COMPUTATIONAL COSMOLOGY

Alexander Knebe, Universidad Autonoma de Madrid

GENERATING INITIAL CONDITIONS

- **Exercise 2 cosmological principle**
- **Perturbations**
- limitations
- \blacksquare alternatives
- **PERS**
- ! summary

GENERATING INITIAL CONDITIONS

! **cosmological principle**

- **Perturbations**
- limitations
- \blacksquare alternatives
- \blacksquare remarks
- ! summary

Computational Cosmology Generating Initial Conditions 1. create an infinite homogenous and isotropic Universe

GENERATING INITIAL CONDITIONS INFINITE AND HOMOGENEOUS UNIVERSE

GENERATING INITIAL CONDITIONS INFINITE AND HOMOGENEOUS UNIVERSE

infinite (periodic boundary conditions)

Infinite and Homogeneous Universe

infinite (periodic boundary conditions)

Infinite and Homogeneous Universe

infinite (periodic boundary conditions)

GENERATING INITIAL CONDITIONS

Exercise 2 cosmological principle

! **perturbations**

- limitations
- \blacksquare alternatives
- \blacksquare remarks
- ! summary

GENERATING INITIAL CONDITIONS INFINITE AND HOMOGENEOUS UNIVERSE

Superimposing Density Perturbations

Superimposing Density Perturbations

 \blacksquare density contrast:

$$
\delta(\vec{x},t) = \frac{\rho(\vec{x},t) - \overline{\rho}(t)}{\overline{\rho}(t)}
$$

! density contrast:

$$
\widehat{\delta(\vec{x},t)} = \frac{\rho(\vec{x},t) - \overline{\rho}(t)}{\overline{\rho}(t)}
$$

 \Rightarrow decomposition of $\delta(x)$ into waves

Fourier transformation of density contrast

$$
\delta(\vec{x}) = \sum \hat{\delta}(\vec{k}) e^{-i\vec{k}\cdot\vec{x}} \qquad P(k) = \left\langle \left| \hat{\delta}(\vec{k}) \right|^2 \right\rangle_{|\vec{k}|=k}
$$

cosmological P(k)'s?

$$
\delta(\vec{x}) = \sum \hat{\delta}(\vec{k}) e^{-i\vec{k}\cdot\vec{x}} \qquad P(k) = \left\langle \left| \hat{\delta}(\vec{k}) \right|^2 \right\rangle_{|\vec{k}|=k}
$$

\blacksquare inflation theory

$$
P_i(k) = Ak^n \qquad \text{with } n = 1 \text{ (Harrison - Zeldovich spectrum)}
$$

$$
\delta(\vec{x}) = \sum \hat{\delta}(\vec{k}) e^{-i\vec{k}\cdot\vec{x}} \qquad P(k) = \left\langle \left| \hat{\delta}(\vec{k}) \right|^2 \right\rangle_{|\vec{k}|=k}
$$

 \blacksquare inflation theory

$$
P_i(k) = Ak^n \qquad \text{with } n = 1 \text{ (Harrison - Zeldovich spectrum)}
$$

 \blacksquare transferring $P(k)$ across recombination

$$
P(k) = T^2(k)P_i(k)
$$

GENERATING INITIAL CONDITIONS

$$
P(k) = \left\langle \left| \hat{\delta}(\vec{k}) \right|^2 \right\rangle_{|\vec{k}| = k}
$$

$$
\delta(\vec{x}) = \sum \hat{\delta}(\vec{k}) e^{-i\vec{k}\cdot\vec{x}} \qquad P(k) = \left\langle \left| \hat{\delta}(\vec{k}) \right|^2 \right\rangle_{|\vec{k}|=k}
$$

$$
\delta(\vec{x}) = \sum \hat{\delta}(\vec{k}) e^{-i\vec{k}\cdot\vec{x}} \qquad P(k) = \left\langle \left| \hat{\delta}(\vec{k}) \right|^2 \right\rangle_{|\vec{k}|=k}
$$

1. temporal evolution of P(k)

*cf. "structure formation" lecture at http://popia.ft.uam.es/aknebe

$$
\delta(\vec{x}) = \sum \hat{\delta}(\vec{k}) e^{-i\vec{k}\cdot\vec{x}} \qquad P(k) = \left\langle \left| \hat{\delta}(\vec{k}) \right|^2 \right\rangle_{|\vec{k}|=k}
$$

n i • remember linear perturbation theory*:

density contrast:
\n
$$
\frac{\partial \delta}{\partial t} + \frac{1}{a} \nabla \cdot \vec{u} = 0
$$
\nmass conservation
\npeculiar velocity field:
\n
$$
\frac{\partial \vec{u}}{\partial t} + \frac{\dot{a}}{a} \vec{u} = -\frac{1}{a} \nabla \Phi
$$
\nmomentum conservation
\n
$$
\Delta \Phi = 4 \pi G a^2 \overline{\rho} \delta
$$
\nPoisson's equation

*cf. "structure formation" lecture at http://popia.ft.uam.es/aknebe

$$
\delta(\vec{x}) = \sum \hat{\delta}(\vec{k}) e^{-i\vec{k}\cdot\vec{x}} \qquad P(k) = \left\langle \left| \hat{\delta}(\vec{k}) \right|^2 \right\rangle_{|\vec{k}|=k}
$$

n i • remember linear perturbation theory*:

$$
\frac{\partial \delta}{\partial t} + \frac{1}{a} \nabla \cdot \vec{u} = 0
$$
 mass conservation

$$
\frac{\partial \vec{u}}{\partial t} + \frac{\dot{a}}{a} \vec{u} = -\frac{1}{a} \nabla \Phi
$$
 momentum conservation

$$
\Delta \Phi = 4 \pi G a^2 \overline{\rho} \delta
$$
 Poisson's equation

*cf. "structure formation" lecture at http://popia.ft.uam.es/aknebe

$$
\delta(\vec{x}) = \sum \hat{\delta}(\vec{k}) e^{-i\vec{k}\cdot\vec{x}} \qquad P(k) = \left\langle \left| \hat{\delta}(\vec{k}) \right|^2 \right\rangle_{|\vec{k}|=k}
$$

n i • remember linear perturbation theory*:

$$
\frac{\partial^2 \delta}{\partial t^2} + 2 \frac{\dot{a}}{a} \frac{\partial \delta}{\partial t} - 4 \pi G \overline{\rho} \delta = 0
$$
 evolution of matter density

*cf. "structure formation" lecture at http://popia.ft.uam.es/aknebe
$$
\delta(\vec{x}) = \sum \hat{\delta}(\vec{k}) e^{-i\vec{k}\cdot\vec{x}} \qquad P(k) = \left\langle \left| \hat{\delta}(\vec{k}) \right|^2 \right\rangle_{|\vec{k}|=k}
$$

n i • remember linear perturbation theory*:

$$
\frac{\partial^2 \delta}{\partial t^2} + 2 \frac{\dot{a}}{a} \frac{\partial \delta}{\partial t} - 4 \pi G \overline{\rho} \delta = 0
$$
evolution of matter density

$$
\delta(x, t) = D(t) \delta_0(x)
$$

*cf. "structure formation" lecture at http://popia.ft.uam.es/aknebe

$$
\delta(\vec{x}) = \sum \hat{\delta}(\vec{k}) e^{-i\vec{k}\cdot\vec{x}} \qquad P(k) = \left\langle \left| \hat{\delta}(\vec{k}) \right|^2 \right\rangle_{|\vec{k}|=k}
$$

n i • remember linear perturbation theory*:

$$
\frac{\partial^2 \delta}{\partial t^2} + 2 \frac{\dot{a}}{a} \frac{\partial \delta}{\partial t} - 4\pi G \overline{\rho} \delta = 0 \quad \text{evolution of matter density}
$$

$$
\delta(x, t) = D(t)\delta_0(x)
$$

$$
\boxed{P(k) = D^2(t)P_0(k)}
$$

€ *cf. "structure formation" lecture at http://popia.ft.uam.es/aknebe

$$
\delta(\vec{x}) = \sum \hat{\delta}(\vec{k}) e^{-i\vec{k}\cdot\vec{x}} \qquad P(k) = \left\langle \left| \hat{\delta}(\vec{k}) \right|^2 \right\rangle_{|\vec{k}|=k}
$$

2. displacement of particles

*cf. "structure formation" lecture at http://popia.ft.uam.es/aknebe

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

Ansatz based upon the idea to

displace particles from their initial positions on a regular mesh

Superimposing Density Perturbations

! Zel'dovich approximation:

GENERATING INITIAL CONDITIONS

! Zel'dovich approximation:

! Zel'dovich approximation:

$$
\overline{\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})}
$$
\n
$$
D(t) = \frac{\delta(\vec{x},t)}{\delta_0(\vec{x},t_0)}
$$

$$
\frac{\partial^2 D}{\partial t^2} + 2\frac{\dot{a}}{a} \frac{\partial D}{\partial t} - 4\pi G \overline{\rho} D = 0
$$

general solution:

$$
D(t) = \frac{5}{2} \Omega_0 \frac{\dot{a}}{a} \int_{t_0}^t \frac{1}{\dot{a}^2} dt'
$$

Computational Cosmology

€

! Zel'dovich approximation:

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

$$
\dot{\vec{x}} = \dot{D}\vec{S}(\vec{q})
$$

$$
\dot{\vec{x}} = -\frac{1}{a}\vec{u}
$$

derivative of Ansatz

definition of peculiar velocity field

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

$$
\dot{\vec{x}} = \dot{D}\vec{S}(\vec{q})
$$
\n
$$
\dot{\vec{x}} = \frac{1}{a}\vec{u}
$$
\n
$$
\begin{cases}\n\vec{u} = a\dot{D}\vec{S}(\vec{q}) \\
a\n\end{cases}
$$

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

$$
\dot{\vec{x}} = \dot{D}\vec{S}(\vec{q})
$$
\n
$$
\dot{\vec{x}} = \frac{1}{a}\vec{u}
$$
\n
$$
\begin{cases}\n\vec{u} = a\dot{D}\vec{S}(\vec{q}) \\
\frac{\partial \vec{u}}{\partial t} = \dot{a}\dot{D}\vec{S}(\vec{q}) + a\ddot{D}\vec{S}(\vec{q})\n\end{cases}
$$

$$
\frac{\partial u}{\partial t} + \frac{\dot{a}}{a} \vec{u} = -\frac{1}{a} \nabla \Phi
$$

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

$$
\dot{\vec{x}} = \dot{D}\vec{S}(\vec{q})
$$
\n
$$
\dot{\vec{x}} = \frac{1}{a}\vec{u}
$$
\n
$$
\begin{cases}\n\frac{\partial \vec{u}}{\partial t} = \dot{a}\dot{D}\vec{S}(\vec{q}) + \dot{a}\ddot{D}\vec{S}(\vec{q}) \\
\frac{\partial \vec{u}}{\partial t} + \frac{\dot{a}}{a}\dot{a} - \frac{1}{a}\nabla\Phi\n\end{cases}
$$

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

$$
\dot{\vec{x}} = \dot{D}\vec{S}(\vec{q})
$$
\n
$$
\dot{\vec{x}} = \frac{1}{a}\vec{u}
$$
\n
$$
\begin{cases}\n\vec{u} = a\dot{D}\vec{S}(\vec{q}) \\
\frac{\partial \vec{u}}{\partial t} = \dot{a}\dot{D}\vec{S}(\vec{q}) + a\ddot{D}\vec{S}(\vec{q})\n\end{cases}
$$

$$
\dot{a}\dot{D}\vec{S}(\vec{q}) + a\ddot{D}\vec{S}(\vec{q}) + \dot{a}\dot{D}\vec{S}(\vec{q}) = -\frac{1}{a}\nabla\Phi
$$

$$
(2a\dot{a}\dot{D} + a^2\ddot{D})\vec{S}(\vec{q}) = -\nabla\Phi
$$

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

$$
\dot{\vec{x}} = \dot{D}\vec{S}(\vec{q})
$$
\n
$$
\dot{\vec{x}} = \frac{1}{a}\vec{u}
$$
\n
$$
\begin{cases}\n\vec{u} = a\dot{D}\vec{S}(\vec{q}) \\
\frac{\partial \vec{u}}{\partial t} = \dot{a}\dot{D}\vec{S}(\vec{q}) + a\ddot{D}\vec{S}(\vec{q})\n\end{cases}
$$

• linear perturbation theory in comoving coordinates

$$
\ddot{D} + 2\frac{\dot{a}}{a}\dot{D} - 4\pi G \overline{\rho}D = 0
$$
 mass conservation

$$
(2a\dot{a}\dot{D} + a^2\ddot{D})\vec{S}(\vec{q}) = -\nabla\Phi
$$
 momentum conservation

$$
\Delta\Phi = 4\pi G a^2 \overline{\rho}\delta
$$
 Poisson's equation

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

$$
\dot{\vec{x}} = \dot{D}\vec{S}(\vec{q})
$$
\n
$$
\dot{\vec{x}} = \frac{1}{a}\vec{u}
$$
\n
$$
\begin{cases}\n\vec{u} = a\dot{D}\vec{S}(\vec{q}) \\
\frac{\partial \vec{u}}{\partial t} = \dot{a}\dot{D}\vec{S}(\vec{q}) + a\ddot{D}\vec{S}(\vec{q})\n\end{cases}
$$

• linear perturbation theory in comoving coordinates

$$
\begin{array}{c}\n\text{combine to obtain a} \\
\text{relation between } S && \delta \\
\end{array}\n\qquad\n\begin{array}{c}\n\ddot{D} + 2\frac{\dot{a}}{a}\dot{D} - 4\pi G \overline{\rho}D = 0 \qquad \text{mass conservation} \\
(2a\dot{a}\dot{D} + a^2\ddot{D})\vec{S}(\vec{q}) = -\nabla\Phi \qquad \text{momentum conservation} \\
\Delta\Phi = 4\pi G a^2 \overline{\rho}\delta \qquad \text{Poisson's equation}\n\end{array}
$$

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

$$
\dot{\vec{x}} = \dot{D}\vec{S}(\vec{q})
$$
\n
$$
\dot{\vec{x}} = \frac{1}{a}\vec{u}
$$
\n
$$
\begin{cases}\n\vec{u} = a\dot{D}\vec{S}(\vec{q}) \\
\frac{\partial \vec{u}}{\partial t} = \dot{a}\dot{D}\vec{S}(\vec{q}) + a\ddot{D}\vec{S}(\vec{q})\n\end{cases}
$$

• linear perturbation theory in comoving coordinates

$$
\ddot{D} + 2\frac{\dot{a}}{a}\dot{D} - 4\pi G \overline{\rho}D = 0
$$
 mass conservation
\n
$$
(2a\dot{a}\dot{D} + a^2\ddot{D})\vec{S}(\vec{q}) = -\nabla\Phi
$$
 momentum conservation
\n
$$
\Delta\Phi = 4\pi G a^2 \overline{\rho}\delta
$$
 Poisson's equation

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

$$
\dot{\vec{x}} = \dot{D}\vec{S}(\vec{q})
$$
\n
$$
\dot{\vec{x}} = \frac{1}{a}\vec{u}
$$
\n
$$
\begin{cases}\n\vec{u} = a\dot{D}\vec{S}(\vec{q}) \\
\frac{\partial \vec{u}}{\partial t} = \dot{a}\dot{D}\vec{S}(\vec{q}) + a\ddot{D}\vec{S}(\vec{q})\n\end{cases}
$$

• linear perturbation theory in comoving coordinates

$$
\pi \frac{4\pi G a^2 \overline{\rho} D \overline{S}(\overline{q}) = -\nabla \Phi}{\Delta \Phi = 4\pi G a^2 \overline{\rho} \delta}
$$

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

$$
\dot{\vec{x}} = \dot{D}\vec{S}(\vec{q})
$$
\n
$$
\dot{\vec{x}} = \frac{1}{a}\vec{u}
$$
\n
$$
\begin{cases}\n\vec{u} = a\dot{D}\vec{S}(\vec{q}) \\
\frac{\partial \vec{u}}{\partial t} = \dot{a}\dot{D}\vec{S}(\vec{q}) + a\ddot{D}\vec{S}(\vec{q})\n\end{cases}
$$

• linear perturbation theory in comoving coordinates

$$
4\pi G a^2 \overline{\rho} D \overline{S}(\overline{q}) = -\nabla \Phi
$$

$$
\Delta \Phi = 4\pi \overline{G a^2 \overline{\rho}} \delta
$$

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

$$
\dot{\vec{x}} = \dot{D}\vec{S}(\vec{q})
$$
\n
$$
\dot{\vec{x}} = \frac{1}{a}\vec{u}
$$
\n
$$
\begin{cases}\n\vec{u} = a\dot{D}\vec{S}(\vec{q}) \\
\frac{\partial \vec{u}}{\partial t} = \dot{a}\dot{D}\vec{S}(\vec{q}) + a\ddot{D}\vec{S}(\vec{q})\n\end{cases}
$$

€

• linear perturbation theory in comoving coordinates

$$
D\vec{S}(\vec{q}) = -\nabla\Psi
$$

$$
\Delta\Psi = \delta
$$

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

$$
\dot{\vec{x}} = \dot{D}\vec{S}(\vec{q})
$$
\n
$$
\dot{\vec{x}} = \frac{1}{a}\vec{u}
$$
\n
$$
\begin{cases}\n\vec{u} = a\dot{D}\vec{S}(\vec{q}) \\
\frac{\partial \vec{u}}{\partial t} = \dot{a}\dot{D}\vec{S}(\vec{q}) + a\ddot{D}\vec{S}(\vec{q})\n\end{cases}
$$

€

• linear perturbation theory in comoving coordinates

$$
\vec{S}(\vec{q}) = -\nabla\Psi
$$

$$
\Delta\Psi = \frac{\delta}{D}
$$

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

$$
\dot{\vec{x}} = \dot{D}\vec{S}(\vec{q})
$$
\n
$$
\dot{\vec{x}} = \frac{1}{a}\vec{u}
$$
\n
$$
\begin{cases}\n\vec{u} = a\dot{D}\vec{S}(\vec{q}) \\
\frac{\partial \vec{u}}{\partial t} = \dot{a}\dot{D}\vec{S}(\vec{q}) + a\ddot{D}\vec{S}(\vec{q})\n\end{cases}
$$

€

• linear perturbation theory in comoving coordinates

$$
\vec{S}(\vec{q}) = -\nabla\Psi
$$

$$
\Delta\Psi = \delta_0
$$

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

r n • linear perturbation theory in comoving coordinates

$$
\vec{q} =
$$
 Lagrangian position (i.e. the grid)

$$
D(t) = \frac{5}{2} \Omega_0 \frac{\dot{a}}{a} \int_{t_0}^{t} \frac{1}{\dot{a}^2} dt'
$$

$$
\vec{S}(\vec{q}) = -\nabla \Psi
$$

$$
\Delta \Psi = \delta_0
$$

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

r n • linear perturbation theory in comoving coordinates

$$
\vec{q} = \text{Lagrangian position (i.e. the grid)}
$$

\n
$$
D(t) = \frac{5}{2} \Omega_0 \frac{\dot{a}}{a} \int_{t_0}^{t} \frac{1}{\dot{a}^2} dt'
$$

\n
$$
\vec{S}(\vec{q}) = -\nabla \Psi
$$

\n
$$
\Delta \Psi = \delta_0
$$

\n
$$
\Delta \text{ relate } \delta_0 \text{ (and hence S) to } P_0(k)
$$

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

$$
\vec{S}(\vec{q}) = -\nabla \Psi(\vec{q})
$$

$$
\Delta \Psi = \delta_0 \qquad \qquad \Rightarrow \text{ potential theory tells us:} \qquad \qquad \text{ (proof follows later!)}
$$

€

$$
\Delta \Psi = \rho
$$

$$
\Delta G = \delta_{Dirac}
$$

$$
\Rightarrow \hat{\Psi} = \hat{\rho} \hat{\mathcal{G}} \quad \text{with } \hat{\mathcal{G}} = \frac{1}{k^2}
$$

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

$$
\vec{S}(\vec{q}) = -\nabla \Psi(\vec{q})
$$

 $\Delta \Psi = \delta_0 \qquad \Rightarrow$ potential theory tells us:

$$
\Rightarrow \hat{\Psi} = \hat{\delta}_0 \left(k \right) \frac{1}{k^2}
$$

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

$$
\vec{S}(\vec{q}) = -\nabla \Psi(\vec{q})
$$

 $\Delta \Psi = \delta_0 \qquad \Rightarrow$ potential theory tells us:

$$
\Rightarrow \hat{\Psi} = \hat{\delta}_0 (k) \frac{1}{k^2}
$$

$$
\hat{\delta}_0 (k) = \sqrt{P_0 (k)} R_{\vec{k}} e^{i\varphi_{\vec{k}}}
$$

$$
R_{\vec{k}} e^{i\varphi_{\vec{k}}}=R_1 + iR_2
$$

$$
R_1, R_2 = \text{Gaussian random numbers with mean zero and dispersion unity}
$$

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

• in practice…

$$
\vec{q} = \text{regular grid, i.e. } q_{k,l,m}
$$

$$
D = \frac{5}{2} \Omega_0 \frac{\dot{a}}{a} \int_{t_0}^t \frac{1}{\dot{a}^2} dt'
$$

$$
\vec{S}(\vec{q}) = -\nabla \Psi(\vec{q})
$$

 $D(t)$: determines the initial redshift of the simulation

*S***(***q***): determines the direction of displacement**

$$
\Psi(\vec{q}) = FFT^{-1}(\hat{\Psi}(\vec{k}))
$$

$$
\hat{\Psi} = \hat{\delta}_0 (k) \frac{1}{k^2}
$$

$$
\hat{\delta}_0 (k) = \sqrt{P_0(k)} R_{\vec{k}} e^{i\varphi_{\vec{k}}}
$$

$$
R_{\vec{k}} e^{i\varphi_{\vec{k}}}= R_1 + iR_2
$$

$$
R_1, R_2 = \text{Gauss}(0,1)
$$

Computational Cosmology

 \overline{a}

€

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

• in practice… convenient re-shuffling of terms

GENERATING INITIAL CONDITIONS

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + \vec{s}(\vec{q})
$$

• in practice…convenient re-shuffling of terms

 \vec{r} refuler \vec{q} = regular grid, i.e. $q_{_{k,l,m}}$

```
\ddot{\phantom{0}}\rightarrows (
                      \rightarrow\vec{q}) = -\nabla \psi(
                                                \rightarrowq )
                                                                                                                         R_{1}\psi(\rightarrow\vec{q}) = FFT^{-1}(\hat{\psi})\rightarrowk ))
                                                                                                                                    \hat{\psi} = \hat{\delta} (k) \frac{1}{\sqrt{2}}k<sup>2</sup>\hat{\delta}(k) = \sqrt{P(k)} R_{\vec{k}} e^{i\varphi_{\vec{k}}}R_{\vec{k}}e^{i\varphi_{\vec{k}}}=R_1 + iR_2P(k) = power spectrum at initial redshift of simulation R_1, R_2 = Gauss(0,1)
```
Superimposing Density Perturbations

! Zel'dovich approximation:

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

! Zel'dovich approximation:

$$
\overline{\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})}
$$

Superimposing Density Perturbations

- ! Zel'dovich approximation:
	- positions

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

• velocities

$$
\vec{\dot{x}}(t) = \dot{D}(t)\vec{S}(\vec{q})
$$

 \blacksquare 2nd order Lagrangian perturbation theory

$$
\vec{x}(t) = \vec{q} + D(a)S(\vec{q}) - D^{(2)}S^{(2)}(\vec{q})
$$

GENERATING INITIAL CONDITIONS

- **Exercise 2 cosmological principle**
- **Perturbations**
- ! **limitations**
- \blacksquare alternatives
- **PERS**
- ! summary

these choices are not free but interwoven…
- ! generating IC's in practice
	- wavenumber limitation

Computational Cosmology $\tilde{}$

 \blacksquare why h^{-1} Mpc ?

$$
\rho = \frac{N m_{sim}}{B^3} = \Omega_0 \rho_{crit,0} = \Omega_0 \frac{3H_0^2}{8\pi G} = \Omega_0 \frac{3 \cdot (100h^2)}{8\pi G}
$$

$$
\Rightarrow m_{sim} = \Omega_0 \frac{300h^2}{8\pi G} \frac{B^3}{N}
$$

$$
\Rightarrow \quad h m_{sim} = \Omega_0 \frac{300}{8 \pi G} \frac{(hB)^3}{N}
$$

$$
\Rightarrow \quad \tilde{m}_{sim} = \Omega_0 \frac{300}{8\pi G} \frac{\tilde{B}^3}{N}
$$

distances and masses have to be divided by h to get physical values...

- ! generating IC's in practice
	- linearity constraint on box size

$$
\delta(\vec{x},t) = \frac{\rho(\vec{x},t) - \overline{\rho}(t)}{\overline{\rho}(t)} \quad \propto \quad D(t) \qquad \Rightarrow \qquad \boxed{P(k,t) \propto D^2(t)}
$$

- linear perturbation theory (again…)

$$
D(t) = \frac{5}{2} \Omega_0 \frac{\dot{a}}{a} \int_{t_0}^{t} \frac{1}{\dot{a}^2} dt'
$$

$$
D(a) \approx \frac{5a}{2} \Omega_m \bigg[\Omega_m^{4/7} - \Omega_\Lambda + \bigg(1 + \frac{\Omega_m}{2} \bigg) \bigg(1 + \frac{\Omega_\Lambda}{70} \bigg) \bigg]^{-1}
$$

(*D(a)* = *a* for SCDM)

Computational Cosmology

€

- ! generating IC's in practice
	- linearity constraint on box size

- ! generating IC's in practice
	- linearity constraint on box size

$$
\delta(\vec{x},t) = \frac{\rho(\vec{x},t) - \overline{\rho}(t)}{\overline{\rho}(t)} \quad \propto \quad D(t) \qquad \Rightarrow \qquad \boxed{P(k,t) \propto D^2(t)}
$$

• mass variance

$$
\langle \delta(\vec{x}) \rangle = \left\langle \frac{\rho(\vec{x}) - \overline{\rho}}{\overline{\rho}} \right\rangle = \frac{\langle \rho(\vec{x}) \rangle - \overline{\rho}}{\overline{\rho}} = 0
$$

$$
\sigma_M^2 = \sum_{\vec{k}} \left\langle \left| \hat{\delta}(\vec{k}) \right|^2 \right\rangle_{|\vec{k}| = k} \longrightarrow \frac{1}{(2\pi)^3} \iiint P(k) d^3k = \frac{1}{2\pi^2} \int_0^\infty P(k) k^2 dk
$$

- ! generating IC's in practice
	- linearity constraint on box size

$$
\delta(\vec{x},t) = \frac{\rho(\vec{x},t) - \overline{\rho}(t)}{\overline{\rho}(t)} \quad \propto \quad D(t) \qquad \Rightarrow \qquad \boxed{P(k,t) \propto D^2(t)}
$$

- linearly extrapolate $P(k)$ to $z = 0 \implies P(k, z=0)$

- iteratively determine
$$
k_{\text{nl}}
$$
 via $1 = \frac{1}{2\pi^2} \int_0^{k_{\text{nl}}} P(k, z = 0) k^2 dk$

 $-$ set $B \geq 2\pi/k_{\rm nl}$

- ! generating IC's in practice
	- linearity constraint on box size

$$
\delta(\vec{x},t) = \frac{\rho(\vec{x},t) - \overline{\rho}(t)}{\overline{\rho}(t)} \quad \propto \quad D(t) \qquad \Rightarrow \qquad \boxed{P(k,t) \propto D^2(t)}
$$

- linearly extrapolate $P(k)$ to $z = 0 \implies P(k, z=0)$

note: $P(k, z=0)$ is tabulated in the provided files

- iteratively determine
$$
k_{\text{nl}}
$$
 via $1 = \frac{1}{2\pi^2} \int_0^{k_{\text{nl}}} P(k, z = 0) k^2 dk$

 $-$ set $B \geq 2\pi/k_{\rm nl}$

 $B \ge 20$ *h*⁻¹Mpc for ΛCDM

- ! generating IC's in practice
	- initial redshift not too late, not too early

$$
\vec{x}(t) = \vec{q} + D(t)\vec{S}(\vec{q})
$$

- ! generating IC's in practice
	- initial redshift not too late, not too early

$$
\sigma_{\text{Box}}^2(a_i) = \frac{1}{2\pi^2} \int_{2\pi/B}^{\pi/(B/\sqrt[3]{N})} P_i(k) k^2 dk
$$

$$
P_i(k) = \frac{D(a_i)}{D(a=1)} P(k, z=0)
$$

$$
\sigma_{\text{Box}}(a_i) \le 0.1 - 0.2
$$

<u>Note:</u> PMmodels.f returns $\sigma_{\rm Box}$ for the initial (trial) redshift \rightarrow iteratively change z_i until criterion satisfied...

- ! generating IC's in practice
	- initial redshift not too late, not too early

! problems with this method of generating IC's?

$$
\sigma_M^2(r) = \frac{1}{2\pi^2} \int_0^\infty P_i(k)\hat{W}(kr)k^2 dk
$$

$$
\hat{W}(x) = \frac{3}{x^3} (\sin x - x \cos x)
$$

- **Exercise 2 cosmological principle**
- **Perturbations**
- l limitations
- ! **alternatives**
- **PERS**
- ! summary

 \blacksquare alternative - Glass IC's

"Grid" IC's "Glass" IC's

GENERATING INITIAL CONDITIONS **ALTERNATIVES**

E alternative - Glass IC's

• random positions for *N* particles

• evolve them forward in time under their mutual gravity (i.e. *N*-body code), but: reverse the sign of gravity!

• use this "Glass" as Lagrangian positions *q* for Zel'dovich approximation

ALTERNATIVES

ALTERNATIVES

 \blacksquare alternative - Glass IC's

ALTERNATIVES

 \blacksquare alternative - Glass IC's

- **Exercise 2 cosmological principle**
- **Perturbations**
- l limitations
- \blacksquare alternatives
- ! **remarks**
- ! summary

sampling variance

 $\overline{}$ $\overline{\vec{x}(t)} = \vec{q} + D(t)$ $\frac{1}{2}$ *S* ($\overline{}$ $\vec{q})$

sampling variance

 \overline{a} € $\hat{\delta}(k) = \sqrt{P(k)} R_{\vec{k}} e^{i\varphi_{\vec{k}}}$ $R_{\vec{k}}e^{i\varphi_{\vec{k}}}=R_1 + iR_2$ $\overline{}$ $\ddot{\bullet}$ $\overline{\vec{x}(t)} = \vec{q} + D(t)$ $\frac{1}{2}$ *S* ($\overline{}$ $\vec{q})$ identical parameters (e.g. $P(k)$, N , B , etc.), but different random realisations…

> $\ddot{}$ $\ddot{}$

 \rightarrow

Computational Cosmology

Final Remarks

sampling variance

• effects of the sampling variance…

generate a suite of IC's with different random realisations of R_1 and R_2

sampling variance

• effects of the sampling variance…

…scatter can be as large as 20% for properties of individual objects (Knebe & Dominguez 2003)

! zoom simulations

- run a low resolution simulation
- identify an interesting object
- trace back particles of that object to Lagrangian positions in IC's
- re-sample waves in that area with more particles
- re-run the whole simulation

Example 3 zoom simulations

Example 3 zoom simulations

Example 3 zoom simulations

 $\frac{1}{\sqrt{2}}$

Mpc from boundary

Computational Cosmology

Results – 2048^3

Sphere of radius

! zoom simulations

Visualisation of N-body Simulations

Software:PVIEW http://astronomy.swin.edu.au/PVIEW/

Stuart Gill, Paul Bourke Simulation data by Dr Alexander Knebe

> Astrophysics and Supercomputing Swinburne University
\blacksquare
 Constrained Simulations

$$
\vec{\dot{x}}(t) = \dot{D}(t)\vec{S}(\vec{q})
$$

(Knebe et al. 2009) (Knebe et al. 2009)

GENERATING INITIAL CONDITIONS FINAL REMARKS

\blacksquare
 Constrained Simulations

(Cosmic Flow 2 team, http://www.ipnl.in2p3.fr/projet/cosmicflows)

GENERATING INITIAL CONDITIONS

 \blacksquare
 Constrained Simulations

 $D = \frac{5}{2} \Omega_0 \frac{\dot{a}}{a} \int_{t_0}^{t} \frac{1}{\dot{a}^2} dt'$

COMPUTATIONAL COSMOLOGY

GENERATING INITIAL CONDITIONS

\blacksquare
 Constrained Simulations

http://www.clues-project.org

COMPUTATIONAL COSMOLOGY

GENERATING INITIAL CONDITIONS FINAL REMARKS

! Zel'dovich vs. 2nd order LPT

Computational Cosmology

No. 1, 2009 THE STARTING REDSHIFT FOR COSMOLOGICAL SIMULATIONS 269

GENERATING INITIAL CONDITIONS FINAL REMARKS

! Zel'dovich vs. 2nd order LPT

(A color version of this figure is available in the online journal.)

No. 1, 2009 THE STARTING REDSHIFT FOR COSMOLOGICAL SIMULATIONS 271

COMPUTATIONAL COSMOLOGY Example 20 variant measurement

GENERATING INITIAL CONDITIONS

- **Exercise 2 cosmological principle**
- **Perturbations**
- l limitations
- \blacksquare alternatives
- \blacksquare remarks
- ! **summary**

■ choose cosmological model Λ CDM?!

 $=$ > cosmological power spectrum of density perturbations $P(k)$

 \blacksquare choose box size B • choose number of particles N^3

=> put them down on regular *N*x*N*x*N* grid

 \blacksquare choose starting redshift z_i

 $=$ > use Zel'dovich approximation to displace particles according to $P(k)$

Generating Initial Conditions

■ available codes:

• N-genIC http://www.mpa-garching.mpg.de/gadget • 2LPTic http://cosmo.nyu.edu/roman/2LPT • Panphasia http://icc.dur.ac.uk/Panphasia.php • ginnungagap http://code.google.com/p/ginnungagap • MPgrafic http://www2.iap.fr/users/pichon/mpgrafic.html • PMstartM http://astro.nmsu.edu/~aklypin/PM/pmcode