
refinement criterion: 6 particles/cell		

- generating refinements
 - *N*-body simulations:

number of particles per cell

x X X X	x x	x x x x
x x x x x	$\begin{array}{c c} x & x \\ x & x \\ \hline x & x \\ x \\ x \\ x \\ x \\ \end{array} \begin{array}{c} x \\ x $	x x x x x
x x x x	x x x x	x x
refinement criterion: 6 particles/cell		

- generating refinements
 - *N*-body simulations:

number of particles per cell

x X X X	x x	x x x x
x x x x x	x x x x x x x x x x x x x x x x x x x	x x x x x
x x x x	x x x x	x x
refinement criterion: 6 particles/cell		

AMR for N-body

- generating refinements
 - *N*-body simulations:

refinement criterion: 6 particles/cell

AMR for N-body

- generating refinements
 - *N*-body simulations:

number of particles per cell

x x x x	x x	x x x x
x x x x x	x x	x x x x x
x x x x	x x x x	x x
refinement criterion: 6 particles/cell		

Note:

in this scheme we split the volume of a coarse cell into eight equal sub-cells...

=> non-cospatial scheme!

AMR for N-body

- generating refinements
 - interpolation between grids:

 $f(x_i) = F(x_i) + F'(x_i)\Delta x$

F = value on coarse grid f = value on fine grid

AMR for N-body

- generating refinements
 - interpolation between grids:

$$f(x_i) = F(x_i) + F'(x_i)\Delta x$$

non-cospatial

- mesh refinements
- adaptive mesh refinement

• adaptive mesh refinement for N-body codes

- gravity
- generating refinements
- density assignment
- solving Poisson's equation
- handling irregular grids
- adaptive leap-frog integration

AMR for N-body

density assignment (co-spatial scheme)

- density assignment (co-spatial scheme)
 - steps required to get density correct on both coarse and fine grid...
 - I. transfer particles from coarse to fine grid
 - 2. assign "coarse" particles to coarse grid
 - 3. assign "fine" particles to refinement grid
 - 4. temporarily store "borderline" density
 - 5. inject refinement density to coarse grid
 - 6. add "borderline" density to refinement

- density assignment (co-spatial scheme)
 - steps required to get density correct on both coarse and fine grid...

I. transfer particles from coarse to fine grid

- 2. assign "coarse" particles to coarse grid
- 3. assign "fine" particles to refinement grid
- 4. temporarily store "borderline" density
- 5. inject refinement density to coarse grid
- 6. add "borderline" density to refinement

density assignment (co-spatial scheme)

• steps required to get density correct on both coarse and fine grid...

I. transfer particles from coarse to fine grid

2. assign "coarse" particles to coarse grid

- 3. assign "fine" particles to refinement grid
- 4. temporarily store "borderline" density
- 5. inject refinement density to coarse grid
- 6. add "borderline" density to refinement

- density assignment (co-spatial scheme)
 - steps required to get density correct on both coarse and fine grid...
 - I. transfer particles from coarse to fine grid
 - 2. assign "coarse" particles to coarse grid
 - 3. assign "fine" particles to refinement grid
 - 4. temporarily store "borderline" density
 - 5. inject refinement density to coarse grid
 - 6. add "borderline" density to refinement

density assignment (co-spatial scheme)

density on refinement grid

assign density on refinement grid...

density on refinement grid

refinement nodes still missing the density contribution from particles outside refinement

- density assignment (co-spatial scheme)
 - steps required to get density correct on both coarse and fine grid...
 - I. transfer particles from coarse to fine grid
 - 2. assign "coarse" particles to coarse grid
 - 3. assign "fine" particles to refinement grid

4. temporarily store "borderline" density

- 5. inject refinement density to coarse grid
- 6. add "borderline" density to refinement

- density assignment (co-spatial scheme)
 - steps required to get density correct on both coarse and fine grid...
 - I. transfer particles from coarse to fine grid
 - 2. assign "coarse" particles to coarse grid
 - 3. assign "fine" particles to refinement grid
 - 4. temporarily store "borderline" density

5. inject refinement density to coarse grid

6. add "borderline" density to refinement

- density assignment (co-spatial scheme)
 - steps required to get density correct on both coarse and fine grid...
 - I. transfer particles from coarse to fine grid
 - 2. assign "coarse" particles to coarse grid
 - 3. assign "fine" particles to refinement grid
 - 4. temporarily store "borderline" density
 - 5. inject refinement density to coarse grid
 - 6. add "borderline" density to refinement

- mesh refinements
- adaptive mesh refinement

• adaptive mesh refinement for N-body codes

- gravity
- generating refinements
- density assignment
- solving Poisson's equation
- handling irregular grids
- adaptive leap-frog integration

AMR for N-body

- adaptive mesh refinement
 - cover simulation with regular domain grid
 - create AMR hierarchy:
 - generate fine grid by comparing each node against some refinement criterion...
 - → recursive procedure!
 - assign density on all grids
 - solve Poisson's equation on regular domain grid (FFT is fastest...)
 - loop over all refinement levels:
 - interpolate potential down from parent level
 - relax potential until converged (keeping boundary values fixed)

 \rightarrow this will give the correct potential on all (refinement) grids

- mesh refinements
- adaptive mesh refinement
- adaptive mesh refinement for N-body codes
- handling irregular grids
- adaptive leap-frog integration

Irregular Grids

handling refinements

Irregular Grids

handling refinements

Irregular Grids

handling irregular grids (2D)

quad's

- store "grid structures" as a consecutive memory block
- each "grid" points to the first yQUAD which in turns gives access to all nodes

handling irregular grids (2D)

quad's

- store "grid structures" as a consecutive memory block
- each "grid" points to the first yQUAD which in turns gives access to all nodes

Irregular Grids

handling irregular grids (3D)

quad's

• C-code example of how to loop over all nodes attached to a "grid"

```
for (zquad=grid.first_zquad; zquad != NULL; zquad=zquad->next) {
    for (yquad=zquad->first_yquad; yquad < yquad->pointer+yquad->length; yquad++)
```

for (iyquad=yquad; iyquad != NULL; iyquad=iyquad->next) {

for (xquad=yquad->first_xquad; xquad < xquad->pointer+xquad->length; xquad++)

```
for (ixquad=xquad; ixquad != NULL; ixquad=ixquad->next) {
    for (node=ixquad->pointer; node < ixquad->x+ixquad->length; node++) {
```

/* the node is at your disposal */

density	= node->density;
potential	= node->potential;

forceX = node->force[X];

for(part=node->first_particle; part != NULL; part=part->next)

/* use particle structure to access particle position, velocity, etc. */ }}}
loc = location of first quad

Irregular Grids

quad's

- handling irregular grids
 - drawback:

no direct access to neighbouring nodes...

(used with Andrey Kravtsov's ART code...)

(used with Andrey Kravtsov's ART code...)

- mesh refinements
- adaptive mesh refinement
- adaptive mesh refinement for N-body codes
- handling irregular grids
- adaptive leap-frog integration

full set of equations

Adaptive Leap-Frog Integration

Adaptive Leap-Frog Integration

move particles on fine grids with smaller time step

to better resolve the dynamics, too!

- moving particles on the AMR hierarchy
 - fully recursive approach:

- moving particles on the AMR hierarchy
 - fully recursive approach:

Drift-Kick-Drift variant of the leap-frog integrator:

time synchronisation between different grid levels rather than "leap-frogging"!

- moving particles on the AMR hierarchy
 - fully recursive approach:

- moving particles on the AMR hierarchy
 - fully recursive approach:

- moving particles on the AMR hierarchy
 - fully recursive approach:

Adaptive Leap-Frog Integration

moving particles on the AMR hierarchy

moving particles on the AMR hierarchy

I. fine grid DKD step:

Drift:
$$\vec{x}^{n+1/4} = \vec{x}^n + \vec{p}^n \int_{t_n}^{t_n + \Delta t/4} dt$$

Kick: $\vec{p}^{n+1/2} = \vec{p}^n - \vec{\nabla} \Phi^{n+1/4} \int_{t_n}^{t_n + \Delta t/2} dt$
Drift: $\vec{x}^{n+1/2} = \vec{x}^{n+1/4} + \vec{p}^{n+1/2} \int_{t_n + \Delta t/4}^{t_n + \Delta t/2} dt$

moving particles on the AMR hierarchy

I. fine grid DKD step:

Drift:
$$\vec{x}^{n+1/4} = \vec{x}^n + \vec{p}^n \int_{t_n}^{t_n + \Delta t/4} dt$$

Kick: $\vec{p}^{n+1/2} = \vec{p}^n - \vec{\nabla} \Phi^{n+1/4} \int_{t_n}^{t_n + \Delta t/2} dt$
Drift: $\vec{x}^{n+1/2} = \vec{x}^{n+1/4} + \vec{p}^{n+1/2} \int_{t_n + \Delta t/4}^{t_n + \Delta t/2} dt$

moving particles on the AMR hierarchy

2. coarse grid DKD step:

Drift:
$$\vec{x}^{n+1/2} = \vec{x}^n + \vec{p}^n \int_{t_n}^{t_n + \Delta t/2} dt$$

Kick: $\vec{p}^{n+1} = \vec{p}^n - \vec{\nabla} \Phi^{n+1/2} \int_{t_n}^{t_n + \Delta t} dt$
Drift: $\vec{x}^{n+1} = \vec{x}^{n+1/2} + \vec{p}^{n+1} \int_{t_n + \Delta t/2}^{t_n + \Delta t} dt$

moving particles on the AMR hierarchy

2. coarse grid DKD step:

Drift:
$$\vec{x}^{n+1/2} = \vec{x}^n + \vec{p}^n \int_{t_n}^{t_n + \Delta t/2} dt$$

Kick: $\vec{p}^{n+1} = \vec{p}^n - \vec{\nabla} \Phi^{n+1/2} \int_{t_n}^{t_n + \Delta t} dt$
Drift: $\vec{x}^{n+1} = \vec{x}^{n+1/2} + \vec{p}^{n+1} \int_{t_n + \Delta t/2}^{t_n + \Delta t} dt$

moving particles on the AMR hierarchy

3. fine grid DKD step:

moving particles on the AMR hierarchy

3. fine grid DKD step:

moving particles on the AMR hierarchy

3. fine grid DKD step:

what about particles crossing grid boundaries?

• particles crossing grid boundaries


```
Step(dt, CurrentGrid) {
   NewGrid = Refine(CurrentGrid);
   if(NewGrid) {
      Step(dt/2, NewGrid); }
   MoveParticles(dt, CurrentGrid);
   if(NewGrid) {
      Step(dt/2, NewGrid);
      DestroyGrid(NewGrid);}
}
```
0.0		AMICA				
	(1) C + Anto://popia.ft.uam.es/AMIC	AMIG/			C Q- Google	2
Dict-EN	Dict-ES Astrov UAMv MADv Bankingv Lif	festyle▼ Mac▼ Mail▼ Mis	c▼ Movies▼ Newspaper	▼ Music▼ Shopping▼ /	AK TV DM Week	
	MIGA - AMIGA					
AMIGA	Documentation Feedback					
			-	Ada	aptive Mesh Investigations	AMIG of Galaxy Assem
					,	,
	1MIGA					
AMIGA wi	become the successor of MLAPMone fine day					
For those h	ave enough to live with some hugs here and there and always	s feel the urge to play with the bet	a versions respectively, are mo	re than welcome to grab a conv	of	
the source	ght here, right now.	sited the arge to play with the bea	a versions, respectively, are mo	e than welcome to grab a copy.		
Please note	that the halo finder AHF is an integral part of the simulation	code AMIGA. Check the documen	tation for more information.			
		<u></u>				
amiga-v0.0	are always the latest beta version					
	(please check the BUILT parameter src/param.h to verify	if you are up-to-date)				
Sample.tq	some LCDM sample simulations					
	(not needed, but very useful)					
If you are o	ing to use AMICA or AUE places register. This is the only u	upu to inform you shout hup fives a	nd other improvements record	ively		
ii you are g	ing to use APILIAR of APIP, please requister. This is the only w	vay to million you about buy rixes a	na ocher improvements, respec	uvery.		
last modi	ed: 03/05/2010 (BUILT 303: added -DDVIR 2008HOCRIT: ch	peck changelog byt for details)				
Last mou		icer <u>changelogick</u> for detailsy				
<u>AMIGA</u> >						