Computational Astrophysics

Solving for Gravity

Alexander Knebe, Universidad Autonoma de Madrid

Computational Astrophysics

the equations

Solving for Gravity

= full set of equations

* collisionless matter (e.g. dark matter)

By -
a o

¥y

Dou __y
a

* collisional matter (e.g. gas)

P (o
Py +V(pv)

+V- ,()\76<)17+(p+i82)1—l
2u u

2u u

APE) +V:- [pE+p+iB2}17—l[*-l§]

* Poisson’s equation

A¢ = 4‘77:Gptot

* ideal gas equations

_ 0 p=(y-1)pe

pe = pE —l,ov2
=p (-V9) .

=pv- (-Vg)+(T-L) Maxwell’s equation

§=—Vx(17x§)

Computational Astrophysics

the equations

Solving for Gravity

= full set of equations

* collisionless matter (e.g. dark matter)

dx -
dI;M =Vou
d‘;’;M ‘(: -V¢ ...and the force

* collisional matter (e.g. gas)

P (ov _
P +V (pv) =0
d(pv - -
(V) +V: p\7®\7+(p+iB2)l—lB®B =p (-V¢)
ot 2u u

—

APE) +V- [pE+p+iB2}\7—l[*-l§]B

2u u

7

= pv- (=V¢)+ (T~ L)

* Poisson’s equation

A¢ = 4‘77:Gptot

* ideal gas equations
p=(r-1)pe

pe = pE —%,ov2

* Maxwell’s equation

§=—Vx(17x§)

Computational Astrophysics

Poisson’s Equation

Solving for Gravity

" Poisson’s equation

F(%) = —-mVO(X)

AD(F) = 47Gp(F)

Computational Astrophysics

Poisson’s Equation

Solving for Gravity

" Poisson’s equation

F(%) = —-mVO(X)

AD(F) = 47Gp(F)

particle approach

- Gmm, _ _
Flx)= _2 (x,—x .J)3 (i = xj)
i= j [j

gl"ld approach (X, ;, =position of centre of grid cell (i, j,k))
AD(X, ;) =4aGp(x, ;)

i,j.k

F(%) =-mVdZ,)

Computational Astrophysics Poisson’s Equation

Solving for Gravity

* Poisson’s equation

weapon of choice: tree codes

.)
particle approach

~ Gmm, _ _
Flx)= _E (x,—x .J)3 (i = xj)
i= j i J

F(%) = —mVD(X)

. J

AD(F) = 47Gp(F)

gl"ld approach (X, ;, =position of centre of grid cell (i, j,k))
AD(%,) = 47Gp(%; ;)
F(%,) =-mV®(%,)

Computational Astrophysics

Poisson’s Equation

Solving for Gravity

* Poisson’s equation

F(%) = —mVD(X)

AD(F) = 47Gp(F)

particle approach

- Gmm, _ _
Flx)= _E (x,—x .J)3 (i = xj)
i= j i J

(gl’ld approach (X, ;, =position of centre of grid cell (i,j,k))\
AD(%,) = 47Gp(%; ;)

| F(E0) =-mVO(F,)

weapon of choice: AMR codes

Computational Astrophysics

Solving for Gravity

the particle-mesh (PM) method

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

AD(g, ;) =47Gp(g,,,.) o

ﬁ(gk,l,m) = _qu)(gk,l,m) °

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

AD(g, ;) =47Gp(g,,,.) o

ﬁ(gk,l,m) = _qu)(gk,l,m) L

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

AD(g, ;) =47Gp(g,,,.)

ﬁ(gk,l,m) = _qu)(gk,l,m)

|. calculate mass density on grid

/

-

';éi g p(gk,l,m)

YieEN

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

AD(g, ;) =47Gp(g,,,.)

ﬁ(gk,l,m) = _qu)(gk,l,m)

|. calculate mass density on grid

2. solve Poisson’s equation on grid

/ ‘
X, —> p(8sm) ViEN

(I)(gk,l,m)

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

AD(g, ;) =47Gp(g,,,.)

ﬁ(gk,l,m) = _qu)(gk,l,m)

|. calculate mass density on grid

2. solve Poisson’s equation on grid

3. differentiate potential to get forces

/ ‘
X, —> p(8sm) ViEN

(I)(gk,l,m)

F(Z,,,)

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

AD(g, ;) =47Gp(g,,,.)

ﬁ(gk,l,m) = _qu)(gk,l,m)

|. calculate mass density on grid
2. solve Poisson’s equation on grid
3. differentiate potential to get forces

4.interpolate forces back to particles

/ ‘
X, —> p(8sm) ViEN

(I)(gk,l,m)

F(Z,,,)

F(3,,,) — F(%) ViEN

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

AD(g,) =47Gp(g,,.,) o
»
F(gk,l,m) = _qu)(gk,z,m) q
|. calculate mass density on grid X; = P(8ism)
2. solve Poisson’s equation on grid D8y 1)
3. differentiate potential to get forces F(Z,,)
4. interpolate forces back to particles F(3,,,) — F(%)

sounds like a waste of time and computer resources,
but exceptionally fast in practice

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

AD(g,) =47Gp(g,,.,) o
o
F(§i1) =MV, q
[| calculate mass density on grid X; = P(8rim)]
2. solve Poisson’s equation on grid D8y 1)
3. differentiate potential to get forces F(3,,,)

4. interpolate forces back to particles F(3,,,) — F(%)

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

" density assighment schemes

X, — p(gk,l,m)

example: | particle on | dimensional grid

M(g,)=mW(d) d=Ix—gkI

o) = 218
p) =
H
particle position x grid point g;
I I I < I I -
| | | @ —«< | | > X axis
m

T <

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

" density assighment schemes

X, — p(gk,l,m)

example: | particle on | dimensional grid

M(gk)= d=Ix_gkI

mass assignment function

o) = 218
p) =
H
particle position x grid point g;
I I I < I I -
| | | @ —«< | | > X axis
m

T <

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

" density assighment schemes

X, — p(gk,l,m)

example: | particle on | dimensional grid

* hierarchy of mass assighment schemes:

— Nearest-Grid-Point NGP
— Could-In-Cell CIC
— Triangular-Shaped Cloud TSC

particle position x grid point g;

I I I @ —«< I I > X axis
m

A\ J

H

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

" density assighment schemes

';éi g p(gk,l,m)

Nearest-Grid-Point (NGP):

mass assignment function:

{1 d<H/2
W(d) =

0 otherwise

I I I @ I I > X axis
m

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

" density assighment schemes

X, — p(gk,l,m)

Nearest-Grid-Point (NGP):

particle shape: mass assignment function:
1 d=H/2

S(x) =8(x) Wid)= {0 otherwise

i i > X axis

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

" density assighment schemes

';éi g p(gk,l,m)

Cloud-In-Cell (CIC):

mass assignment function: | | _ d J<H

W(d) =1

0 otherwise

I I I @ I I > X axis
m

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

" density assighment schemes

';éi g p(gk,l,m)

Cloud-In-Cell (CIC):

particle shape: mass assignment function: r 1- i d<H
g <
I |[x|=H/2 = J
sy -1t W (d) =
0 otherwise 0 otherwise
k— -\

I I ‘ ® I I > X axis
A\ J m

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

" density assighment schemes

';éi g p(gk,l,m)

Triangular-Shaped-Cloud (TSC):

mass assignment function: | 4 \H 2
W(d) =1 1(3 d)2 H 3H
—|=—-=| —=d=—
2\2 H 2 2
| 0 otherwise
| | | | I | .
| | | % | i > X axis

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

" density assighment schemes

X, — p(gk,l,m)

Triangular-Shaped-Cloud (TSC):

H
d=s—
particle shape: mass assignment function: 2
-
L RN _
0 otherwise 2 2
otherwise
e —
I I @ I > x axis
m

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

" density assighment schemes

';éi g p(gk,l,m)

N particles on 3 dimensional grid

El; = 551‘ - gk,l,m
N
M(3,,,) =Y, mW(d hW(d, hW (d.)
i=1

M(gk,l,m)
H3

p((_ék,l,m) =

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

" density assighment schemes

X, — p(gk,l,m)

N particles on 3 dimensional grid

l

d =X; = gk,l,m

M(3,,,) =Y, mW(d hW(d, hW (d.)

7

for every grid point we need to loop over all N particles...

M(gk,l,m)
H3

p((_ék,l,m) =

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

" density assighment schemes - in practice

';éi g p(gk,l,m)

...rather loop over all particles
and

assign them to the appropriate grid points,
because the mapping x; — g, is rather easy

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

" density assighment schemes - in practice
X; = P(81m)

e example for CIC assignment in 2D:

x, contributes its mass m. to the 4 closest grid points :

X € X

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

" density assighment schemes - in practice

X, — p(gk,l,m)

e example for CIC assignment in 3D:

x, contributes its mass m. to the 8 closest grid points :

/ / 1
8k1m+l Skttt | [
8kim 8k+lim /

-=>
gk,l+1,m+1 gk+1,l+1,m+1
gk,l +,m gk+1,l +,m

Computational Astrophysics

Particle-Mesh Method
Solving for Gravity

" density assighment schemes

e which scheme to choose!?

NGP = stepwise force (I grid point)

CIC = continuous piecewise linear force (8 grid points)

TSC

continuous force and first derivative (27 grid points)

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

" density assighment schemes

e which scheme to choose!?

NGP = too crude

increased smoothing of density field

CIC = common choice

TSC = pretty smooth Vv

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

" density assighment schemes

e which scheme to choose!?

NGP = too crude

CIC = common choice | increased smoothing of density field

TSC = pretty smooth Vv

smoothing the density field will lead to a “bias” in the forces
but at the same time decrease the “variance”!

bias = ((F())- F,,, (%)) o

var = (F2()) - <1?(55)>2 x NP

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

" density assighment schemes

e which scheme to choose!?

NGP = too crude log F(O[™
CIC = common choice

TSC = pretty smooth

logr

smoothing the density field will lead to a “bias” in the forces
but at the same time decrease the “variance”!

bias = ((F())- F,,, (%)) o

var = (F2()) - <1?(55)>2 x NP

(interplay between N and ¢: Ne=const.)

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

AD(g,) =47Gp(g,,.,) o
o
F(§i1) =MV, q
| calculate mass density on grid X; = P(8ism)
[2. solve Poisson’s equation on grid D8y 1)]
3. differentiate potential to get forces F(3,,,)

4. interpolate forces back to particles F(3,,,) — F(%)

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

* relaxation technique:

* FTT technique:

A(I)k,l,m = Prim

applicable and usable for any differential equation

only applicable and usable for linear differential equation

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

* relaxation technique:

* FTT technique:

A(I)k,l,m = Prim

applicable and usable for any differential equation

only applicable and usable for linear differential equation

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

A(I)k,l,m = Prim

 Green’s function method:

— solve differential equation by Fourier transformation

— applicable and usable for linear differential equations

Computational Astrophysics Particle-Mesh Method

Solving for Gravity
3 . . ’ . .
* numerically integrate Poisson’s equation fast fourier transform method

e Green’s function method

1
45T x

AD = p o(x) = [[fGGx-%) p(R)dx' ;G-

Computational Astrophysics Particle-Mesh Method

Solving for Gravity
3 . . ’ . .
* numerically integrate Poisson’s equation fast fourier transform method

e Green’s function method

1
45T x

AD = p o(x) = [[fGGx-%) p(R)dx' ;G-

O=p®G

FFT & convolution becomes multiplication

€= ———

b = f) g (with G = —% for Poisson’s equation)

Computational Astrophysics Particle-Mesh Method

Solving for Gravity
: . : : : :
* numerically integrate Poisson’s equation fast fourier transform method

e Green’s function method

1
45T x

AD = p o(x) = [[fGGx-%) p(R)dx' ;G-

O=p®G

FFT & convolution becomes multiplication

€= ———

b = f) g (with G = —% for Poisson’s equation)

FFT!

& <----

(FFT demands a regular grid though!)

Computational Astrophysics Particle-Mesh Method

Solving for Gravity
3 . . ’ . .
* numerically integrate Poisson’s equation fast fourier transform method

e discretized Green’s function

1
k
sinz(k") +sin?| 2 | + sin? k
2 2 2

compensates for grid anisotropies...

" N
G(k) = _P — G(gk,l,m) =-

A 2wk 2l 2w m
G(go,o,o)=0, kx:T, ky=—, ky=_

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

A(I)k,l,m = Prim

* relaxation technique: applicable and usable for any differential equation

* FTT technique: only applicable and usable for linear differential equation

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

relaxation technique

obtain iterative solver by discretizing differential equation

A(I)k,l,m = pk,l,m

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation relaxation technique

obtain iterative solver by discretizing differential equation

A(I)k,l,m = Prim
Aq)k,l,m V°Vq)k,z,m
i aq)k,l,m
ox ox
_ i . é,q)k,l,m
dy dy
i aq)k,l,m
0z 0z

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation relaxation technique

obtain iterative solver by discretizing differential equation

A(I)k,l,m = Prim

g
discretized Poisson’s equation

1
2
D= g(q)lm,l,m + D P TPt P TP — P H)

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation relaxation technique

obtain iterative solver by discretizing differential equation

A(I)k,l,m = pk,l,m

.0"'0" H H . @
" iterative solution: 2 ~— @&

g
discretized Poisson’s equation

1
(I)%m = g((g?-l-l,l,m + (ﬁ?—l,l,m + k

6D 2
T TP T k,l,m—l_lok,l,mH)

J+1,m

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

relaxation technique

obtain iterative solver by discretizing differential equation

kl+1,m
!
k-1,1m —a=> klm €&=— k+1,lm
4
I
kl-1,m
discretized Poisson’s equation
O —1(c1>l’ +® 4D 4P 4D, 4D - H?)
klm — 6 k+1,l,m k-1,l.m k,l+1,m k,l-1,m k,lm+1 k,l.m-1 lOk,l,m

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

relaxation technique

obtain iterative solver by discretizing differential equation

kl+1.m

!

kL1

— ‘
geomeﬂ"/ .

{appticeble

licable

150 gr\ds ®)

f arb'\trarY

/’l\,

kl-1,m

discretized Poisson’s

equation

i+l | i i i i i 2
D= g(q)kﬂ,l,m + D P TP TP TP — P H)

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity
* numerically integrate Poisson’s equation

* how to sweep through the grid?

relaxation technique

k-1,1m —a=> klm €&=— k+1,lm

discretized Poisson’s equation

i+l i i i
D + D, P, TP,

1 :
- (@
6(k+1,l,m

i [
+ P + CI),CJ’m_1

k,lm+1

_ lOk,l,mHz)

Computational Astrophysics Particle-Mesh Method

Solving for Gravity
* numerically integrate Poisson’s equation relaxation technique

* how to sweep through the grid?

*~

discretized Poisson’s equation

i+l | i i i i i 2
D= g(q)lm,l,m + D P TP TP TP — P H)

Computational Astrophysics Particle-Mesh Method

Solving for Gravity
* numerically integrate Poisson’s equation relaxation technique

* how to sweep through the grid?

*~

discretized Poisson’s equation

i+l | i i i i i 2
D= g(q)lm,l,m + D P TP TP TP — P H)

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity
* numerically integrate Poisson’s equation

e Gauss-Seidel sweeps:

relaxation technique

k-1,1m —=> klm €=— k+1,lm

discretized Poisson’s equation

i+l i i i
D + D, P, TP,

1 :
- (@
6(k+1,l,m

i [
+ P + CI),CJ’m_1

k,lm+1

_ lOk,l,mHz)

Computational Astrophysics Particle-Mesh Method

Solving for Gravity
* numerically integrate Poisson’s equation relaxation technique

e Gauss-Seidel sweeps:

<
* loop over all “black” cells , , _
one iteration of the potential

i [+1
* loop over all “red” cells Dot = Pt

how many iterations i are necessary!?

discretized Poisson’s equation

i+l | i i i i i 2
D= _((I)k+1,l,m + D P TP TP TP — P H)
6

Computational Astrophysics Particle-Mesh Method

Solving for Gravity
* numerically integrate Poisson’s equation relaxation technique

* stopping criterion:

i
A(I)k,l,m = Prim

discretized Poisson’s equation

i+1 i i i i i i 2
D= g(q)lm,l,m + D P TP TP TP — P H)

Computational Astrophysics Particle-Mesh Method

Solving for Gravity
* numerically integrate Poisson’s equation relaxation technique

* stopping criterion:

i ?
A(I)k,l,m ~ Prim > 0

discretized Poisson’s equation

i+1 i i i i i i 2
D= g(q)lm,l,m + D P TP TP TP — P H)

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity
* numerically integrate Poisson’s equation

* stopping criterion:

G2l puy 0
/ Ny

density as given by currently best guess for @'!

discretized Poisson’s equation

relaxation technique

density as given by mass assignhment scheme!

| 1 | | |
i+1 I I 1 l
D= g(q)lm,l,m + Dt P, TP, D

I +(I)l

2
kme+l klm-1 pk,l,mH)

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

* stopping criterion:

9

relaxation technique

i)
A(I)k,l,m ~ Prim > 0
residual: R' = HA(I);@I,m - pk,l,mH *| = suitable norm
discretized Poisson’s equation
(I)i+1 _ l(q)l (I)i @i (I)i q)i (I)i _ H2)
et = X ket TP i TP TP TP Y P — Prum

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity
* numerically integrate Poisson’s equation

* stopping criterion:

i ?
A(I)k,l,m ~ Prim > 0

R'=[A®},, - 0,,,||< €T

tolerance

discretized Poisson’s equation

relaxation technique

= suitable norm

error estimate

| 1 | | |
i+1 I I 1 l
D= g(q)lm,l,m + Dt P, TP, D

I +(I)l

2
kme+l klm-1 pk,l,mH)

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity
* numerically integrate Poisson’s equation

* stopping criterion:
R' = HA(I)LZM — pk’l’mH <eT

— truncation error:

error due to discreteness of grid

discretized Poisson’s equation

relaxation technique

i

i+l | i i i i 2
D= g(q)lm,l,m + D P TP TP TP — P H)

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity
* numerically integrate Poisson’s equation

e stopping criterion:
PPINg

R = HAcbf

k,l.m

- pk,l,mH <el

— truncation error:

error due to discreteness of grid

estimation

compare solution on actual grid
to solution on coarser grid

discretized Poisson’s equation

relaxation technique

i+l i i i i
D + Dt P, TP, D

1 :
- (@
6(k+1,l,m

k,lm+1

+ P!

k,l.m-1

_ lOk,l,mHz)

Computational Astrophysics Particle-Mesh Method

Solving for Gravity
* numerically integrate Poisson’s equation relaxation technique

* stopping criterion:

R =|A®},, - p,,,|<eT=¢|T,,..

k,l.m

— truncation error: T, = T[A(’R(I)Z’l,m)] = (A(I)Z,l,m)

~—

R(I);,z,m = cp;,n,p restriction to coarser grid
i i-1
A(Zz’cl)k,l,m) = pj,n,p
Q)[A(Rq);’l,m)] = p,ilm prolongation to finer grid

discretized Poisson’s equation

i+1 i i i i i i 2
D= g(q)lm,l,m + D P TP TP TP — P H)

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation relaxation technique

* stopping criterion:

i i
R = HA(I)k,l,m - pk,l,m” = ST = g”T;c,l,m”

— truncation error: T, = T[A(’R(I)Z’l,m)] = (A(I)Z,l,m)
-

i i
R(I)k,l,m = ¢j,n,p

A(R(I);‘J’m) - pj;,p
?[A(Rq);"l’m)] = pli,l,m = A(I)jc,z,m

discretized Poisson’s equation

i+l | i i i i i 2
D= g(q)lm,l,m + D P TP TP TP — P H)

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity
* numerically integrate Poisson’s equation

* stopping criterion:
R = HA(D;lm — pk,l,mH <l = 8||Tklm||

R' 4

discretized Poisson’s equation

relaxation technique

i+l i i i i
D + Dt P, TP, D

1 :
- (@
6(k+1,l,m

k,lm+1

+ P!

k,l.m-1

_ lOk,l,mHz)

Computational Astrophysics Particle-Mesh Method

Solving for Gravity
* numerically integrate Poisson’s equation relaxation technique

* stopping criterion:
R = HA(D;lm — pk,l,mH <l = 8||Tklm||

Ri

faster convergence!?

%y (O RN, N .

discretized Poisson’s equation

i+1 i i i i i i 2
D= g(q)lm,l,m + D P TP TP TP — P H)

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity
* numerically integrate Poisson’s equation

¢ convergence:
i i

R = HA(I)k,l,m - pk,l,mH

— slow convergence:

large-scale errors in @ cannot be “relaxed”
sufficiently fast on the actual grid

=> use coarser grids to speed up convergence...

discretized Poisson’s equation

relaxation technique

i+l i i i
kdm + P + DL + D

k-1,l.m

i
® + D,

1 :
- (@
6(k+1,l,m

+ P!

[2
klm-1 pk,l,mH)

Computational Astrophysics Particle-Mesh Method

Solving for Gravity
* numerically integrate Poisson’s equation relaxation technique

¢ convergence:
i i
R = HA(I)k,l,m - pk,l,mH

i+1
P~

— slow convergence: R =R

multi-grid relaxation techniques

=> beyond the scope of this lecture though...

discretized Poisson’s equation

i+1 i i i i i i 2
D= g(q)kﬂ,l,m + D P TP TP TP — P H)

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

accuracy of either

relaxation

or
FFT method

to solve Poisson’s equation?

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

pure PM calculation

[

\ /

A

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

2.0 grid cells

T ‘ T
pure PM calculation

11

1 |

10°F
:ﬂim
107
@ B
0
£ L
5 | soft ~
1072
1078
1.00

10.00
distance measured in grid cells

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

I —

pure PM calculation

107!

PM force

L soft ~ 2.0 grid cells

the force is automatically softened... (cf. tree-code lecture)

1078 A _— Ll
1.00 10.00

distance measured in grid cells

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

I —

pure PM calculation

107!

PM force

L soft ~ 2.0 grid cells

the force is automatically softened...but what if need to resolve sma ales?

107° A - L
1.00 10.00
distance measured in grid cells

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

PM force

™

pure PM calculation

1 |

1078
1.00

10.00

distance measured in grid cells

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

103 T T rvYY v T

AMR calculation :
g

10° | £
10" | 3
2]

(@) i
10° | E
10" E
ILD=9 ILD=7 ILo:S

Aaaald " A A a s aal A A Akoa s aal A Al

10° 10" 10° 10
r

Yahagi & Yoshi (2001)

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

10°

10

10’

10

10"

‘ details later... \

o

AMR calculation 1

. IL0=19 ILD=7 !Lo:S
10° 10" 10° 10
r

Yahagi & Yoshi (2001)

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

10°F x ' E
- pure PM calculation
s |
107 =
v - i
o
5 i i
> L soft ~ 2.0 grid ceN;: i
1073 -
" ...and what are these wiggles?
1072 : A L
1.00 10.00

grid cells

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

10°F x ' E
pure PM calculation

107 —
© i]
o
é = 4
5 L soft ~ 2.0 grid ceNs)

1073 =

" ...and what are these wiggles?
10 3 1 1 1 1 1

1.00 10.00
grid cells

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

pure PM calculation

force anisotropy

...and what are these wiggles?

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

AD(g,) =47Gp(g,,.,) o
o
F(§i1) =MV, q
| calculate mass density on grid X; = P(8ism)
2. solve Poisson’s equation on grid D8y 1)
[3. differentiate potential to get forces F(3,,,)]

4. interpolate forces back to particles F(3,,,) — F(%)

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

" obtaining the forces

F_:(gk,l,m) = _qu)(gk,l,m)

l

q)(§k+l,l,m) - (I)(gk—l,l,m)

Fx (gk,l,m) =-m 2H
- [4)) o _d .
Fy (gk,l,m) =—-m (gk’l+1’m)2H (gk,l—l,m)
g (I)(_» m+)_(I)(_> e)
F.(8,,,) = —m—2okt o 8iton-1

k-1,1m=> kJm€r—k+1,,m

H = (current) grid spacing

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

* numerically integrate Poisson’s equation

AD(g, ;) =47Gp(g,,,.)

F(gk,l,m) = _qu)(gk,l,m)

|. calculate mass density on grid

2. solve Poisson’s equation on grid

3. differentiate potential to get forces

5":1' g p(gk,l,m)

(I)(gk,l,m)

F(3,,,)

[4.interpolate forces back to particles

F8im) = F(E)]

Computational Astrophysics

Particle-Mesh Method

Solving for Gravity

" interpolating the forces

F(3,,,) — F)

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

" interpolating the forces

F(3,,,) — F)

use the inverse of the mass assignment scheme
to insure momentum conservation and minimize force anisotropies

FE)= Y3 Y FE)W - &)
k | m

in practice the triple sum is “only” over 8 (CIC) or 27 (TSC) cells...

Computational Astrophysics Particle-Mesh Method

Solving for Gravity

" interpolating the forces

F(3,,,) — F)

use the inverse of the mass assignment scheme
to insure momentum conservation and minimize force anisotropies

FE)= Y3 Y FE)W - &)
k | m

*check by calculating the total (periodic) force: PM scheme:
_ D(g,011)~ PG iy n)
N N k+1,l,m k=1,l,m
= F =—-m = =
P XF0)=3 35S F @ W -5, -Buim) 2
i=1 i=1
=... D8 1) = EEEg(gk,l,m = 8w P&y)
N N m.ni. R . . . B B ko m
= EE E 1;3] W(|rz - gk,l,m|)6(gk,l,m - gk',l’,m')W(‘rj - gk’,l',m") (3.,)= (gk 1)
' anti-symmetric! Beim H’

i=1 j=1 klmk'l'.;m

_.‘)

=0 (because of invariance under coordinate inversion) M(gk,l,m =
i=1

Computational Astrophysics Summary

Solving for Gravity

* Particle-Mesh (PM) method

AD(g,) =47Gp(g,,.,) o
»
ﬁ(gk,l,m) = _qu)(gk,z,m) q
|. calculate mass density on grid X; = P(8ism)
2. solve Poisson’s equation on grid D8y 1)
3. differentiate potential to get forces F(Z,,)
4. interpolate forces back to particles F(3,,,) — F(%)

anyone fancies to write a PM code as the project?

Computational Astrophysics

Solving for Gravity

Alexander Knebe, Universidad Autonoma de Madrid

