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NUMERICAL MODELING OF ASTROPHYSICAL  FLUIDS:

COLLISIONLESS FLUIDS (NO INTERNAL EOS)

GRAVITATIONAL INTERACTIONS (N-BODY METHODS)

COLLISIONAL FLUIDS (INTERNAL ENERGY, IDEAL GAS

GRAVITY (N-body)

FLUID DYNAMICS

Lagrangian Methods (SPH) 

Mesh based Eulerian Methods:

Fixed grid

Adaptive grid (AMR)

Unstructured Mesh
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FLUID DYNAMICS IN 
ASTROPHYSICS 

AND   
COSMOLOGY
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ASTROPHYSICAL FLUID 
PROBLEMS



Basic Equations: 
statistical mechanics
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Basic Equations
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Basic Equations
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Basic Equations
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EULER  FLUID 
EQUATIONS
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EULER  FLUID EQUATIONS
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𝐷𝑦

𝐷𝑡
=
𝜕𝑦

𝜕𝑡
+ 𝒖. 𝜵𝑦

Convective Derivative



EULER  FLUID EQUATIONS
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EULER  FLUID EQUATIONS
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EULER  FLUID EQUATIONS
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Euler equations in 
Lagrangian form 
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Lagrangian Method for 
CFD

One of the most often used is :

SMOOTHED PARTICLE HYDRODYNAMICS (SPH)

Introduced by Lucy  (1972)  and Gingold and Monaghan 
(1977) in the context of Astrophysical Fluids
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Basic Concepts of SPH
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Discretization using a set of arbitrarily distributed
particles.

Integral function approximation: kernel approximation

Particle approximation of field functions.

Summation to replace integration

Field function and its derivatives

PDEs are represented directly in particle approximation

No connectivity is defined between particles: large
deformation.

The ODE's are solved using explicit integration algorithm
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Basic properties of the 
Kernel function
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u = |x-xi|/hi



Derivative of a Function
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Any fluid quantity can be estimated as 

The spatial derivative can  simply be computed:

Or better using this relation



SPH Fluid Equations
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SPH Fluid Equations
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Varying smoothing kernels 
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Symmetrization of the 
Pressure term

Arithmetic mean

Geometric mean
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SPH entropy formulation
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Variational derivation of SPH 
equations
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Variational derivation of SPH 
equations
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Variational derivation of SPH 
equations

06/05/2021Computational Astrophysics 37



SPH    PERFORMACE:
Sedov Solution
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EXPLOSION 3D
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ADIABATIC COLLAPSE
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ADIABATIC COLLAPSE
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SPH AND SELF-GRAVITY
In a self-gravitating  SPH  gas  there is a minimum mass 
resolution (minimum number of particles) needed to resolve 
the Jeans Mass for a gas of constant density and T.

In SPH the minimum resolved gas mass MUST be small than MJ

at all times and locatons. This can be formulated in terms of 
the Jeans length:

RJ>(1.5-2)h

Mmin (h)
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SPH AND SELF-GRAVITY
It is also assumed that  gravitational smoothing   e is   similar to the 
SPH smoothing scale, h.

If   e < h  then  if Mlim < MJ artificial fragmentation of gas cloud can be 
produced   because  pressure forces are poorly resolved 

If   e > h   and Mlim < MJ,  gravitational fragmentation can be avoided 
even  if the gas cloud is gravitationally unstable (M>MJ)

For regions that are marginally unstable (M~MJ) and e ~ h but Mlim
<MJ , the gas will collapse but the collapse  will be slower as the 
graviy and P forces are poorly resolved on the small scales.. 

CONCLUSION: Use as many particles as possible to minimize these  
resolution effects.
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time stepping
Time integration of the  equations of motion  by Leap frog 
scheme.

Dt is restricted by the CFL stability conditions due to the 
characteristic adiabatic sound velocity cs = dp/dr

Min (Dti = CFL  hi/cs).  CFL = 0.1-0.3

or a more detailed estimate taking into account the artificial 
viscosity  (Monaghan 92)
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Adaptive kernels
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PROS AND CONS OF 
SPH

ADVANTAGES OF SPH METHOD:

MASS, TOTAL AND ANGULAR MOMENTUM AND TOTAL ENERGY 
CONSERVED EVEN IN THE PRESENCE OF SELF-GRAVITY.

TOTAL ENERGY IS REASONABLY CONSERVED 

ENTROPY IS CONSERVED AND IS ONLY PRODUCED BY 
ARTIFICIAL VISCOSITY.

HIGH FLEXIBILITY TO  PROBLEMS WITH COMPLEX GEOMETRY

EASY TO INCORPORATE VACUUM BOUNDARY CONDITIONS

GOOD TREATMENT OF PROBLEMS WITH HIGH MACH 
NUMBERS.

CONSERVE GALILEAN INVARIANCE.
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PROS AND CONS OF 
SPH

PROBLEMS OF SPH METHOD:

FLUID INSTABILITIES AND DISCONTINUITIES  WITH LARGE 
DENSITY JUMPS TEND TO BE SUPPRESSED DUE TO 
NUMERICAL SURFACE TENSION  EFFECTS:
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GAS MIXING PROBLEM
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Subsonic turbulence
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Bauer & Springel 2011

SPH does not 

resolve the small 

scale  motions in 

the gas in 

subsonic regime







MODERN SPH METODS

Modificantions to the standard SPH implentation have 
been proposed to  try to solve the problems of SPH with 
mixing and contact discontinuities

Two approaches:

Artificial  heating terms (Price08, Wadsley+08,Beck15)

New kernel functions  optimized to avoid contact 
discontinuities ( Read+09) 
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Tensile instability
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Santa Barbara Cluster Comparison    Project

15 years later







Visualizations of SPH 
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Visualization of SPH
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GASOLINE (standard 

SPH+TREE)

Cosmological simulation 

of the Formation of  disk 

galaxy



Bibliography

Smoothed Particle Hydrodynamics. Monaghan, 1992 
ANRAA, 30, 543.

Smoothed Particle Hydrodynamics in Astrophysics.  
2010, V. Springel, ANRAA, 48,391

Numerical Methods in Astrophysics: An introduction. 
Bodenheimer et al,  Taylor and Francis Ed. 

06/05/2021Computational Astrophysics 64


