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Why parallel?

There are generally two (non-exclusive) reasons to search for parallel methods to
solve a problem:

– it takes too long
– expensive computations
– deeply nested loops
– many iterations

– it requires too many resources (→ RAM)
– large data set
– high resolution required

Other reasons may include:
– because we can
– because the problem is inherently parallel (embarrassingly parallel) 
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Architectures

Machine hierarchy:

– core (simplified: can execute a machine instruction per step)
– cache

– CPU (contains one to many cores)
– cache

– node (contains one to many CPUs)
– cache
– main memory
– node local hard disk
– remote hard disks

– rack (contains one to many nodes)

– machine (contains one to many racks)
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Methods

We want:

– one execution path per core, to make full use of the computing capabilities
– the executions paths should be able to exchange information, either explicitly

or implicitly

We can either:
– use one program which spawns multiple execution threads, i.e. every thread

can see the whole memory of the program
or
– use one program (with its own independent address space) per core and have

an inter-process communication method, i.e. we run the same program multiple
times and those copies communicate with each other
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Limits

Shared memory:

– generally limited to work within one node
– cache-coherence issues limit scalability

Distributed memory:

– access to whole memory not directly possible and requires sophisticated
communication schemes

– every connection requires some memory overhead for book-keeping, this can
limit scalability
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OpenMP: What is it?

– API extension to C, C++, and Fortran

– allows for shared memory programming

– based on compiler directives with a small runtime library

– is portable (gcc supports OpenMP)

– retains the sequential version of the code

– supports task and data parallelism

– Current Version: 3.0 (not yet supported in all compilers)

– Main web page: www.openmp.org

What it is

Overview OpenMP (short) MPI (short) And even more...

LibraryDirectivesHow to use it
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How to use it

For directives:
– figure out the right compiler switch to allow for parsing of OpenMP pragmas (gcc:

-fopenmp; icc: -openmp)
– add directives at the parts in your code that you want to parallelize

For library:
– use the same compiler switch (it will deal with linking as well)
– include <omp.h> in the source files in which you want to use OpenMP library functions

Running:
– run the code as you would have done
– you can influence the number of threads the code uses at (basically) two positions:

– in the code itself (explicitly setting the number of threads)
– at the command line through environment variables

Good to know:
– If a file is compiled by an OpenMP enabled compiler, the macro _OPENMP is defined,

i.e. you can use that to conditionally compile your code

What it is How to use it
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What it is How to use it
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Directives

Standard way:
– start a parallel region
– perform things in parallel

Example:
– Square matrix multiplication

#define IDX(n, i, j) ((i) * (n) + (j))

extern void
matrix_mulQuad3(const double *a, const double *b,
                double *c, int n)
{

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {

double tmp = 0.0;
for (int k = 0; k < n; k++) {

tmp +=  a[IDX(n, i, k)]
       *b[IDX(n, k, j)];

}
c[IDX(n, i, j)] = tmp;

}
}

}

Library
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#endif
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extern void
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Directives: Constructs

The parallel construct forms a team of threads and starts parallel execution. The
parallel execution ends at the end of the structured block.

#pragma omp parallel [clauses]
structured block

Clauses:
– if (expression)
– num_threads (integer)
– default (shared|none)
– private (list)
– firstprivate (list)
– shared (list)
– copyin (list)
– reduction (operator: list)

What it is How to use it

Overview OpenMP (short) MPI (short) And even more...

Directives Library



  

Directives: Constructs

The loop constructs will cause the iteration to be split among the encountering
team of threads.

#pragma omp for [clauses]
structured block

Clauses:
– private (list)
– firstprivate (list)
– lastprivate (list)
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– schedule (kind[, chunk_size])
– collapse (n)
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– nowait
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Directives: Constructs

The section contains a set of structured blocks that will distributed among the
encountering team of threads.

#pragma omp sections [clauses]
{

#pragma omp section
structured block
#pragma omp section
structured block

}

Clauses:
– private (list)
– firstprivate (list)
– lastprivate (list)
– reduction (operator: list)
– nowait
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Directives: Constructs

Combined directives are a shortcut for defining a single workshare region with no
further parallel parts.

#pragma omp parallel for [clauses]
structured block

#pragma omp parallel sections [clauses]
{

#pragma omp section
structured block
#pragma omp section
structured block

}
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Directives: Constructs

The task construct defines an explicit task.

#pragma omp task [clauses]
structured block

Clauses:
– if (expression)
– untied
– default (shared|none)
– private (list)
– firstprivate (list)
– shared (list)

What it is How to use it
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Directives: Constructs

The critical construct restricts the block to be executed by only one thread at a
time.

#pragma omp critical [(name)]
structured block

The atomic construct ensures that a specific memory location is updated
atomically, i.e. only one write access at a time.

#pragma omp atomic
expression

x = expr
x++
x--
++x
--x

What it is How to use it
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Directives: Clauses

Data sharing clauses

default(shared|none)
Controls the default data sharing of variables that are used in the construct.

shared(list)
Declares the variables in the list to be shared.

private(list)
Declares the variables in the list to be private.

firstprivate(list)
Declares the variables in the list to be private and initializes each of them with the value
that the corresponding original item has when the construct is encountered.

lastprivate(list)
Declares the variables in the list to be private and causes the corresponding original
item to be updated at the end of the region.

reduction(operator:list)
Declares accumulation into the list items using the indicated associative operator.

What it is How to use it
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Declares the variables in the list to be private and causes the corresponding original
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reduction(operator:list)
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Directives: Clauses

Data copying clauses

copyin (list)
Copies the values of the master thread's threadprivate variable to the threadprivate
variable of each other member of the team.

copyprivate(list)
Broadcasts a value from the data environment of one implicit task to the data
environment of the other implicit tasks belonging to the parallel region.
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Directives: Clauses

Schedule types for the loop construct

static
Iterations are divided into chunks of chunk_size and the chunks are assigned to the
tasks in a round-robin fashion in order of the thread number.

dynamic
Each thread executes a chunk of iterations, then requests another chunk, until no
chunks remain.

guided
Each thread executes a chunk of iterations, then requests another chunk until no
chunks remain. The chunk size starts large and shrinks to the indicated chunk_size as
chunks are scheduled.

auto
The decision regarding the scheduling is up to the compiler/runtime.

runtime
The scheduler is set via environment variables.

What it is How to use it
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Library

Useful library functions:

int omp_get_num_threads(void);
Returns the number of threads in the current team.

int omp_get_thread_num(void);
Returns the ID of the encountering threads. IDs range from 0..size-1.

int omp_get_num_procs(void);
Returns the number of processors available to the program.

double omp_get_wtime(void);
Returns elapsed wall clock time in seconds.

double omp_get_wtick(void);
Returns the precision of the timer used by omp_get_wtime.

What it is How to use it
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What it is How to use it Collective communications Point to point communication

MPI: What is it?

– Is a Message Passing Interface standard

– Library for C (C++) and Fortran

– allows for message passing between programs connected in a communication
group

– provides means for
– point to point communication
– collective communication
– one sided communication
– data abstraction

– is portable and available on all relevant clusters

– can run on shared memory machines as well (i.e. on your laptop)

– Different implementations, try www.openmpi.org
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How to use it

– Include <mpi.h> to use the library functions

– Use mpicc (as your CC) as the compiler/linker, it will deal with the right flags to
find the headers and libraries

– You need to initialize the library in your code, before you can use it

– Run your code with mpiexec (it will start multiple copies of your executable and
set up the communication layer between them)
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How to use it

– Include <mpi.h> to use the library functions

– Use mpicc (as your CC) as the compiler/linker, it will deal with the right flags to
find the headers and libraries

– You need to initialize the library in your code, before you can use it

– Run your code with mpiexec (it will start multiple copies of your executable and
set up the communication layer between them)

#include <mpi.h>

int main(int argc, char **argv)
{

MPI_Init(argc, argv);
// Do things
MPI_Finalize();
return EXIT_SUCCESS;

}
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How to use it

– Include <mpi.h> to use the library functions

– Use mpicc (as your CC) as the compiler/linker, it will deal with the right flags to
find the headers and libraries

– You need to initialize the library in your code, before you can use it

– Run your code with mpiexec (it will start multiple copies of your executable and
set up the communication layer between them)

#include <mpi.h>

int main(int argc, char **argv)
{

MPI_Init(argc, argv);
// Do things
MPI_Finalize();
return EXIT_SUCCESS;

}

mpiexec -n 4 ./myCode myParamater1 myParamter2
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How to use it: Blocking vs Non-blocking communication

– Communication generally come in two forms: blocking and non-blocking

– blocking communications
– start a data transfer and do not return until the transfer has been completed

– non-blocking communications
– initiate a communication but return immediately and you need to check yourself when

the data has been transferred

– This mechanism is meant to
– allow overlapping of communication and computation
– prevent dead-locks
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How to use it: Blocking vs Non-blocking communication

– Communication generally come in two forms: blocking and non-blocking

– blocking communications
– start a data transfer and do not return until the transfer has been completed

– non-blocking communications
– initiate a communication but return immediately and you need to check yourself when

the data has been transferred

– This mechanism is meant to
– allow overlapping of communication and computation
– prevent dead-locks

#include <mpi.h>

#define TAG 0

int main(int argc, char **argv)
{

MPI_Status  status;
int         rank, sendTo, recvFrom, recvData;

MPI_Init(argc, argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
recvFrom = sendTo = (rank + 1) % 2;

// This will produce a dead-lock
MPI_Send(&rank, 1, MPI_INT, sendTo, TAG,
         MPI_COMM_WORLD);
MPI_Recv(&recvData, 1, MPI_INT, recvFrom, TAG,
         MPI_COMM_WORLD, &status);

MPI_Finalize();
return EXIT_SUCCESS;

}
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How to use it: Blocking vs Non-blocking communication

– Communication generally come in two forms: blocking and non-blocking

– blocking communications
– start a data transfer and do not return until the transfer has been completed

– non-blocking communications
– initiate a communication but return immediately and you need to check yourself when

the data has been transferred

– This mechanism is meant to
– allow overlapping of communication and computation
– prevent dead-locks

#include <mpi.h>

#define TAG 0

int main(int argc, char **argv)
{

MPI_Request request;
MPI_Status  status;
int         rank, sendTo, recvFrom, recvData;

MPI_Init(argc, argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
recvFrom = sendTo = (rank + 1) % 2;

MPI_IRecv(&recvData, 1, MPI_INT, recvFrom, TAG,
         MPI_COMM_WORLD, &request);
MPI_Send(&rank, 1, MPI_INT, sendTo, TAG,
         MPI_COMM_WORLD);
MPI_Wait(&request, &status);

MPI_Finalize();
return EXIT_SUCCESS;

}
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Collective communications

– Collective communications involve all processes in a communicator (hence all
have to call the collective routine)

– Can be used to
– broadcast values
– reduce values
– synchronize the execution

– Depending on the runtime, collective calls may be optimised (e.g. tree pattern
in communication) and thus faster than their point-to-point equivalents.

Collective communicationsHow to use it
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What it is Point to point communication

Collective communications: Broadcasts

Prototype:

Example:

int
MPI_BCast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm);

Collective communicationsHow to use it
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Collective communications: Broadcasts

Prototype:

Example:

int
MPI_BCast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm);

{
int n;

// Code

if (rank == 0)
n = getDimension();

MPI_BCast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

// More Code
}

Collective communicationsHow to use it
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What it is Point to point communication

Collective communications: Reductions

Prototype:

Example:

int
MPI_Reduce(void *sendBuf, void *recvBuf, int count, MPI_Datatype datatype,
           MPI_Op op, int root, MPI_Comm comm);

Collective communicationsHow to use it
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Collective communications: Reductions

Prototype:

Example:

int
MPI_Reduce(void *sendBuf, void *recvBuf, int count, MPI_Datatype datatype,
           MPI_Op op, int root, MPI_Comm comm);

{
double myRand, sum;

// Code

myRand = getRandomNumber();
sum    = 0.0;

MPI_Reduce(&myRand, &sum, 1, MPI_DOUBLE,
           MPI_SUM, 0, MPI_COMM_WORLD);

// More Code
}

Collective communicationsHow to use it
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Collective communications: Synchronizing

Prototype:

Example:

Collective communicationsHow to use it

int
MPI_Barrier(MPI_Comm comm);
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Collective communications: Synchronizing

Prototype:

Example:

Collective communicationsHow to use it

int
MPI_Barrier(MPI_Comm comm);

{
// Complicated computation

// Wait here until all tasks arrive at that point
MPI_Barrier(MPI_COMM_WORLD);

// Continue doing things 
}
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Point-to-point communications

– Point-to-point communications involve pairs of processes
– one sends
– one receives
– every send needs a receive and every receive needs a send
– beware of dead-locks

– Can be used to
– exchange boundary values
– pass notes
– realize complicated communication patterns
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What it is Point to point communication

Point-to-point communications: Sending

Prototype:

int
MPI_Send(void *sendBuf, int count, MPI_Datatype datatype, int destination,
         int tag, MPI_Comm comm);

int
MPI_ISend(void *sendBuf, int count, MPI_Datatype datatype, int destination,
          int tag, MPI_Comm comm, MPI_Request *request);

Collective communicationsHow to use it
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Point-to-point communications: Receiving

Prototype:

int
MPI_Recv(void *recvBuf, int count, MPI_Datatype datatype, int source,
         int tag, MPI_Comm comm, MPI_Status *status);

int
MPI_IRecv(void *recvBuf, int count, MPI_Datatype datatype, int source,
          int tag, MPI_Comm comm, MPI_Request *request);

Collective communicationsHow to use it
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Point-to-point communications: Example

Collective communicationsHow to use it

inline static void
local_startReceiving(commScheme_t scheme)
{
    int numBuffersRecv;

    numBuffersRecv       = varArr_getLength(scheme->buffersRecv);
    scheme->requestsRecv = xmalloc(sizeof(MPI_Request) * numBuffersRecv);

    for (int i = 0; i < numBuffersRecv; i++) {
        commSchemeBuffer_t buf;
        buf = varArr_getElementHandle(scheme->buffersRecv, i); 
        MPI_Irecv(buf->buf, buf->count, buf->datatype, buf->rank,
                  scheme->tag, scheme->comm, scheme->requestsRecv + i); 
    }   
}
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inline static void
local_startSending(commScheme_t scheme)
{
    int                firstSendBuf = 0;
    int                numBuffersSend;
    commSchemeBuffer_t buf;

    numBuffersSend       = varArr_getLength(scheme->buffersSend);
    scheme->requestsSend = xmalloc(sizeof(MPI_Request) * numBuffersSend);

    while (firstSendBuf < numBuffersSend) {
        buf = varArr_getElementHandle(scheme->buffersSend, firstSendBuf);
        if (buf->rank > scheme->rank)
            break;
        firstSendBuf++;
    }   
    firstSendBuf %= numBuffersSend;

    for (int i = firstSendBuf; i < numBuffersSend; i++) {
        buf = varArr_getElementHandle(scheme->buffersSend, i); 
        MPI_Isend(buf->buf, buf->count, buf->datatype, buf->rank,
                  scheme->tag, scheme->comm, scheme->requestsSend + i); 
    }   

    for (int i = 0; i < firstSendBuf; i++) {
        buf = varArr_getElementHandle(scheme->buffersSend, i); 
        MPI_Isend(buf->buf, buf->count, buf->datatype, buf->rank,
                  scheme->tag, scheme->comm, scheme->requestsSend + i); 
    }   
}



  

Was that all?

...not by far!

– This was only a rough and quick introduction to what OpenMP and MPI can do

– For more details and tutorials, check the Internet

– You can combine MPI and OpenMP in one code

– Instead of using OpenMP you could use POSIX threads (or whatever you local
machine provides) to do it 'by hand'.

– Instead of MPI you could manually program a network library that is tailored for
your code.

– ...and there are things beyond MPI and OpenMP.

Was that all? AcceleratorsPGAS
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PGAS – Partitioned Global Address Space

– PGAS languages provide a way to denote that a memory location is remote in
the language.

– As such, PGAS languages are generally extensions to existing languages
– UPC (Unified Parallel C)
– CAF (CoArray Fortran)

– Can simplify the code significantly for complex communication patterns.
Note that the communication still has to take place, you just don't have to write it
explicitly anymore

– Very promising concept, but not yet mature.
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Accelerators

– Accelerators are specialized hardware to perform certain task at raw compute
speed way beyond what a single (general purpose) CPU can provide

– Most common accelerators are graphic cards, other options are GRAPE, Cell,
ClearSpeed, FPGAs...

– The top notch supercomputers rely on accelerators to achieved their speed (at
manageable energy costs)

– Not all problems can benefit from accelerators

– Currently the most interesting ones are indeed graphic cards, they are
– massively parallel (hence, fast)
– cheap
– relatively easy (in comparison) to program (CUDA, better OpenCL)
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