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Eulerian Gas Dynamics

% THE EQUATIONS OF GAS DYNAMICS IN EULERIAN
FORM (1D):

dp  O(pu)
ot + or

dpu) I, 5 .
+ —(pu”+p)=0
dr

0
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EULERIAN GAS DYNAMICS

% IN COMPACT VECTOR FORM:

G G
—U+ —F(U)=0,

@ U is a vector of states and F is a vector of fluxes
(mass, momentum and energy)
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Euler equations in 3D

We can write a general conservation laws in the form

0 .
ot
For example, for the Euler equations we have
pu, pu,
Ja, L¢f+ P pu.u,

F(q)={ pu.u, pui+P

pU,u_ pUuU_
(PE+Plu, (pE+Plu, (pE+P)u,
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Types of numerical
grid based methods

# Finite difference schemes
@ Explicit in time
@ Implicit in time

@ Finite Volume schemes:
® GodunovVv’s zero order method
@ Higher-order Godunov’s methods
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Explicit finite difference

« Lax-Wendroff explicit scheme:

Start with the Taylor expansion in time:
opl” 1 p |
n+1 n 2 3
T=plx,t =p,+At—| += At +O (At
p: p( i n+1) p; at ) 2 83"2 ; ( )

I
Use the advection equation to obtain exact expressions for the derivatives:
2 2
dp "__ué‘p " o p "_uzé‘p "

ot |, dx |, ot |, ax?|,

Use centered spatial differences to obtain

u’At?
2 A x?

n+1 " ”At( n n

pi =pi— pr— P+ (of =2 pF+01 )

2AXx

This is the Lax-Wendroff method. It has second-order truncation error (space and
time).

The leading-order error terms are odd in both x and t, so the error is dispersive
(produces ripples) rather than diffusive...
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Explicit finite difference

« Lax-Wendroff explicit scheme:

uUAt/Ax = 0.1

1.0

Errors tend to be generated near discontinuities, where the Gibbs phenomenon
prevents us from capturing all of the modes in the true continuum solution using a
discrete mesh.
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Implicit scheme

An implicit method uses spatial derivatives evaluated at the updated time ¢ .
An example is the backward time-centered space method:

n+1 n HAI ( n+1 n+1

Pi =pi_m Piv1 —Pi-i

The difference equation domain of dependence covers the entire grid — so implicit
schemes are unconditionally stable. However, for more advanced methods they are
generally more difficult to formulate.

Write as a matrix equation for the entire grid:
5
Pl
[

Py

Py Py

This equation is solved using standard linear algebra techniques.

Note that the boundary conditions are included in the matrix definition.
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Higher dimensions

@ Operator splitting

Creating multidimensional differencing methods is possible, but complex
(especially for implicit methods).

A common workaround is operator splitting: suppose we have a difference operator
D with truncation error O(At) or better that can be written

D=D +D,+D,
Then we can approximate the action of D by composing the operators D., D, D_:
DIq] = D,[D,[D,[q11] + O(At)

If D is O(At?), we can do better by symmmetrizing the operator:

D[q] = D,"*[D,"*[D,"[D,"*D,"*[D,"*[q11111] + O(A?)

This is called Strang splitting. Each of the operators is applied for 2 At.
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Higher dimensions

@ Operator splitting

For example, consider linear advection in two dimensions:
a—p+f,.-: 5_p+ u a—p= 0
*ox YO0y
Define the two Lax-Wendroff operators
u,At’
2A X
ui A1’
2AY
Then we can create the following second-order 2D method:
py =D, [p}. Atl2]
pi;=D,lpy At]2]
py =Dl oy, At/2]
p;H :Dx[pgf’}, Atl2]

u,At
2AXx
u},Ar
2AYy

Dx[pijsdr]:pﬁ_ (pi+l,j_p:‘—],j)+ (pi+1,j_2pzj+p:’—l,j]

Dy[P;j:Ar]:Pg_ (pj,j+]_pi,j—]]+ (Pf,;+1_2ﬁ';j+ﬂf,j—1)

The CFL criterion is applied to each operator separately.
Operator splitting is also used to include different physics, e.g., source terms.
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Finite Volume Schemes

We can write a general conservation laws in the form

Integrating the equations over each cell volume and using Gauss
theorem to transform the divergences in Fluxes crossing the
different cell boundaries::

Unstructured mesh case

At
Ul =u"—— [F.as
Fon 14
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Finite Volume Schemes

We can write a general conservation laws in the form

Integrating the equations over each cell volume and using Gauss
theorem to transform the divergences in Fluxes crossing the
different cell boundaries::

Then the volume average quantiies qijk can be computed as:

1

aqr n i 1 n "
= -ﬂ_J’[F:',jﬂrz,k_Fi,j—uz,icl+A—Z[F"JsH“z_FU:*—”Zl=D

ot

+i[F?+Hlﬁ:_ F?—lfz,ﬁ]+

where q” is a finite-volume quantity. The function F", is the average of F(q)

+1/2,jk
over the face between cells ijk and i+1,jk:

F p Kk A yA - j‘ " j‘z*“ﬂ ,t,)dy dz

Yi—uz e
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We can then average over the time interval [t,t Tto obtain
n+l__  n -I- n+1/2 n+1/2 n+1/2 n+1/2
Q{,r'k _Qﬁk_‘ﬂ‘r ﬂx\Ff+H2,jk_F:’—]IE,Jkl+ \F,j+lf2k F:‘,j—lfz,k]_l_

l
n+1/2 n+1/2
L‘-Z Ff,j,k+]!2_FI',j,k—lf2]

where the superscript n+1/2 indicates a time average.

No approximations have been introduced; if we had an exact expression for the
time-averaged fluxes, we would be done. But they depend on the solution q!

In practice we must approximate the fluxes. In this process we introduce a local
truncation error.

Also, if we identify the cell average of a quantity with the cell-center value of that
quantity, we introduce a second-order error:

el I =q(x)+0(AxX?)

This is easily seen by writing q(x) as a Taylor series about x.

p I
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. . . . . n+1/2
Our goal is thus to obtain a numerical flux function that approximates F . 1, jk -

A simple example in 1D is the Lax-Friedrichs method:

n+1/2

F:‘+H‘2

R+ F (a5 (a7 —ai)

This results in the update step

n+1 ]

R P [F (qr)—F (q1))]
2

2AXx

Without the second term in the flux function, this method is unconditionally
unstable. The term produces an approximation to a diffusion term:

o | Ax? dq
Ox|2Ar O0x

This is called artificial viscosity. Artificial viscosity is also used to “capture” shocks
with classical numerical methods (idea due to Richtmyer and von Neumann).
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Godunov’s Methods

Godunov's method treats the solution as piecewise constant

q | | |  Piecewise constant
| function

/

q(x)

Xia Xy Xy X X1 Xien X

and aims to solve the time evolution over [tn, th] for this piecewise function

exactly. The exact solution can then be used to produce fluxes.

The piecewise constant values are chosen to give the correct cell averages q..

The advantage over other methods like Lax-Friedrichs is that the solution can be
nonlinear (e.g., in a shock), and we can still get accurate fluxes.

The problem of a one-dimensional initial discontinuity with constant left and right
states is called the Riemann problem.
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The Riemann Problem

The mathematician Bernhard Riemann studied the ideal gas equations in an article "Ueber die
Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite” published in 1860, see his Mathe-
matical Papers.

Consider the simple linear equation

0 d
au(z‘: t) + cgu{r?t) =0,

where ¢ is a constant with dimensions of speed. Given an initial profile u(x,0) = £(x), the solution
of this equation is easily seen to be u(x,t) = £(x — ct), i.e., a waveform which moves at constant
speed dx/dt = ¢ without changing its shape.

u(x, 0)

A simple form of initial condition is a step function or piece-wise constant value for u(z,0), for
example as shown in the figure. This type of initial condition defines a Riemann problem. Physically,
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The Riemann Problem

this initial condition represents a shock front which moves with constant speed ¢ without changing
its shape.

Even though this is such a simple problem with a simple solution, it is very difficult to simulate numer-
ically. The reason for this is that the derivative du/0x is infinite at the discontinuity: mathematically
it is a delta function. Most finite difference schemes assume that the solution is smooth, i.e., the

derivatives are bounded, so that a Taylor series expansion in the spatial step size & is valid. When
this assumption is violated by a discontinuity, a first order scheme tends to smear out the discontinu-

ity, and including higher orders results in unstable oscillations of the solution at the position of the
discontinuity.
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The Riemann Problem

% Example of a
simple
Riemann
Problem:

@ The Sod tube
solution: The
case when
the two fluids
are at rest.

head tail contact shock
of rarefaction discontinuity
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Comparison of volume
average methods

At
AXx

n+1/2 n+1/2
{Fuuz _Fi—lf".ll

q; =q;—

Godunov (0O(Ax,At))
Fn+11'2:F [qn.+1:'?-.‘|

i+1/2 i+1/2
n+1/2

q;. ., =Riemann(q],q}. ) (x/t=0)

Lax-Friedrichs (O(Ax?% At))

ﬂ'x | n n!
_Eﬂfqul_Qi)

n+1/2 1 n P
F 12— — F(q;')_l_F(..qu.}]

i+1/2 — 2

Richtmyer (aka two-step Lax-Wendroff) (0O(Ax*At%))
I 1];’? =F( qg:rll;; )
n+1/2 4

qi+]f2 = (q::_l_q:":]]_ 2_,,‘: [F{Q::.])_F(q?}
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Higher order Godunov
methods

Piecewise linear or
quadratic function

Difficulty: solving generalized Riemann problem
at cell interfaces
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I ' ' '
j J j+1 j*2

Piecewise parabolic reconstruction
Piecewise linear extrapolation
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MUSCL 15t Order linear
reconstruction

MUSCL = Monotone Upwind Scheme for Conservation Laws (van Leer 1979)

Basic idea: solve ordinary Riemann problems using extrapolated L/R states to
obtain approximate time evolution at cell boundaries

1
1. Reconstruction qf = q?—gﬂ'i

R n 1
QI q[ 2 ]

2. Evolution L L At [F(qf)_F(qf)]

. =q. +
ql ql ZA_X
at = gf+ At R
3. Riemann problem

n+1/2 n+1/2
F:+1f2 [q{+1f2

‘1:1:11;2 —Rtemann(qi , qa+1)(x”=0)

Order: O(Ax*,AtY)
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Choosing slopes for reconstruction

Interpolating polynomial:
q(x,t,)~q +o](x—x,)
Constant chosen to give correct cell average in cell i (q)

Several choices for constraints on slope o;:

Centered difference (Fromm's method):
n_ div1—49i
' 2Ax

Upwind difference (Beam-Warming method):

n_ 9 Gi n_ i i
2Ax

Oy =—5 . foru" >0 o;

' 2Ax
Downwind difference (Lax-Wendroff method):

for u"f <0

; 0 D_H_QE_QE—I
oru” < P T
i ! 2Ax

n dis1—4;
o, =————
2Ax

for u”f =0
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Slope limiters

Xivin

q(x,t,)dx=q; for our polynomials, slopes can be

Xi_qz

whatever we need

Notice that at discontinuities, divided differences give meaningless slopes:

q Piecewise linear

Unless we “flatten” the interpolating polynomial at discontinuities, we will
introduce oscillations at these locations.

Computational Astrophysics
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No characteristic decomposition applied to slope limiter



PPM: 2" order
interpolation

Use quadratic interpolating polynomials in MUSCL-type scheme (O(At))

In principle should yield O(Ax®) accuracy, but this was found to be cost-ineffective;
some parts of algorithm limit method to O(Ax?) overall

Interpolation is actually performed on [q(x)dx using a cubic polynomial, which is
then differentiated (to get O(Ax*) even on nonuniform meshes)

]' M i M n
QR,:’-ZE[_Q&+2+ 7qit74; _QI'—I]

1 n mn
o Qi=;IQE+I_Q£—1} —4qr,i—4qL,i

N | \
G6.:—0|q; ___:?(QLJ_I_QR,E)

The linear slope 6q, is limited using the monotonized central-difference limiter.
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Approximate Riemann Solvers

% The Riemann problem has a solution that can be obtained using
Rankine-Hugoniot conditions at the interfaces (conservation
properties). But it is not very useful for numerical problems
because it involves solving algebraic equations.

Approximate Riemann solvers have been proposed as a efficient

way to estimate the fluxes across the cell interfaces.

Computational Astrophysics

Two-shock Riemann solver
Treat rarefactions as “entropy-reducing shocks”
Benefit: no expensive fractional powers
Drawback: incorrect entropy behavior in rarefactions
Harten-Lax-van Leer (HLL) Riemann solver
Treat solution as consisting of two waves separated by three constant states.
Benefit: direct solution, no iteration required

Drawback: poor treatment of contact discontinuities

Roe Riemann solver

Solve Riemann problem for linearized Euler equations
Benefit: straightforward to adapt to new systems of equations
Drawback: entropy glitch, problems in rarefaction fans




Roe Solver

Consider again the Riemann problem

q: + f(q)z 0 ’

q iif z<0,

a(z,0)

qr if x>0,

where for the x-split three-dimensional Euler equation

()
pu
pv

pw
\ £ )
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Roe Solver

Using the chain rule, the conservation law

q: +f(q): =0

may be written as

of
qa: + A(Q)g:. =0, A(q)= 5q

Roe’s approach consists in replacing the Jacobian matrix A(q) by a constant Jacobian

A =A(q;,qr)

resulting in the Riemann problem for the linear system

q: + Aq-ﬂ = 0 ’
q(z,0)

which can be solved exactly.
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INCREASE THE DYNAMICAL RANGE
OF EULERIAN METHODS

@ Achieving high local resolution in space, time and mass imply
decreasing the mesh size. For astrophysical problems this is
almost impossible to achieve:

% For Galaxy formation, typical resolution is around 10pc and the

minimum volume to form a galaxy is around 10Mpc. With equal
mesh size, the number of cells >10'® !!

@ But most of the original volume is not needed to be resolved with
this resolution.

@ Some kind of adaptivness is needed for eulerian methods to be
competitive against SPH.
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INCREASE THE DYNAMICAL RANGE
OF EULERIAN METHODS

% Two kind of strategies can be used to increase the dynamical
range of Eulerian hydrodynamics:

@ Adaptive Mesh Refinement
@ Moving Mesh techniques.



AMR

“ Add new staggered meshes in regions of high density

patch-based tree-based
refinement strategy refinement strategy
(e.g ENZO) (e.g RAMSES)
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AMR:

« Use a hierarchy of nested
grids that allows in principle
arbitrary dynamic range.
Refinement criteria can be
chosen almost arbitrarily.

» Quick motion of a small
high-resolution region
requires however frequent
changes of the mesh
hierarchy.

« Accuracy at grid boundaries
suffers and normally goes
down to 1% order.

.
>
- n
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AMR CODES IN ASTROPHYSICS

ENZO: Greg Bryan, Michael Norman...
ART: Andrey Kravtsov, Anatoly Klypin
RAMSES: Romain Teyssier

NIRVANA: Udo Ziegler

AMRVAC: Gabor Thot and Rony Keppens

FLASH: The Flash group (PARAMESH lib)
ORION: Richard Klein, Chris McKee, Phil Colella

PLUTO: Andrea Mignone (CHOMBO lib, Phil Colella)
CHARM: Francesco Miniati (CHOMBO lib, Phil Colella)

ASTROBear: Adam Frank...

® http://www.astrosim.net

Computational Astrophysics 20/05/2021



http://www.astrosim.net/
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MOVING-MESH
hydrodynamics

@ Use also eulerian methods
to solve fluid equations on
a mesh.

@ The mesh is adapting to the
fluid structures:

@ Deforming the cells while
keeping same number of
cell elements.

@ Using unstructured
meshes.

Computational Astrophysics

MMH-code, Pen,
1995, ApJS, 115,19

Hoagd? Iu\‘Q.""‘ \:'
: _;‘3 \ & ",__: -
£ .:{\‘ .: o a:gx‘ .: &
Arepo,
Springel, MNRAS, 401,791, 2010
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AREPO

% Use Voronoi tesselation algorithm to generate the mesh:

Voronoi — elaun uIation both shown together

SN ARG
5‘7“"“ SR
DoatiSes

L)
}'6’4."'&'4‘ k

LN
Y

vaui

* The Delaunay triangulation contains only triangles with an empty circumcircle. The
Delaunay tiangulation maximizes the minimum angle occurring among all tiangles.

* The centres of the circumcircles of the Delaunay triangles are the vertices of the Voronoi
mesh. In fact, the two tessellations are the topological dual graph to each other.
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AREPO

The fluxes are calculated with an exact Riemann solver in the frame of
moving cell boundary

The mofion of the mesh

generators uniquely
defermines the mofion of all

cell boundaries

State left of cell face State right of cell face
PL
v
Py

Computational Astrophysics 42

(in frame of cell face)

Pr
( VR ) —— Riemann solver —» ' —» F(U)
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AREFPO

“ Sedoyv Blast




.
»
z=1.0 A5 = 1.0 A4 = 4.0 54l z = 1.0 & 04
- ] ...
- ‘ .‘ N .\\..' ‘~.
C :,".'. .
. .-. K
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Baryonic processes

% Baryonic matter is subject to many different
processes due to electromagnetic and strong
interactions:

‘2

“
“
“

Radiative atomic cooling and UV heating.
Gravothermal catastrophies
Star and Black hole formation

Feedbacks: thermal injection by exploding stars and
metal enrichments.

@ Much smaller scales than we can resolve gravity and
hydro forces ( < pc)
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moLualmg the relevan phgsws
Wi msumuLatwws

. » > . - -
2 - " . ’ » -
- . 5 - . » »
' » - ks
SDSS survey
By David Hogg

and Michael Blanton (NYU)

some of these processes
are poorly understood

HST image of the Antennae galaxies

gas cooling rates

for primordial gas composition dependence of cooling rate

on metallicity

cooling rate

Tk
gas temperature
Dopita & Sutherland 20(

Given the rates,
how is cooling included in the simulations?

) Q net cooling/heating modify the
% + Vpu =10, ; internal energy of the gas and hence
the total energy E=v%/2+¢

du vr
T—lu Viu=-¥V& - —

[ . . “ . .
- f Q so cooling/heating is included as
OE

+V-[(E+PJu] = -pu-V&+(I'-L), sink/source term on r.h.s. of the energy
equation

Q the only subtlety is that the rate of
energy change (e.g., cooling time)
can be much shorter than local
dynamical time which sets the
integration step of the hydro equations




starformation tn stmulations star formation in nutshell

convert gas mass into collisionless stellar particles in
cold, dense regions according to rate:

f'l« = C* (ﬂj_db) b T < T*? Peas > Py
0

somelimes compression condition is enforced to form
stellar particles only in the regions of converging flow

Ver <0

normalization C* is chosen so that the empirical
Kennicult's star formation law is reproduced:

3 - 1.4%0.15 ] )
ESFR = (2:) i07) X 1071 (W) I\"I:.Jyl'ilkpciz
O]

Tag all mesh cells (or gas particles in an SFPH simulation) for
which the following set of conditions is satisfied:

HST image of the Antennae galaxies .
V - v < 0 = contracting ,

Once a stellar particle is formed it is assigned mass, time of birth, 3
metallicity of the parent cell, efc. These properties allow then fonol < Layn = T = cooling rapidly
fo model spectra of galaxies and to calculate its optical properties coe e 32Gp,,

(luminosity, colors,...)

starformation can be assume to occur over some time, rather than instantly m, >m; = gravity unstable

Amse = my(Atftayn)l(t = ty)ftayn] ©xp [=( = L)/ layn] Take mass from the gas mass of the cell and convert it inio a stellar particle:

which allows to spread heating due stellar feedback over time
Am,, = —Mmy AI/Id)‘n aI'Id m* [ +mb AI/Idyn

AEgy/At = (Amgg/At)cegy Stellar particles are assigned the momentum and position of their
AE /At = (Amgp/At)cZeyy g, parent cell (or gas particle). Subsequently, they are followed as collisionless
particles along with DM particles using standard N-body techniques.

en=10"%% ¢, =10"*0




Sources and Sink terms due
to radiative processes

%@ Conservation equations can be modified to account for
sources and sink terms of mass, momentum and energy:

Right hand-side may describe

+V-F(U) =) 5(U) physics such as radiative cooling,

v diffusion or chemistry.

@ Time Operator splitting:
@ First solve the hydro steps (subject to CFL condition)

@ Between hydro timesteps, solve the equations to account
for the r.h.s terms

This means we can split off the extra physics: ou
(o' E‘FV-F(U):’U
ou "

—— + V-F(U) = Schem(U) —

—
ot T U _
Computational Astrophysics [3 ot chem(U)




M Vogelsberger S Genel V. Sprmgel P Torrey D. Sijacki
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Optical

Qe .,';v".
Dark Matter Dens1ty ;
Gaﬁ_?nrty

~ jonization
-~ Star formation and ISM
model
Stellar evolution
Stellar feedback
Black holes and SMBH
feedback

http://www.illustris-project.org/

The Illustrls Slmulatloh

D Xu G. Snyder S. Brrd D. Nelson L. Hemqurst



http://www.illustris-project.org/

Other physical proccess

% Besides the long range forces acting on the different
components of the Universe: (gravity and pressure) there
are some situations in Astrophysics in which the fluid is
also subject to other interactions:

@ Magnetic fields in ionized plasmas

@ lonizing radiation field from stellar sources
@ Presence of strong gravitational fields

@ Gas outflows at relativistic speeds.
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Other physical proccess

% Magento-Hydrodynamics (MHD) hyperbolic equations:

dpu

+V-(pu@u-B® B+ P,l) =0, 1 1
ot ( worl) Eior = pe + spu-u+ 5B - B,

-+ V- [0(Bu + Po) ~BB-w)] = 0. § Poc=P(p.€)+5B-B.

@ Godunov methods can be used to solve them on finite
volumes, including B as additional fluid state.

@ (see Teyssier ANRAA review)
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Other physical processes

% THE RADIATION TRANSPORT EQUATION:

Conservation of photons in phase-space  I,(x,n,t) radiation specific intensity

101,
oo T VL =-ml tn, k,(x,n,t) absorption coefficient

n.(x,n,t)  source function
Source terms: microscopic collisions leading to absorption and emission.

Moments of the radiation transfer equation

Radiation energy: Energy equation:

E,(x,t) = /L,(x, n,t)@ OE,
¢ ot
Radiation flux:

F,(x,t) = /I,,(x,n,t)n?

+V . .-F, =—k,cE, + 5,

Flux equation:

oF,
Pressure tensor: ot

P, (x,1) =/L,(x,n,t)n®n?

+¢*V -P, = —k,cF,
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Other physical processes

% Radiation Hydrodynamics:

Fluid energy equation writes: %E +V.u(E+P)=T-A

Heating and cooling functions: I'= f kpcE,dv A= / Sydv

Momentum equation writes: % +V-(pu®@u+ PI) = —pVé + Fi.q

Ky

Radiation force: F.a= [ —F.,dv
[&

Self-gravitating hydrodynamics coupled to radiation transport and non-equilibrium
chemistry. Relevant physics for galaxy formation: photoionization of atomic species,
photodissociation of molecular species, heating of dust grains

Numerical challenges:

Use operator split to perform a radiation + chemistry step after the hydro and gravity
step, the main time step being controlled by standard Courant conditions.

The radiation solver is used for radiation transport, but also for chemical evolution (Hl,
HIl, H2 and metals) and gas cooling and heating: stiff source terms.

Dichotomy in the numerical methods: SPH versus mesh for hydro
Ray-tracing versus moment-based methods for radiation

@ (see Teyssier ANRAA review)
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