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COMPUTATIONAL
ASTROPHYSICS

“« NUMERICAL MODELING OF ASTROPHYSICAL FLUIDS:

@ COLLISIONLESS FLUIDS (NO INTERNAL EOS)
@ GRAVITATIONAL INTERACTIONS (N-BODY METHODS)

@ COLLISIONAL FLUIDS (INTERNAL ENERGY, IDEAL GAS
@ GRAVITY (N-body)
@ FLUID DYNAMICS
@ Lagrangian Methods (SPH)
@ Mesh based Eulerian Methods:
® Fixed grid
& Adaptive grid (AMR)
@ Unstructured Mesh
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AND
COSMOLOGY
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ASTROPHYSICAL FLUID
PROBLEMS

Schemat ram
¢#0000 20000 WO.000 7500 5500 450 3000

o

Red giant evolution

o
°
2
[
=)
o
=
8
S
=]
§

Luminosity (L, )

Binary stars

Type Ia supernovae
A F o K

Spectral Class

Computational Stellar
Evolution

maeUpa.

Main-sequence evolution Star formarion

Computational Astrophysics 5 06/05/2021



ASTROPHYSICAL FLUID

Computational Astrophysics

PROBLEMS

Molecular GEIRE Supermassive black holes

Evolution of disk

strucrure Galaxy pISETaS

SupernovacENERUE
interstellar RN

Computational Galactic

Evolution
Superbubbles Star clusters

06/05/2021



ASTROPHYSICAL FLUID
PROBLEMS
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Basic Equations:
statistical mechanics

Particle representations

* Direct representation of objects (galaxies, stars, planets)
* Monte Carlo sampling of particle distribution function (gas, dust, dark matter)

fv)

v

nix ):f f(x,v)dv ~-%

|‘fN = f'lrm’l

-1/2
e, o N
N particles in volume V | f |

o Irue

Basic requirements:
¢ As N — o, error (“shot noise”) in approximate distribution function f_goes to 0

«As N — =, equation describing evolution of f, becomes the Boltzmann equation
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Basic Equations

Collisionality of a gas

Collisional gas (fluid): Kn = 0 Collisionless gas: Kn —+

* Mean free path A < typical scale L * Mean free path A > typical scale L

* Random motions do not carry » Random motions carry particles far
particles far from mean trajectory from mean trajectory

* Solve moment equations for motion * Solve kinetic equations for motion
of fluid elements of particles (or distribution)

Knudsen number Kn = A/L
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Basic Equations

Boltzmann equation
Wirite single-particle Hamiltonian as

H(x,p) = H__ (Xp) + H 1 55P)

irregular

% L4

v "'L_F *\

. o -

A5

L&
Use classical mechanics for H ; treat H. statistically
smooth irregular

Single-particle distribution function is f(x,p.t)
Number of particles in differential volume element is f(x,p,t) d*x d°p

Net flux in x-direction

Net flux in p-direction

. 8 H kT
Jpr=—7—
ox
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Basic Equations

The Boltzmann equation is then

of
Ot

2

p
H =——+¢
or, for 1, m ( )

O Py V@Vf(ﬂ—f

ﬁrm

For self-gravity as a potential source we have
Vip=4mGp

where p = space density.
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The big picture

- Class of solver
Constraint
Equation
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EULER FLUID
EQUATIONS

Moment equations

Define _ . .
( Q:;:;:-E%I [or.dv n=[fdv

then

q. | Fag | [ 3 |
% | n X .'} :| + V:‘ R {a VX .-} ]-I_ h V: fb V v X -'::I :0
C ' '

or, for X = m,

2 ; :
ip +V lpu|=0
ci '

Continuity equation

Also written:
aDp
Dt
The convective derivative is defined as
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EULER FLUID EQUATIONS

Moment equations — 2

Now take moment of X = my:

-

C" [ -".. £l ¥ I."-..
dx (PViva),
0 X,

.
— | pu,|+
ar' "

Let v =u + w; then

ViV 'n =Uu; U, + W, W, ::::

Now write

Gas pressure
Viscous stress tensor

9 (pul+ =2 (puu+P 5
"'"'_.p&tl: ‘ ;J"-{I'Iik (f.ﬁ:_
ar’ 0 x,

Momentum equation
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EULER FLUID EQUATIONS

Moment equations — 3

Now take moment of X = myv*/2:
b

—u, =0
0 x,

¢ |1 |
< [Ep[|u|2+{|w|z}}|]+£ 5 Pt wk){uﬁ—wf:lz}]—kp

k
now

ugrwy ) +w |y =luf u+ 20, vy w)+u (w Py +Ow | wl)

define

Specific internal energy

stp(wk%|w|2) Conductive heat flux

then

8 (p, a (e.p - o
— | ="+ pe |+ —uluw,+u.|Pod, —m. |+peu+F |+pu
At 2' ["+p 'E'A'k(Q' | cTu | P o, m] PE U4, k| TP “ox,

Total energy equation
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EULER FLUID EQUATIONS

Lowest-order moment equations: Euler equations

Letting f, be Maxwellian, obtain

;‘JE:EP:E

> znkHT

Because f” depends only on |v -u/, to lowest order

m,=0,F,=0,¥=0

ie. Fuler equations neglect particle diffusive effects.
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EULER FLUID EQUATIONS

Lowest-order moment equations: Euler equations

Letting f, be Maxwellian, obtain

Convective Derivative

Dy dy

Dt=a+u.7y

;‘JE:EP:E

> znkHT

Because f” depends only on |v -u/, to lowest order
m,=0,F,=0,¥=0

ie. Fuler equations neglect particle diffusive effects.
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EULER FLUID EQUATIONS

Equations of state (EOS) - ideal gases with inelastic collisions

* Nontranslational modes add degrees of freedom to collisions

* Equipartition assumption: energy equally distributed among modes in
the average

*General EOS for ideal gases:

PE=

y—1_
pSE_kBI[fl]]fdjp:pﬂl,lﬂ{Pﬂ_}’]

where y =c / ¢, = ratio of specific heats

s = specific entropy Barotropic equations of state

(ie. P is a function of p only)
*» Special case: isothermal gas (y = 1) /
Po p

* Special case: adiabatic gas (“polytropic EOS”)
s = constant = P o p’
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EULER FLUID EQUATIONS

Intuition regarding y and the EOS

*For particles with d degrees of freedom, y = l+%

*Large y — “stiff” equation of state

* Adiabatic compression yields large pressure increase
*Small y — “soft” equation of state

* Adiabatic compression yields small pressure increase

* T'ypical values:

y = 1.6667 monatomic gas (no internal degrees of freedom)
y = 1.3333 relativistic monatomic gas
diatomic gas (rotational d. o. f. only)
diatomic gas (rotational + vibrational d. o. f.)
isothermal gas (compression cannot heat, d = )
air (mostly Nz and DZJ
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EULER FLUID EQUATIONS

Eulerian vs. Lagrangian viewpoints

Fulerian: stand still as fluid moves by

Fluid quantities functions of position x and time ¢

TR G —p —p

Lagrangian: move with the fluid

Fluid quantities functions of initial position x(t ) and time ¢

Computational Astrophysics 20 06/05/2021



Euler equations in
La jan form

Euler equation:

Continuity equation:

First law of
thermodynamics:

Equation of state of an
ideal monoatomic gas:
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What is smoothed particle hydrodynamics?
DIFFERENT METHODS TO DISCRETIZE A FLUID

Eulerian Lagrangian

discretize space discretize mass

representation on a mesh representation by fluid

(volume elements) elements (particles)
° @

ot e
j7‘t: g ff";-./-”
.'/“' * . °

principle advantage: principle advantage:

high accuracy (shock capturing), resolutions adjusts
low numerical viscosity automatically to the flow
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Eulerian vs Lagrangian descriptions

Lagrangian methods Eulerian methods

Grid Attached on the moving material Fixed in the space

Track Movement of any point on materials | Mass, momentum, and energy flux across
grid nodes and mesh cell boundary

Time history Easy to obtain time-history data at a | Difficult to obtain time-history data at a
point attached on materials point attached on materials

Moving boundary Easy to track Difficult to track
and interface

Irregular geometry Easy to model Difficult to model with good accuracy
Large deformation Difficult to handle Easy to handle

h_-:f- %'*‘.?A." /,/.

Haw% vgg?

Computational Astrophysics 06/05/2021




Lagrangian Method for
CFD

% One of the most often used is :

@ SMOOTHED PARTICLE HYDRODYNAMICS (SPH)

@ Introduced by Lucy (1972) and Gingold and Monaghan
(1977) in the context of Astrophysical Fluids
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Basic Concepts of SPH

“ Discretization using a set of arbitrarily distributed
particles.

@ Integral function approximation: kernel approximation

@ Particle approximation of field functions.
@ Summation to replace integration
@ Field function and its derivatives

@ PDEs are represented directly in particle approximation

@ No connectivity is defined between particles: large
deformation.

@ The ODE's are solved using explicit integration algorithm

Computational Astrophysics 25 06/05/2021



Kernel interpolation is used in smoothed particle hydrodynamics to
build continuous fluid quantities from discrete tracer particles

DENSITY ESTIMATION IN SPH BY MEANS OF ADAPTIVE KERNEL ESTIMATION
AN T T T |
 SPH kemnel (B-spline)

Kernel interpolant of an arbitrary function. 255 normalized to 1
20

(A(r)) — f W(r— ', h) A(r') & :

If the function is only known at a ‘
set of discrete points, we d3 / m;

) . T = — ®
approximate the integral as a pi °
sum, using the replacement: 7

N, .
(Ai) = > —= A, W(ry; hi)

i=1 Pi .

This leads to the SPH density estimate, furA-i — [N

N
Pi — Z ij'(\rz-j ‘j hi)
j=1

® This can be
differentiated !
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Basic properties of the
Kernel function

» Must be normalized to unity Jw(x—x'h)dx=1
limW(x—x',h)=6(x—x")

» Compact support (otherwise N2 bottleneck) h=0

» High order of interpolation

» Spherical symmetry (for angular momentum conservation)

Nowadays, almost exclusively the cubic spline is used:

Y

1 — 6u* + 6u°,

Computational Astrophysics 06/05/2021




Derivative of a Function

% Any fluid quantity can be estimated as

As(r) = Zmb A—h Wi(r—r,, h),
b

Ph

@ The spatial derivative can simply be computed:

_. A | .
VA(r) = ) m, “CVW(r—rh),
b

Pp

@ Or better using this relation

pVA=V(pA)—AVp,
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SPH Fluid Equations

Smoothed estimate for the velocity field:
m; ._
(Vi) = Z —*i.rJ Wir; —r;)
Pj
Velocity divergence can now be readily estimated:
m

V-v:v-(v.,;):T—v VW (r;
Pi
But alternative (and better) estimates are possible also:
Invoking the identity
pV v =V -(pv) —v-Vp

one gets a “pair-wise” formula:

—r;)

pi(V - v) Z mi(v;, —v;)) ViW(r;, —r

Computational Astrophysics 29
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SPH Fluid Equations

Continuity equation
automatically fulfilled.

L)

Artificial viscosity

N
Density estimate Qi = Z ij’(|rﬂ|, hi) —
=1

— P = (v — 1)piu;

dvi

dt

Euler equation

First law of
thermodynamics
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An artificial viscosity needs to be
introduced to capture shocks
SHOCK TUBE PROBLEM AND VISCOSITY

viscous force:
dvi

parameterization of the artificial

viscosj _ a lei+ej—3w;;|w;; fv., r.. <0
H-;;-‘ - 2 Pij t “
; .

0 otherwise

sig
Vij = Ci + e — Sw.,-,j,

Wiz = Vij - rij/ |rij|

heat production rate:

du; 1E —
d]" — § Z ﬂlj l_[,,;jv._,;j - V,JW ij
* i1
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Varying smoothing kernels

Efficiency and usefulness of SPH are maximized when each particle is allowed to
have its own smoothing kernel size hp.

Typically hP is chosen so that the number of particles within hP stays roughly

constant (as with adaptive particle-mesh) — so it gets smaller in high-density
regions.

Typically hP is taken to satisfy
dh h, dp,

L r

i p,d dt

The SPH equations then must use symmetrized kernels to ensure conservation of
mass, momentum, and energy:

1
WP‘?_)E[W (xp_xq’ hP)_I_W(xP_x‘?’ hq]]

, d=# of dimensions

1
W,,—W xp—xq,a(hprhq)
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Symmetrization of the
Pressure term

@ Arithmetic mean
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SPH entropy formulation

An alternative formulation is the entropy formulation (Hernquist 1993):
P=A(s)p"

In adiabatic flow we have dA/dt = 0; the specific internal energy is inferred from
_ A {S} );-'—l

y—1
With artificial viscosity added, we have
dA 1 y— 1 _.

z m, I, (v,—v )V W

P_
dt 2 p poom

showing that entropy is generated Gnly in shocks.
In general:

* Energy formulation does poor job of conserving entropy
* Entropy formulation does poor job of conserving energy

In continuum limit both formulations give the correct answers, but for finite
numbers of particles the two approaches are not equivalent.

The trouble is caused by varying smoothing lengths... Vh -terms
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Variational derivation of SPH
eqguations

SPH equations - conservative formulation

Springel & Hernquist (2002) find that standard formulations' treatment of entropy
is poor enough that when radiative cooling is included, SPH significantly
overestimates amount of cooled gas:

* Excessive broadening of shock fronts allows gas to cool more than it would
otherwise (since A(T) increases with decreasing T at low temperatures)

* Density estimates for hot gas in contact with cool, dense gas will be biased high,
again increasing cooling rate

They propose an alternative formulation that explicitly conserves both energy and
entropy (in adiabatic flow): start with Lagrangian

N

A | Ly
Lig.9)=5 2 m,%,

p=1

y—l

The independent variables are

e X B

So thermal energy is treated as a “potential,” and smoothing length is a dynamical
variable.
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Variational derivation of SPH
equations

Smoothing lengths hp are chosen by requiring a fixed amount of mass Msph (not
number of neighbors) within a smoothing volume: leads to the N constraints

The equations of motion are then
iaL_aL_i\ J¢,
df aqlp 6(1;} r=1 o agp

where the Lagrange multipliers are

\ 3 m, P,
AT A 3 2
41T h’P 0,
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Variational derivation of SPH
eqguations

The density gradient can be written

VpprmVW ZmVW

so the velncity update equation finally becomes

P P,
=_Zm ];prpr(kp)_l_ r vawpr(hr)

" p, P,

f = + P app B
P 3p, 0h,

Together with the entropy formulation, this velocity update method gives automatic
conservation of linear and angular momentum, energy, and entropy.

Artificial viscosity in the standard form is subtracted from the velocity update and
added to the entropy update to allow for shocks.
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SPH PERFORMACE:
Sedov Solution

£= 0,040 L= 0040

ETEFQY, REOmELic IR,

B=il.0dn

entropy, standand entmpy, conseryative

Figure 3. Radial density distribution at a time ¢ = O0.04 after the triggering of an explosion in a 32! particle distribution, with the initial explosion energy
smoothed by the SPH kernel. Results for different formulations of SPH are shown. Top: Itegration of the thermal energy, from left to right: in its standard form,
with geometric mean symmetrization, and with the mmetric form of the energy e tropy equation in the standard form
ileft) and with the new conservative formulation iright), Small points indicate d e measured from individual particles, while boxes denote
spherically averaged values. Solid lines show the analytical Sedov selution (adiabatic index y =

Springel & Hernquist (2002) 002 RAS, MNRAS 333, 649-664
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0.03 0.04 0.05

Figure 1. Deviation of the wial energy Irom the initial explosion energy as
a function of time for a number of different simulations. The large positive

deviation that reaches a maximum error of — 24 per cent s for a 327 run
where the imtal energy s added 10 a single particle and the thermal energy
cquation isintegrated in the standard form. In this case. energy conservation
is violated. because the code prevents the occurrence of unphysical negative

lemperatures in the early phase of the evolution. When the initial energy is
deposited smoothly instead. this 1s prevented. and energy 1s well conserved
(diamonds). Crosses, boxes, and triangles indicate results for 167, 327 and
he single point explosions where the code instead integrates the entropy
equation and the equations of motion in a standard form. Initially, a
fluctvation with a characteristic pattern is observed, The maximum error is
about —4 per cent, but at later nmes, energy conservation is reasonable.
However, when our new conservative entropy formulation 15 employed.

energy is again well conserved (cireles). Sprlﬂglﬂ & HEI‘H(]LIiSt (2002)
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ADIABATIC COLLAPSE

T T W Siiiniets & E. Mller Sivothed partiele hydrodyaamics o

a.al (iR 1:] .00 o.o a1l 1.00 o.o1 a1 1.00

Fig. 7. Snapshots of density (left), pressure (middle), and velocity (right) for an adiabatic spherical collapse of an initially isothermal gas cloud
ohtuined with a SPH calculation with & = 4224 particles (dots), and with a PPM caleularion with 350 zones (solid lines). The snapshots are
taken at t=0.77, t=1.29, and t=2.58, respectively. Dimensionless units are used.
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M. Steinmetz & E. Miiller: Smoothed particle hydrodynamics

T T

o0l o010 .00 PPy
Fig. 8. Same as Fig. 7 but for the SPH run with N=28768 particles.
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Steinmetz & Miiller (1993) concluded:

. SPH can get accurate results for problems including strong shocks.

. In 3D SPH requires at least ~ several x 10* particles to get reasonable results on
shock problems (comparable to finite-difference methods).

. Using tree data structures for gravity solver and for finding nearest neighbors

makes SPH much more complicated than original SPH method, and of
comparable complexity to Godunov-based Eulerian schemes, but not as complex
as AMR.

. From shot noise arguments we might expect resolution of SPH to be no better
than N"? per dimension. But results in 3D are better than one would expect
from this argument.
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SPH AND SELF-GRAVITY

% In a self-gravitating SPH gas there is a minimum mass
resolution (minimum number of particles) needed to resolve
the Jeans Mass for a gas of constant density and T.

SR.T\ 47:p)"/2
M; = —_
2Gu 3

Rg = kg/m,

@ In SPH the minimum resolved gas mass MUST be small than M,
at all times and locatons. This can be formulated in terms of

the J length:
A - - () - (%) ()

4np
@ M_. (h
min ( ) Mpin = (1.5 — 2)’”NWB¢' ~ (75 — 100)m,
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SPH AND SELF-GRAVITY

It is also assumed that gravitational smoothing €is similar to the
SPH smoothing scale, h.

If €<h then if M, <M, artificial fragmentation of gas cloud can be
produced because pressure forces are poorly resolved

If €e>h and M, < M,, gravitational fragmentation can be avoided
even if the gas cloud is gravitationally unstable (M>MJ)

For regions that are marginally unstable (M~MJ) and € ~ h but Mlim
<MJ, the gas will collapse but the collapse will be slower as the
graviy and P forces are poorly resolved on the small scales..

CONCLUSION: Use as many particles as possible to minimize these
resolution effects.
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time stepping

% Time integration of the equations of motion by Leap frog

scheme.
r=t+At

pi(t+895) = p (1= M)+ Ar-Dp, (1)
et +8) = € (t-8Y)) + Ar- De,(1)

v (t+800) = v, (1 - 81/)) + Ar- Dy, (1)
x,(t+ A1) = x,(t) + Ar-v (1 + D))

@ Atisrestricted by the CFL stability conditions due to the
characteristic adiabatic sound velocity c_ = op/op

@ Min (At, = CFL h,/c.). CFL = 0.1-0.3

@ or a more detailed estimate taking into account the artificial
viscosity (Monaghan 92)
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Adaptive kernels

Adaptive SPH (Shapiro et al. 1996; Owen et al. 1998)

Uses an anisotropic smoothing kernel to capture quasi-1D flows (such as
cosmological pancakes)

Fi. 8 —Two-dimensional kinemabical test: warped planar collapse with vorticity, for time shee g = 0.9754,. Limits of displayed area are =015 < x <
0.5, —0.5 = p = 0.5. Points are Lagrangian fluid elements (i.¢., like SPH particles ). Smoothing kernels for ASPH (/gfi) and SPH (rigit ) for the same selected
set of particles are shown (i.e., ASPH H cllipsoids and SPH /i circles, with H and /i scaled by a factor 3; these are the “zones of influence™ which contain the
nearest neighbors).

Smoothing length scalar h becomes a smoothing tensor H — local velocity field
determines orientation of principal axes and smoothing lengths along them

Works best in irrotational flow (Vxv = 0)

Computational Astrophysics
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PROS AND CONS OF
SPH

“ ADVANTAGES OF SPH METHOD:

@ MASS, TOTAL AND ANGULAR MOMENTUM AND TOTAL ENERGY
CONSERVED EVEN IN THE PRESENCE OF SELF-GRAVITY.

@ TOTAL ENERGY IS REASONABLY CONSERVED

ENTROPY IS CONSERVED AND IS ONLY PRODUCED BY
ARTIFICIAL VISCOSITY.

@ HIGH FLEXIBILITY TO PROBLEMS WITH COMPLEX GEOMETRY
@ EASY TO INCORPORATE VACUUM BOUNDARY CONDITIONS

@ GOOD TREATMENT OF PROBLEMS WITH HIGH MACH
NUMBERS.

@ CONSERVE GALILEAN INVARIANCE.
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PROS AND CONS OF

SPH

% PROBLEMS OF SPH METHOD:

@ FLUID INSTABILITIES AND DISCONTINUITIES WITH LARGE
DENSITY JUMPS TEND TO BE SUPPRESSED DUE TO
NUMERICAL SURFACE TENSION EFFECTS:

Agertz et al. (2007)
t =0.33 TKH
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GAS MIXING PROBLEM

Fundamental differences between SPH and grid methods

Oscar Agertz,'* Ben Moore,' Joachim Stadel,! Doug Potter,' Francesco Miniati,
Justin Read,' Lucio Mayer,? Artur Gawryszczak,” Andrey Kravtsov,* Ake Nordlund,’
Frazer Pearce,® Vicent Quilis,” Douglas Rudd,* Volker Springel,® James Stone,’
Elizabeth Tasker,'® Romain Teyssier,'! James Wadsley'? and Rolf Walder'’

Accepted 2007 July 3. Received 2007 June 30; in oniginal form 2006 October 16

Bow shock

Infalling cloud of
gas onto hot
halo; ablates with
grid codes, but
survives with SPH
codes.

Uniform supersonic  ow

Computational Astrophysics 50 06/05/2021



Subsonic turbulence

Bauer & Springel 2011

SPH does not
resolve the small
scale motions in
the gas in
subsonic regime
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Different hydrodynamical simulation codes are broadly in agreement,
albeit with substantial scatter and differences in detall

THE SANTA BARBARA CLUSTER COMPARISON PROJECT

Frenk, White & 23 co-authors (1999)
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Differences evident between grid codes
and SPH codes — encapsulated neatly in
entropy profile.

bryan

cen
couchman
evrard
gnedin
jenkins
navarro
oWen

pen
steinmelz

o

® O+ O0ES e

wadsley
yepes

|
[4¥]

—
)
-t
=
=
e
—
=
(o]
=
—
[
4
=
o
o
o
—
.
0,
o
b
et
=
&

J
|
]

|
0

Entropy

r [Mpc]

S(R) = log [Tyus(R)/ pgas(R)*?]

1




MODERN SPH METODS

% Modificantions to the standard SPH implentation have
been proposed to try to solve the problems of SPH with
mixing and contact discontinuities

@ Two approaches:
@ Artificial heating terms (Priceo8, Wadsley+08,Becki15)

@ New kernel functions optimized to avoid contact
discontinuities ( Read+09)
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ARTIFICIAL HEAT MIXING TERMS

Price (2008) Wadsley, Veeravalli & Couchman (2008)

Price argues that in SPH every conservation law requires dissipative terms to
capture discontinuities.

The normal artificial viscosity applies to the momentum equation, but discontinuities
in the (thermal) energy equation should also be treated with a dissipative term.

For every conserved quantity A

ijjdﬂfﬂdt =0 This is the discretized form of

a diffusion problem:
a dissipative term is postulated
dA

d:‘dl' 1Av5|g (_) ~ ”vzﬂ
= A - A)r; - VW dt /4
( dt )dm g {f { ) a o
that is designed to capture discontinuities. 1 o OVsig|Tii|
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Artificial heat
conduction drastically
Improves SPH's ability
to account for fluid
instabilities and
mixing

COMPARISON OF KH TESTS
FOR DIFFERENT

TREATMENTS OF THE
DISSIPATIVE TERMS

Price (2008)
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Another route to better SPH may lie in different ways

to estimate the density

AN ALTERNATIVE SPH FORMULATION

“Optimized SPH” (OSPH) of Read, Hayfield, Agertz (2009)

» Density estimate like
Ritchie & Thomas (2001):

N A :L
Ii'_]l,; = Z (A_j‘) . -lirjrlE_J 1-"'1'.:;.?

. L
1

* Very large number of
neighbors (442 1) to beat
down noise

* Needs peaked kernel to
suppress clumping
instability

» This in turn reduces the
order of the density
estimate, so that a large
number of neighbors is
required.

OSPH-HOCT4-442
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Tensile instability

old-fashioned SPH state-of-the-art SPH
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Santa Barbara Cluster Comparison Project
15 years later

Nl I-_ry Cosm0|0gy1 NUMERICAL SIMULATIONS FOR LARGE SURVEYS

nlFTy galaxy cluster simulations I: dark matter & non-radiative

2016, MNRAS, 457, 4063

Federico Sembolini,'?* Gustavo Yepes,! Frazer R. Pearce,® Alexander Knebe,’
June 30 - July 18, 2014 Scott T. Kay,! Chris Power,” Weiguang Cui,” Alexander M. Beck,%"# Stefano Borgani,!*!!
Instituto de Fisica Teorica, Madrid Claudio Dalla Vecchia,'®'* Romeel Davé, %16 Pascal Jahan Elahi,'” Sean February,'®
Shuiyao Huang®” Alex Hobbs,'? Neal Katz'® Erwin Lau,?’?! Ian G. McCarthy,?
Guiseppe Murante,” Daisuke Nagai,?0?1%* Kaylea Nelson,??* Richard D. A. Newton,>%
Ewald Puchwein,?* Justin I. Read,” Alexandro Saro,'! Joop Schaye, 27 Robert J. Thacker?

a workshop on the production of virtual skies

Table 1. List of all the simulation codes participating in the nIFTy cluster
comparison project.
Alexander Knebe (UAM) Arthur et al, 2017, MNRAS, 464, 2627
Frazer Pearce (Nottingham)

Juan Garcia Slido (AMIFT.CS1) Sembolini et al, 2016, MNRAS, 459, 2973 Colename  Reeenee “ M

ris Power (Western Australia) 2 P H

Richard Bower (Durham) Cui et al, 2016, MNRAS, 458, 4052 }C\A::;fn sRUd‘d' t'llf;mu% ;i Kravtsov (2008) Classic” SPH
pringel (2010)

Elahi et aI., 2015, MNRAS, 458, 1096 HYDRA Couchman, Thomas & Pearce (1995) VS

Sembolini et al., 2016, MNRAS, 457, 4063 rcr Sprngel 2005 “Modern” SPH

G2-Anarchy Dalla Vecchia et al. in prep.

| G3-X Beck et al. (2015) Vs
3 G3-SPHS Read & Hayfield (2012a) .
the workshop is financially supported by WS G3-Magneticum  Hirschmann et al. (2014) Grld

the Severo Ochoa Excellence Grant of the IFT THE UNIVERSITY OF G3-PESPH Huang et al. in prep.
the University of Western Australia WESTERN AUSTRALIA G3-MUSIC Sembolini et al. (2013)

EXCELENCIA! and the ARC Centre of Excellence for All-Sky Astrophysics EAASIHU G3-OWLS S etal, (2010)
. SEVERO G2-X Pike et al. (2014)
OCHOA S
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