

Computational Astrophysics: The practical side

today:

01: Programming in C

S.R. Knollmann, UAM
last updated: 15.11.2010

Overview

– Overview

– The Language
– technical terms
– syntax description

– The Library
– standard feature

– Everyday Usage
– compiling
– 'more than one file'
– using libraries

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

Why C?
subjective, non-complete

– nearly universal availability
– various implementations
– a free implementation that works nearly everywhere: gcc

– extremely powerful
– operating systems are generally written in C
– can make use of specialized hardware relatively easy

– very mature
– ISO standard (ISO/ECI 9899)

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
– many people use it, so it is more likely that your code has a bug than the implementation

– very popular
– TIOBE index October 2010: 1. Java 2. C 3. C++
– lots of (free) documentation
– lots of code to learn from

– related to other languages (most notably: C++, C#)
– allows you to do what you want (more or less)

“The programmer is always right”-philosophy

“All email clients suck. This one just sucks less..”
– Michael Elkins

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

Why C?
subjective, non-complete

– nearly universal availability
– various implementations
– a free implementation that works nearly everywhere: gcc

– extremely powerful
– operating systems are generally written in C
– can make use of specialized hardware relatively easy

– very mature
– ISO standard (ISO/ECI 9899)

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
– many people use it, so it is more likely that your code has a bug than the implementation

– very popular
– TIOBE index October 2010: 1. Java 2. C 3. C++
– lots of (free) documentation
– lots of code to learn from

– related to other languages (most notably: C++, C#)
– allows you to do what you want (more or less)

“The programmer is always right”-philosophy

“All email clients suck. This one just sucks less..”
– Michael Elkins

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

Why C?
subjective, non-complete

– nearly universal availability
– various implementations
– a free implementation that works nearly everywhere: gcc

– extremely powerful
– operating systems are generally written in C
– can make use of specialized hardware relatively easy

– very mature
– ISO standard (ISO/ECI 9899)

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
– many people use it, so it is more likely that your code has a bug than the implementation

– very popular
– TIOBE index October 2010: 1. Java 2. C 3. C++
– lots of (free) documentation
– lots of code to learn from

– related to other languages (most notably: C++, C#)
– allows you to do what you want (more or less)

“The programmer is always right”-philosophy

“All email clients suck. This one just sucks less..”
– Michael Elkins

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

Why C?
subjective, non-complete

– nearly universal availability
– various implementations
– a free implementation that works nearly everywhere: gcc

– extremely powerful
– operating systems are generally written in C
– can make use of specialized hardware relatively easy

– very mature
– ISO standard (ISO/ECI 9899)

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
– many people use it, so it is more likely that your code has a bug than the implementation

– very popular
– TIOBE index October 2010: 1. Java 2. C 3. C++
– lots of (free) documentation
– lots of code to learn from

– related to other languages (most notably: C++, C#)
– allows you to do what you want (more or less)

“The programmer is always right”-philosophy

“All email clients suck. This one just sucks less..”
– Michael Elkins

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

Why C?
subjective, non-complete

– nearly universal availability
– various implementations
– a free implementation that works nearly everywhere: gcc

– extremely powerful
– operating systems are generally written in C
– can make use of specialized hardware relatively easy

– very mature
– ISO standard (ISO/ECI 9899)

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
– many people use it, so it is more likely that your code has a bug than the implementation

– very popular
– TIOBE index October 2010: 1. Java 2. C 3. C++
– lots of (free) documentation
– lots of code to learn from

– related to other languages (most notably: C++, C#)
– allows you to do what you want (more or less)

“The programmer is always right”-philosophy

“All email clients suck. This one just sucks less..”
– Michael Elkins

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

Why C?
subjective, non-complete

– nearly universal availability
– various implementations
– a free implementation that works nearly everywhere: gcc

– extremely powerful
– operating systems are generally written in C
– can make use of specialized hardware relatively easy

– very mature
– ISO standard (ISO/ECI 9899)

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
– many people use it, so it is more likely that your code has a bug than the implementation

– very popular
– TIOBE index October 2010: 1. Java 2. C 3. C++
– lots of (free) documentation
– lots of code to learn from

– related to other languages (most notably: C++, C#)
– allows you to do what you want (more or less)

“The programmer is always right”-philosophy

“All email clients suck. This one just sucks less..”
– Michael Elkins

Why C?
subjective, non-complete

– nearly universal availability
– various implementations
– a free implementation that works nearly everywhere: gcc

– extremely powerful
– operating systems are generally written in C
– can make use of specialized hardware relatively easy

– very mature
– ISO standard (ISO/ECI 9899)

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
– many people use it, so it is more likely that your code has a bug than the implementation

– very popular
– TIOBE index October 2010: 1. Java 2. C 3. C++
– lots of (free) documentation
– lots of code to learn from

– related to other languages (most notably: C++, C#)
– allows you to do what you want (more or less)

“The programmer is always right”-philosophy

“All email clients suck. This one just sucks less..”
– Michael Elkins

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

History

(see also: http://en.wikipedia.org/wiki/C_programming_language#History)

1969-1973 initial development (by Dennis Ritchie at AT&T Bell Labs)

1973 Unix kernel is rewritten in C

1978 first edition of “The C Programming Language”
known as K&R C (Brian Kernighan, Dennis Ritchie)

197?-198? C (variants thereof) is implemented for a wide variety of mainframes,
minicomputers and microcomputers (including IBM PC)

1983 American National Standards Institute (ANSI) forms the X3J11
committee

1989 ANSI X3.159-1989 "Programming Language C" aka ANSI-C, or C89

1990 The International Organization for Standardization (ISO) adopts
ANSI-C as ISO/IEC 9899:1990, aka C90

1999 ISO/IEC 9899:1999, aka C99

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

#include <stdio.h>
#include <stdlib.h>

double
power(double d, int n)
{

int i;
double tmp = 1.0;

if (n > 0) {
for (i = 0; i < n; i++)

tmp = tmp * d;
} else {

double dInv = 1. / d;
for (i = 0; i < -n; i++)

tmp = tmp * dInv;
}

return tmp;
}

int
main(int argc, char **argv)
{

double d;
int n;

d = atof(argv[1]);
n = atoi(argv[2]);
printf("%f^%i = %f \n", d, n, power(d, n));

return 0;
}

example.c example.c (equivalent)

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

#include <stdio.h>
#include <stdlib.h>

double power(double d, int n) {
int i;
double tmp = 1.0;
if(n>0)
{for(i=0;i<n;i++)
tmp = tmp * d;
}else{
double dInv = 1. / d;
for(i=0;i<-n;i++)
tmp=tmp*dInv;
}
return tmp;}

int main(int argc, char **argv) {
double d;
int n;
d = atof(argv[1]);
n = atoi(argv[2]);
printf("%f^%i = %f \n",d,n,power(d, n)); return 0;}

example.c example.c (equivalent)

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

#include <stdio.h>
#include <stdlib.h>

double power(double d, int n) {
int i;
double tmp = 1.0;
if(n>0)
{for(i=0;i<n;i++)
tmp = tmp * d;
}else{
double dInv = 1. / d;
for(i=0;i<-n;i++)
tmp=tmp*dInv;
}
return tmp;}

int main(int argc, char **argv) {
double d;
int n;
d = atof(argv[1]);
n = atoi(argv[2]);
printf("%f^%i = %f \n",d,n,power(d, n)); return 0;}

example.c example.c (equivalent)

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

#include <stdio.h>
#include <stdlib.h>

double
power(double d, int n)
{

int i;
double tmp = 1.0;

if (n > 0) {
for (i = 0; i < n; i++)

tmp = tmp * d;
} else {

double dInv = 1. / d;
for (i = 0; i < -n; i++)

tmp = tmp * dInv;
}

return tmp;
}

int
main(int argc, char **argv)
{

double d;
int n;

d = atof(argv[1]);
n = atoi(argv[2]);
printf("%f^%i = %f \n", d, n, power(d, n));

return 0;
}

example.c

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

example.c

Functions

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

#include <stdio.h>
#include <stdlib.h>

double
power(double d, int n)
{

int i;
double tmp = 1.0;

if (n > 0) {
for (i = 0; i < n; i++)

tmp = tmp * d;
} else {

double dInv = 1. / d;
for (i = 0; i < -n; i++)

tmp = tmp * dInv;
}

return tmp;
}

int
main(int argc, char **argv)
{

double d;
int n;

d = atof(argv[1]);
n = atoi(argv[2]);
printf("%f^%i = %f \n", d, n, power(d, n));

return 0;
}

example.c

Blocks

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

#include <stdio.h>
#include <stdlib.h>

double
power(double d, int n)
{

int i;
double tmp = 1.0;

if (n > 0) {
for (i = 0; i < n; i++)

tmp = tmp * d;
} else {

double dInv = 1. / d;
for (i = 0; i < -n; i++)

tmp = tmp * dInv;
}

return tmp;
}

int
main(int argc, char **argv)
{

double d;
int n;

d = atof(argv[1]);
n = atoi(argv[2]);
printf("%f^%i = %f \n", d, n, power(d, n));

return 0;
}

example.c

Loops

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

#include <stdio.h>
#include <stdlib.h>

double
power(double d, int n)
{

int i;
double tmp = 1.0;

if (n > 0) {
for (i = 0; i < n; i++)

tmp = tmp * d;
} else {

double dInv = 1. / d;
for (i = 0; i < -n; i++)

tmp = tmp * dInv;
}

return tmp;
}

int
main(int argc, char **argv)
{

double d;
int n;

d = atof(argv[1]);
n = atoi(argv[2]);
printf("%f^%i = %f \n", d, n, power(d, n));

return 0;
}

example.c

Flow-Control

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

#include <stdio.h>
#include <stdlib.h>

double
power(double d, int n)
{

int i;
double tmp = 1.0;

if (n > 0) {
for (i = 0; i < n; i++)

tmp = tmp * d;
} else {

double dInv = 1. / d;
for (i = 0; i < -n; i++)

tmp = tmp * dInv;
}

return tmp;
}

int
main(int argc, char **argv)
{

double d;
int n;

d = atof(argv[1]);
n = atoi(argv[2]);
printf("%f^%i = %f \n", d, n, power(d, n));

return 0;
}

example.c

Stack Changes

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

#include <stdio.h>
#include <stdlib.h>

double
power(double d, int n)
{

int i;
double tmp = 1.0;

if (n > 0) {
for (i = 0; i < n; i++)

tmp = tmp * d;
} else {

double dInv = 1. / d;
for (i = 0; i < -n; i++)

tmp = tmp * dInv;
}

return tmp;
}

int
main(int argc, char **argv)
{

double d;
int n;

d = atof(argv[1]);
n = atoi(argv[2]);
printf("%f^%i = %f \n", d, n, power(d, n));

return 0;
}

example.c

Types

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

#include <stdio.h>
#include <stdlib.h>

double
power(double d, int n)
{

int i;
double tmp = 1.0;

if (n > 0) {
for (i = 0; i < n; i++)

tmp = tmp * d;
} else {

double dInv = 1. / d;
for (i = 0; i < -n; i++)

tmp = tmp * dInv;
}

return tmp;
}

int
main(int argc, char **argv)
{

double d;
int n;

d = atof(argv[1]);
n = atoi(argv[2]);
printf("%f^%i = %f \n", d, n, power(d, n));

return 0;
}

example.c

Variables

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

#include <stdio.h>
#include <stdlib.h>

double
power(double d, int n)
{

int i;
double tmp = 1.0;

if (n > 0) {
for (i = 0; i < n; i++)

tmp = tmp * d;
} else {

double dInv = 1. / d;
for (i = 0; i < -n; i++)

tmp = tmp * dInv;
}

return tmp;
}

int
main(int argc, char **argv)
{

double d;
int n;

d = atof(argv[1]);
n = atoi(argv[2]);
printf("%f^%i = %f \n", d, n, power(d, n));

return 0;
}

example.c

Variables

Note:
First declare
then use

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

#include <stdio.h>
#include <stdlib.h>

double
power(double d, int n)
{

int i;
double tmp = 1.0;

if (n > 0) {
for (i = 0; i < n; i++)

tmp = tmp * d;
} else {

double dInv = 1. / d;
for (i = 0; i < -n; i++)

tmp = tmp * dInv;
}

return tmp;
}

int
main(int argc, char **argv)
{

double d;
int n;

d = atof(argv[1]);
n = atoi(argv[2]);
printf("%f^%i = %f \n", d, n, power(d, n));

return 0;
}

example.c

Preprocessor

Overview

Overview

The Language The Library Everyday Usage

Why C? History Simple Example

#include <stdio.h>
#include <stdlib.h>

double
power(double d, int n)
{

int i;
double tmp = 1.0;

if (n > 0) {
for (i = 0; i < n; i++)

tmp = tmp * d;
} else {

double dInv = 1. / d;
for (i = 0; i < -n; i++)

tmp = tmp * dInv;
}

return tmp;
}

int
main(int argc, char **argv)
{

double d;
int n;

d = atof(argv[1]);
n = atoi(argv[2]);
printf("%f^%i = %f \n", d, n, power(d, n));

return 0;
}

Allowed characters

Two sets:
– source character set

what the code is written in

– execution character set
what gets interpreted by the execution environment

Basic (source and execution):
– 26 uppercase and 26 lowercase Latin characters, 10 digits, 29 graphical characters:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 0
! “ # % & ' () * + , - . / : ; < = > ? [\] ^ { | } ~

– Space character, control characters representing horizontal tab, vertical tab, and form feed
– In source set: A way to indicate the end of a line
– In execution set: control characters for alert, backspace, carriage return, and new line

In string literals or character constants (in the source file):
– Execution characters are expressed by their corresponding source character, or by an escape

sequence.
– A byte with all bits set to 0, the null character, is used to terminate strings.

Overview

Alphabet

The Language The Library Everyday Usage

Keywords Identifiers Types Expressions Statements Preprocessor

Allowed characters

Two sets:
– source character set

what the code is written in

– execution character set
what gets interpreted by the execution environment

Basic (source and execution):
– 26 uppercase and 26 lowercase Latin characters, 10 digits, 29 graphical characters:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9
! “ # % & ' () * + , - . / : ; < = > ? [\] ^ { | } ~

– Space character, control characters representing horizontal tab, vertical tab, and form feed
– In source set: A way to indicate the end of a line
– In execution set: control characters for alert, backspace, carriage return, and new line

In string literals or character constants (in the source file):
– Execution characters are expressed by their corresponding source character, or by an escape

sequence.
– A byte with all bits set to 0, the null character, is used to terminate strings.

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Allowed characters

Two sets:
– source character set

what the code is written in

– execution character set
what gets interpreted by the execution environment

Basic (source and execution):
– 26 uppercase and 26 lowercase Latin characters, 10 digits, 29 graphical characters:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9
! “ # % & ' () * + , - . / : ; < = > ? [\] ^ { | } ~

– Space character, control characters representing horizontal tab, vertical tab, and form feed
– In source set: A way to indicate the end of a line
– In execution set: control characters for alert, backspace, carriage return, and new line

In string literals or character constants (in the source file):
– Execution characters are expressed by their corresponding source character, or by an escape

sequence.
– A byte with all bits set to 0, the null character, is used to terminate strings.

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Allowed characters

Two sets:
– source character set

what the code is written in

– execution character set
what gets interpreted by the execution environment

Basic (source and execution):
– 26 uppercase and 26 lowercase Latin characters, 10 digits, 29 graphical characters:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9
! “ # % & ' () * + , - . / : ; < = > ? [\] ^ { | } ~

– Space character, control characters representing horizontal tab, vertical tab, and form feed
– In source set: A way to indicate the end of a line
– In execution set: control characters for alert, backspace, carriage return, and new line

In string literals or character constants (in the source file):
– Execution characters are expressed by their corresponding source character, or by an escape

sequence.
– A byte with all bits set to 0, the null character, is used to terminate strings.

Escape sequences:

\a Alert
\b Backspace (move cursor one position to the left)
\f Formfeed (move to the next page)
\n Newline
\r Carriage return (move cursor to beginning of line)
\t Horizontal tab
\v Vertical tab
\” Print “
\? Print ?
\' Print '
\\ Print \
\0 Null character

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Allowed characters

Two sets:
– source character set

what the code is written in

– execution character set
what gets interpreted by the execution environment

Basic (source and execution):
– 26 uppercase and 26 lowercase Latin characters, 10 digits, 29 graphical characters:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9
! “ # % & ' () * + , - . / : ; < = > ? [\] ^ { | } ~

– Space character, control characters representing horizontal tab, vertical tab, and form feed
– In source set: A way to indicate the end of a line
– In execution set: control characters for alert, backspace, carriage return, and new line

In string literals or character constants (in the source file):
– Execution characters are expressed by their corresponding source character, or by an escape

sequence.
– A byte with all bits set to 0, the null character, is used to terminate strings.

!!!WARNING!!!

Those are ASCII characters. When copy and pasting from a
website, typographical characters not equal to the ASCII
characters can make their way in your source. This will
produce funny errors.

E.g.: — – vs. -
 ” “ vs. “
 ’ ‘ vs. '

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Keywords

List of keywords (C99):

auto enum restrict unsigned
break extern return void
case float short volatile
char for signed while
const goto sizeof _Bool
continue if static _Complex
default inline struct _Imaginary
do int switch
double long typedef
else register union

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Identifiers

Can denote:
– an object
– a function
– a tag or a member of a structure, union, or enumeration
– a typedef name
– a label name
– a macro name
– a macro parameter

Have:
– scope

the region in which the identifier is known
– linkage

defines whether the same name in a different scope refers to the same identifier
– name space

can allow to have the same identifier visible at a given time (though referring to different things)

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Identifiers

Valid identifiers:
– Can contain:
_ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9

– must not start with a digit
– are case-sensitive
– identifiers starting with _ should be avoided (often used internally by the implementation)
– identifiers must be different from keywords

valid:
hello, hElLO_231, bla, foobar, FOOBAR, f1, ...

valid, but avoid:
_my, _00231, _hdas32, ...

not valid:
0hello, 1HELLO, for, while, _Bool, ...

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Identifiers: Scope

Possible scopes:
– function

only labels
– file

if declarator appears outside of any block or list of parameters
terminates at the end of the translation unit (approximately: end of source file it is in)

– block
if declarator appears inside a block or list of parameter declarations in a function definition
terminates at the end of the associated block

– function prototype
if declarators appears inside a list of parameters in a function prototype (not its definition)
terminate at the end of the function declarator

'Shadowing'
– scopes can overlap (e.g. same identifier in nested blocks)
– within the inner scope, the identifier refers to the entity declared in the inner scope:

the entity of the outer scope is hidden, or shadowed.
– within the outer scope, the identifier refers to the entity declared in the outer scope

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Identifiers: Scope

Possible scopes:
– function

only labels
– file

if declarator appears outside of any block or list of parameters
terminates at the end of the translation unit (approximately: end of source file it is in)

– block
if declarator appears inside a block or list of parameter declarations in a function definition
terminates at the end of the associated block

– function prototype
if declarators appears inside a list of parameters in a function prototype (not its definition)
terminate at the end of the function declarator

'Shadowing'
– scopes can overlap (e.g. same identifier in nested blocks)
– within the inner scope, the identifier refers to the entity declared in the inner scope:

the entity of the outer scope is hidden, or shadowed.
– within the outer scope, the identifier refers to the entity declared in the outer scope

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Identifiers: Linkage

“An identifier declared in different scopes or in the same scope more than once can
be made to refer to the same object or function by a process called linkage.”

ISO/IEC 9899:TC2

External
– in the entire program (constituted by a set of translation units and libraries) identifiers with external

linkage refer to the same object or function
– indicated by storage class extern
– if a function declaration has no explicit storage declaration, it is extern
– if a declaration for an object has file scope and no explicit storage declaration

Internal
– within a translation unit, an identifier of internal linkage denotes the same object or function
– indicated by storage class static
– if the storage class of a file scope identifier of an object or a function is static

None
– identifiers with no linkage denote a unique entity
– identifiers to be anything but a function or an object
– an identifier declared to be a function parameter
– block scope identifier for an object without the storage class extern

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Identifiers: Linkage

“An identifier declared in different scopes or in the same scope more than once can
be made to refer to the same object or function by a process called linkage.”

ISO/IEC 9899:TC2

External
– in the entire program (constituted by a set of translation units and libraries) identifiers with external

linkage refer to the same object or function
– indicated by storage class extern
– if a function declaration has no explicit storage declaration, it is extern
– if a declaration for an object has file scope and no explicit storage declaration

Internal
– within a translation unit, an identifier of internal linkage denotes the same object or function
– indicated by storage class static
– if the storage class of a file scope identifier of an object or a function is static

None
– identifiers with no linkage denote a unique entity
– identifiers to be anything but a function or an object
– an identifier declared to be a function parameter
– block scope identifier for an object without the storage class extern

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Identifiers: Linkage

“An identifier declared in different scopes or in the same scope more than once can
be made to refer to the same object or function by a process called linkage.”

ISO/IEC 9899:TC2

External
– in the entire program (constituted by a set of translation units and libraries) identifiers with external

linkage refer to the same object or function
– indicated by storage class extern
– if a function declaration has no explicit storage declaration, it is extern
– if a declaration for an object has file scope and no explicit storage declaration

Internal
– within a translation unit, an identifier of internal linkage denotes the same object or function
– indicated by storage class static
– if the storage class of a file scope identifier of an object or a function is static

None
– identifiers with no linkage denote a unique entity
– identifiers to be anything but a function or an object
– an identifier declared to be a function parameter
– block scope identifier for an object without the storage class extern

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Identifiers: Linkage

“An identifier declared in different scopes or in the same scope more than once can
be made to refer to the same object or function by a process called linkage.”

ISO/IEC 9899:TC2

External
– in the entire program (constituted by a set of translation units and libraries) identifiers with external

linkage refer to the same object or function
– indicated by storage class extern
– if a function declaration has no explicit storage declaration, it is extern
– if a declaration for an object has file scope and no explicit storage declaration

Internal
– within a translation unit, an identifier of internal linkage denotes the same object or function
– indicated by storage class static
– if the storage class of a file scope identifier of an object or a function is static

None
– identifiers with no linkage denote a unique entity
– identifiers to be anything but a function or an object
– an identifier declared to be a function parameter
– block scope identifier for an object without the storage class extern

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Identifiers: Name Space

Possible Names Spaces
– label name

for goto or switch
disambiguated by: usage and declaration

– tags
for structures, unions, enumerations
disambiguated by: keywords struct, union, enum

– members
each structure and union has a name space for its members
disambiguated by: the access method (. or -> operator)

– ordinary identifiers
all other identifiers

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Identifiers: Name Space

Possible Names Spaces
– label name

for goto or switch
disambiguated by: usage and declaration

– tags
for structures, unions, enumerations
disambiguated by: keywords struct, union, enum

– members
each structure and union has a name space for its members
disambiguated by: the access method (. or -> operator)

– ordinary identifiers
all other identifiers

#include <stdio.h>

struct hello {
int hello;

};

int
main(void)
{

int hello = 1;
struct hello helloStruct;

helloStruct.hello = hello;

printf("%i\n%i\n",
 hello,
 helloStruct.hello);

hello:
return 0;

}

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Identifiers: Lifetime of objects

Lifetime

Duration during which storage is reserved for an object. During that time it will
– have a constant address
– retain its last-stored value

Note:
– using objects outside their lifetime is undefined
– pointers to objects outside their lifetime become undefined

Possible lifetimes (storage durations)
– static

objects with external or internal linkage, or with the storage-class static
will be initialized once before program startup and is available during the whole runtime

– automatic
objects with no linkage and without storage-class static
come into existence when block they are associated with is entered
lifetime ends, when their associated block is left in any way (function calls are superseding the
block, not leaving it)

– allocated
Programmer has to deal with memory allocation (library functionality)

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Identifiers: Lifetime of objects

Lifetime

Duration during which storage is reserved for an object. During that time it will
– have a constant address
– retain its last-stored value

Note:
– using objects outside their lifetime is undefined
– pointers to objects outside their lifetime become undefined

Possible lifetimes (storage durations)
– static

objects with external or internal linkage, or with the storage-class static
will be initialized once before program startup and is available during the whole runtime

– automatic
objects with no linkage and without storage-class static
come into existence when block they are associated with is entered
lifetime ends, when their associated block is left in any way (function calls are superseding the
block, not leaving it)

– allocated
Programmer has to deal with memory allocation (library functionality)

Types

Object Types
– types describing objects

Derived Types
– constructed from basic types

Incomplete Types
– types that describe the objects, but lack information to calculate their sizes

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Types: Object Types

Integer types:
– _Bool

large enough to store 0 and 1
– char

large enough to store any member of the basic execution set (they will all have positive values)
– standard signed integer types:
signed char, short int, int, long int, long long int
Beware: sizes can vary between architectures!

– standard unsigned integer types:
unsigned char, unsigned short int, unsigned int, unsigned long int, unsigned
long long int

Real floating types:
– float, double, long double

Complex floating types:
– float _Complex, double _Complex, long double _Complex

More:
– Integer and floating types are called arithmetic types (two domains: real and complex)
– void: empty set of values (incomplete type)

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Types: Object Types

Integer types:
– _Bool

large enough to store 0 and 1
– char

large enough to store any member of the basic execution set (they will all have positive values)
– standard signed integer types:
signed char, short int, int, long int, long long int
Beware: sizes can vary between architectures!

– standard unsigned integer types:
unsigned char, unsigned short int, unsigned int, unsigned long int, unsigned
long long int

Real floating types:
– float, double, long double

Complex floating types:
– float _Complex, double _Complex, long double _Complex

More:
– Integer and floating types are called arithmetic types (two domains: real and complex)
– void: empty set of values (incomplete type)

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Note:
Instead of _Bool : bool
 requires stdbool.h
Instead of _Complex: complex
 requires complex.h

Types: Derived Types

Arrays:
– contiguously allocated nonempty set of objects of a given type

Structure:
– sequentially allocated nonempty collections of objects (may be of different types)

Unions:
– like structure but overlapping

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

double arr[128]; myType_t arr[128];

Types: Derived Types

Arrays:
– contiguously allocated nonempty set of objects of a given type

Structure:
– sequentially allocated nonempty collections of objects (may be of different types)

Unions:
– like structure but overlapping

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

double arr[128]; myType_t arr[128];

struct tag {
int id;

 char *name;
double x[128];
double y[128];

} myStruct;

myStruct.id = 1;
myStruct.name = “Funny Name”;
for (int i = 0; i < 128; i++) {

myStruct.x[i] = (double)(i + 1);
myStruct.y[i] = log(myStruct.x[i]);

}

Types: Derived Types

Arrays:
– contiguously allocated nonempty set of objects of a given type

Structure:
– sequentially allocated nonempty collections of objects (may be of different types)

Unions:
– like structure but overlapping

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

double arr[128]; myType_t arr[128];

struct tag {
int id;

 char *name;
double x[128];
double y[128];

} myStruct;

union tag {
char c;
int i;
double d;
float f;

} myUnion;

myStruct.id = 1;
myStruct.name = “Funny Name”;
for (int i = 0; i < 128; i++) {

myStruct.x[i] = (double)(i + 1);
myStruct.y[i] = log(myStruct.x[i]);

}

Types: Derived Types

Pointer:
– may be derived from a function type, an object type, or an incomplete type, which is called the

referenced type
– value (i.e. memory address) is a reference to an entity of the referenced type

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

struct tag {
int id;

};

// More things

{
struct tag myStruct, *myStructPtr;
int *idPtr;

myStructPtr = &myStruct;

myStructPtr->id = 1;
idPtr = &(myStruct.id);
assert(*idPtr == myStructPtr->id);

}

Simple pointers

Types: Derived Types

Pointer:
– may be derived from a function type, an object type, or an incomplete type, which is called the

referenced type
– value (i.e. memory address) is a reference to an entity of the referenced type

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

struct tag {
int id;

};

// More things

{
struct tag myStruct, *myStructPtr;
int *idPtr;

myStructPtr = &myStruct;

myStructPtr->id = 1;
idPtr = &(myStruct.id);
assert(*idPtr == myStructPtr->id);

}

extern int
compareDouble(const void *p1, const void *p2)
{

if (*((double *)p1) < *((double *)p2))
return -1;

if (*((double *)p1) > *((double *)p2))
return 1;

return 0;
}

// More things

{
double arr[128];

// More things

qsort(arr, 128, sizeof(double),
 &compareDouble);

}

Simple pointers Function Pointers

Types: Derived Types

Functions:
– characterized by its return type and the number and types of its parameters

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

myType myType
myFunc(myType s); myFunc(myType);

myType
myFunc(myType s)
{

return s;
}

extern void
myFunc(void);

extern void
myFunc(void)
{

// Do something, but don't return
}

static int
myFunc(int d, double a, char *f);

static void
myFunc(int d, double a, char *f)
{

return -4;
}

Types: Derived Types

Functions:
– call-by-value!

but passing a reference is possible

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

void
myFunc(int a)
{

a = 5;
}

int
main(void)
{

int a = 1;

// This will print 'a = 1'
printf("a = %i\n", a);
myFunc(a);
// This will also print 'a = 1'
printf("a = %i\n", a);

return 0;
}

Types: Derived Types

Functions:
– call-by-value!

but passing a reference is possible

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

void
myFunc(int a)
{

a = 5;
}

int
main(void)
{

int a = 1;

// This will print 'a = 1'
printf("a = %i\n", a);
myFunc(a);
// This will also print 'a = 1'
printf("a = %i\n", a);

return 0;
}

void
myFunc(int *a)
{

*a = 5;
}

int
main(void)
{

int a = 1;

// This will print 'a = 1'
printf("a = %i\n", a);
myFunc(&a);
// This will now print 'a = 5'
printf("a = %i\n", a);

return 0;
}

Types: Derived Types

Functions: Main

Starting point of the execution

Two allowed signatures

If second form, then:
argc: Number of command line arguments
argv: Array of Strings holding the arguments

./myProg Haha 4.2332

argc = 3
argv[0] = “./myProg”
argv[1] = “Haha”
argv[2] = “4.2332”
argv[3] = NULL

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

int
main(void);

int
main(int argc, char *argv[]);

Types: Derived Types

Functions: Main

Starting point of the execution

Two allowed signatures

If second form, then:
argc: Number of command line arguments
argv: Array of Strings holding the arguments

./myProg Haha 4.2332

argc = 3
argv[0] = “./myProg”
argv[1] = “Haha”
argv[2] = “4.2332”
argv[3] = NULL

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

int
main(void);

int
main(int argc, char *argv[]);

Expressions

– Primary Expressions
– Postfix operators
– Unary operators
– Cast operators
– Multiplicative operators
– Additive operators
– Relations
– Logical operators
– Conditional operator
– Assignment operator
– Bitwise operators
– Comma operator

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Expressions: Primary expressions

– identifiers
– if it has been declared as an object (lvalue)

Note: undeclared identifiers are syntax errors
– if it is a function (function designator)

– a constant

– string literal

– a parenthesized expression

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Expressions: Postfix operators

– array subscripting

– function calls

– structure and union members

– increment and decrement

– compound literals

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Expressions: Postfix operators

– array subscripting

– function calls

– structure and union members

– increment and decrement

– compound literals

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

E1[E2] is equivalent to *(E1 + E2), e.g.

double arr[128];
arr[0] == *arr;
arr[45] == *(arr + 45);

double arr[5][5];
arr[2][3] == *(arr + (2 * 5) + 3);

Expressions: Postfix operators

– array subscripting

– function calls

– structure and union members

– increment and decrement

– compound literals

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

int
f(int a, double b);

int foo = 1;
float bar = -1.04;

f(foo, bar); // bar is promoted to double

Expressions: Postfix operators

– array subscripting

– function calls

– structure and union members

– increment and decrement

– compound literals

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

struct bla {
int a;
double b;

};

struct bla s, *sp;

sp = &s;

sp->a = 1;
s.b = 1.0;

Expressions: Postfix operators

– array subscripting

– function calls

– structure and union members

– increment and decrement

– compound literals

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

int a = 1;

a++; // Identical to a = a + 1;
a--; // Identical to a = a – 1;

double arr[128];
double *dp = arr;

for (int i = 0; i < 128; i++) {
*dp = 1.0;
dp++;
// Identical to arr[i] = 1.0

}

Expressions: Postfix operators

– array subscripting

– function calls

– structure and union members

– increment and decrement

– compound literals

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

int a[5] = {0, 1, 2, 3, 4};

drawline((struct point){.x = 1, .y = 4},
 (struct point){.x = 3, .y = 3});

Expressions: Unary operators

– Prefix in- and decrement

– Address and indirection

– Unary arithmetic operations

– sizeof operator

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

int a = 1;

--a; // Equivalent to (a = a – 1);
++a; // Equivalent to (a = a + 1);

Note:
double b[3] = {0., 0., 0.};
int i = 0;

b[++i] = 1.0; // is b[1] = 1.0;
b[i++] = 1.0; // is b[1] = 1.0;
b[i] = 1.0; // is b[2] = 1.0;

Expressions: Unary operators

– Prefix in- and decrement

– Address and indirection

– Unary arithmetic operations

– sizeof operator

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

int a, *ap;

a = 1;
ap = &a; // & is the address operator
a = *ap; // * is the indirection

Expressions: Unary operators

– Prefix in- and decrement

– Address and indirection

– Unary arithmetic operations

– sizeof operator

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

!OP → Logical negation !OP: (0 == OP)
+OP → OP
-OP → -OP
~OP → bitwise complement (OP must be integer)

double a = f();
if (!isfinite(a))

Expressions: Unary operators

– Prefix in- and decrement

– Address and indirection

– Unary arithmetic operations

– sizeof operator

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

double a = f();
size_t size;

size = sizeof(a); // storage size in bytes of a

size = sizeof(double); // storage size in
 // bytes for doubles

size = sizeof(struct tag); // storage size in
 // bytes for the
 // tag structure

sizeof(char) == 1

Expressions: Cast operators

– Explicitly converts types

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

long int a = 990;
int b;

b = (int)a;

void *p;
double a;

p = (void *)(&a);

Expressions: Multiplicative operators

Expressions: Additive operators

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

int a = 4;
int b = 3;

a * b // 12
a / b // 1
a / ((double)b) // 1.333333...
a % b // 3

Expressions: Multiplicative operators

Expressions: Additive operators

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

unsigned int a = 1;
unsigned int b = 2;

a + b // 2
a - b // 2^32 - 1

int a = 4;
int b = 3;

a * b // 12
a / b // 1
a / ((double)b) // 1.333333...
a % b // 3

Expressions: Relations

Expressions: Logical Operators

Expressions: Conditional Operator

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

int a = 4;
int b = 4;

a < b // 1, i.e false
a > b // 0, i.e. true
a <= b // 0, i.e. true
a >= b // 0, i.e. true

Expressions: Relations

Expressions: Logical Operators

Expressions: Conditional Operator

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

== Logical equal, e.g. a == b
!= Logical not equal, e.g. a != b
&& Logical AND, e.g. (a < 1) && (b > 2)
|| Logical OR, e.g. (a < 1) || (a > 1)

int a = 4;
int b = 4;

a < b // 1, i.e false
a > b // 0, i.e. true
a <= b // 0, i.e. true
a >= b // 0, i.e. true

Expressions: Relations

Expressions: Logical Operators

Expressions: Conditional Operator

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

== Logical equal, e.g. a == b
!= Logical not equal, e.g. a != b
&& Logical AND, e.g. (a < 1) && (b > 2)
|| Logical OR, e.g. (a < 1) || (a > 1)

int a = 4;
int b;

b = (a > 3) ? 34 : 12;

int a = 4;
int b = 4;

a < b // 1, i.e false
a > b // 0, i.e. true
a <= b // 0, i.e. true
a >= b // 0, i.e. true

Expressions: Bitwise operators

Expressions: Assignment operators

Expressions: Comma operator

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

a & b // bitwise AND
a | b // bitwise INCLUSIVE OR
a ^ b // bitwise EXCLUSIVE OR
a << b // left shift bits of a by b
a >> b // right shift bits of a by b

Expressions: Bitwise operators

Expressions: Assignment operators

Expressions: Comma operator

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

a & b // bitwise AND
a | b // bitwise INCLUSIVE OR
a ^ b // bitwise EXCLUSIVE OR
a << b // left shift bits of a by b
a >> b // right shift bits of a by b

a += b; a <<= b;
a -= b; a >>= b;
a *= b; a &= b;
a /= b; a |= b;
a %= b; a ^= b;

Expressions: Bitwise operators

Expressions: Assignment operators

Expressions: Comma operator

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

a & b // bitwise AND
a | b // bitwise INCLUSIVE OR
a ^ b // bitwise EXCLUSIVE OR
a << b // left shift bits of a by b
a >> b // right shift bits of a by b

int a;

a = a = 1, a + 3; // a = 4

a += b; a <<= b;
a -= b; a >>= b;
a *= b; a &= b;
a /= b; a |= b;
a %= b; a ^= b;

Statements

A statement specifies an action to be performed.

– labeled statement
– compound statement
– expression and null statement
– selection statement (if, switch)
– iteration statement (for, do, while)
– jump statement (goto, continue, break, return)

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Statements: Labeled

– provide a way to jump to specific points
– only to be used in selection statements
goto is evil

Statements: Compound

– compound statements are blocks

Statements: Expression, Null

– an expression statement is written as
expression ;

– the expression is optional
if omitted: null statement

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

labeled statement:
identifier : statement
case constant expression : statement
default : statement

Statements: Labeled

– provide a way to jump to specific points
– only to be used in selection statements
goto is evil

Statements: Compound

– compound statements are blocks

Statements: Expression, Null

– an expression statement is written as
expression ;

– the expression is optional
if omitted: null statement

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

labeled statement:
identifier : statement
case constant expression : statement
default : statement

compound statement:
{ block-item-list

opt
 }

block-item-list:
block-item
block-item-list block-item

block-item:
declaration
statement

Statements: Labeled

– provide a way to jump to specific points
– only to be used in selection statements
goto is evil

Statements: Compound

– compound statements are blocks

Statements: Expression, Null

– an expression statement is written as
expression ;

– the expression is optional
if omitted: null statement

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

labeled statement:
identifier : statement
case constant expression : statement
default : statement

compound statement:
{ block-item-list

opt
 }

block-item-list:
block-item
block-item-list block-item

block-item:
declaration
statement

expression statement:
expression

opt
;

Statements: Selection

– selects among a set of statements depending on the value of the controlling
expression

– is a block
– Note: for if (and if/else) selections, the first statement is executed iff the

expression compares unequal to 0
– Note: in switch selections, the program flow jumps to the corresponding case

and continues from there (possibly entering other cases)

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

selection statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

Statements: Selection

– selects among a set of statements depending on the value of the controlling
expression

– is a block
– Note: for if (and if/else) selections, the first statement is executed iff the

expression compares unequal to 0
– Note: in switch selections, the program flow jumps to the corresponding case

and continues from there (possibly entering other cases)

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

if (a != 0) // if (a)
foo();

if (a > 0)
foo();

else
bar();

if ((a > 0) != 0) {
foo();

} else {
bar();

}

Statements: Selection

– selects among a set of statements depending on the value of the controlling
expression

– is a block
– Note: for if (and if/else) selections, the first statement is executed iff the

expression compares unequal to 0
– Note: in switch selections, the program flow jumps to the corresponding case

and continues from there (possibly entering other cases)

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

if (a != 0) // if (a)
foo();

if (a > 0)
foo();

else
bar();

if ((a > 0) != 0) {
foo();

} else {
bar();

}

switch (a) {
case 0:

foo();
case 1:

bar();
default:

;
}

Statements: Selection

– selects among a set of statements depending on the value of the controlling
expression

– is a block
– Note: for if (and if/else) selections, the first statement is executed iff the

expression compares unequal to 0
– Note: in switch selections, the program flow jumps to the corresponding case

and continues from there (possibly entering other cases)

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

if (a != 0) // if (a)
foo();

if (a > 0)
foo();

else
bar();

if ((a > 0) != 0) {
foo();

} else {
bar();

}

switch (a) {
case 0:

foo();
case 1:

bar();
default:

;
}

switch (type) {
case TYPE_RED:

red_foo();
break;

case TYPE_YELLOW:
yellow_foo();
break;

case TYPE_GREEN:
green_foo();
break;

case TYPE_BLUE:
blue_foo();
break;

default:
bar();

}

Statements: Iteration

– causes a statement (call the loop body) to be executed until the controlling
expression compares equal to 0 (i.e. 'is false').

– Note: the controlling expression is evaluate before (after) the loop body for
while (do) loops.

– Note: the second expression in the for loop is the controlling expression and if
omitted is replaced with a non zero constant ('loop forever')

– Note: for for iterations, the declaration part can only declare variables of
storage class auto or register

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

iteration statement:
while (expression) statement
do statement while (expression) ;
for (expression

opt
 ; expression

opt
 ; expression

opt
) statement

Statements: Iteration

– causes a statement (call the loop body) to be executed until the controlling
expression compares equal to 0 (i.e. 'is false').

– Note: the controlling expression is evaluate before (after) the loop body for
while (do) loops.

– Note: the second expression in the for loop is the controlling expression and if
omitted is replaced with a non zero constant ('loop forever')

– Note: for for iterations, the declaration part can only declare variables of
storage class auto or register

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

do
a = foo()

while (a != 5);

do {
a = foo();
bar();

} while (a != 5);

Statements: Iteration

– causes a statement (call the loop body) to be executed until the controlling
expression compares equal to 0 (i.e. 'is false').

– Note: the controlling expression is evaluate before (after) the loop body for
while (do) loops.

– Note: the second expression in the for loop is the controlling expression and if
omitted is replaced with a non zero constant ('loop forever')

– Note: for for iterations, the declaration part can only declare variables of
storage class auto or register

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

while (a != 5)
a = foo();

while (a != 5) {
a = foo();
bar();

}

while (*s++ != '\0')
;

do
a = foo()

while (a != 5);

do {
a = foo();
bar();

} while (a != 5);

Statements: Iteration

– causes a statement (call the loop body) to be executed until the controlling
expression compares equal to 0 (i.e. 'is false').

– Note: the controlling expression is evaluate before (after) the loop body for
while (do) loops.

– Note: the second expression in the for loop is the controlling expression and if
omitted is replaced with a non zero constant ('loop forever')

– Note: for for iterations, the declaration part can only declare variables of
storage class auto or register

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

for (i=5; i>=0; i--)
foo();

for (; i>0; i--) {
foo();
bar();

}

for (int j=0;
 j<(1<<30);
 j++) {

foo();
bar();

}

while (a != 5)
a = foo();

while (a != 5) {
a = foo();
bar();

}

while (*s++ != '\0')
;

do
a = foo()

while (a != 5);

do {
a = foo();
bar();

} while (a != 5);

Statements: Jump

– will cause the program flow to jump to the specified position
– goto is evil!
– Note: Not to be confused with the library jump functionality

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

jump statement:
goto identifier ;
continue ;
break ;
return expression

opt
 ;

Statements: Jump

– will cause the program flow to jump to the specified position
– goto is evil!
– Note: Not to be confused with the library jump functionality

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

{
bad:

// code

goto evil;

// code

nasty:
// code
goto bad;

evil:
// code
goto nasty;

}

Statements: Jump

– will cause the program flow to jump to the specified position
– goto is evil!
– Note: Not to be confused with the library jump functionality

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

{
bad:

// code

goto evil;

// code

nasty:
// code
goto bad;

evil:
// code
goto nasty;

}

do {
// code
continue;
// code

contin:
} while (/* exp */)

do {
// code
goto contin;
// code

contin:
} while (/* exp */)

Statements: Jump

– will cause the program flow to jump to the specified position
– goto is evil!
– Note: Not to be confused with the library jump functionality

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

{
bad:

// code

goto evil;

// code

nasty:
// code
goto bad;

evil:
// code
goto nasty;

}

do {
// code
continue;
// code

contin:
} while (/* exp */)

do {
// code
goto contin;
// code

contin:
} while (/* exp */)

for (j=0; j<5; j++) {
if (arr[j] == '\0')

break;
arr2[j] = arr[j];

}

switch (/* exp */) {
case 3;

foo();
case 5:

bar();
break;

case 6:
eat();

}

Preprocessor

– first stage in translation of program

– pulls in headers

– evaluates macros

– conditional compilation

– extras

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Preprocessor

– first stage in translation of program

– pulls in headers

– evaluates macros

– conditional compilation

– extras

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

#include

#define A 5
#define B(a,b) (a+b)
#undef

#ifdef
#ifndef
#if
#else
#elif
#endif

#pragma
#error

Preprocessor: Header inclusion

Including system headers
– searches in a set of directories
– you can add directories to the list

(with compiler switches, often -I)
– used for standard headers or installed

libraries

Including local headers
– starts to search from the directory of the current file

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

#include <stdio.h>
#include <math.h>
#include <gsl/gsl_int.h>

#include “stdio.h”
#include “foo/bar.h”
#include “../../helper/helpers.h”

Preprocessor: Macros

– Defining 'constants'
– either in the code

or
– via the compiler (-D)

– Small 'functions'
– simplifies the code
– facilitates the DRY principle

(don't repeat yourself)
– beware of side-effects!

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

#define N 40
double arr[N];

#define MAX(a,b) \
((a > b) ? a : b)

int foo = 4;
int bar = 3;
int max = MAX(foo, bar);

int max = ((foo > bar) ? foo : bar)

Preprocessor: Macros

– Getting rid of macros

– Conventionally using all caps for macros

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

#undef N
#undef MAX

Preprocessor: Conditional Compilation

– Using macros ('defines') to only parse certain parts of a source file
– used for optional feature of the code
– can replace code-conditionals (theoretically faster)
– reduces code size by only building what is needed
– don't overdo it, it is hard to keep track of 45 different interacting options
– essential to prevent multiple includes

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

#include “config.h”

#ifdef WITH_MPI #if (defined WITH_MPI)
include <mpi.h> # include <mpi.h>
#endif #endif

#if (NDIM == 4)
define POW_NDIM(x) ((x)*(x)*(x)*(x))
#elif (NDIM == 3)
define POW_NDIM(x) ((x)*(x)*(x))
#elif (NDIM == 2)
define POW_NDIM(x) ((x)*(x))
#else
error NDIM
#endif

Preprocessor: Conditional Compilation

– Using macros ('defines') to only parse certain parts of a source file
– used for optional feature of the code
– can replace code-conditionals (theoretically faster)
– reduces code size by only building what is needed
– don't overdo it, it is hard to keep track of 45 different interacting options
– essential to prevent multiple includes

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

main.c:

#include “file1.h”
#include “file2.h”

file2.h:

#include “file1.h”

in .h files:

#ifndef THIS_FILE_H
#define THIS_FILE_H

// file content

#endif

Preprocessor: Extras

– #error
– used to stop the compilation of the code with an error
– useful to catch incompatible compilers or incompatible defines

– #pragma
– implementation specific preprocessor flags
– used for nifty compiler specific features
– if the used compiler does not know a given pragma statement, it will be ignored (generally

producing a warning message)
– most prominent use: OpenMP parallelizations

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Preprocessor: Extras

– #error
– used to stop the compilation of the code with an error
– useful to catch incompatible compilers or incompatible defines

– #pragma
– implementation specific preprocessor flags
– used for nifty compiler specific features
– if the used compiler does not know a given pragma statement, it will be ignored (generally

producing a warning message)
– most prominent use: OpenMP parallelizations

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

Preprocessor: Extras

– #error
– used to stop the compilation of the code with an error
– useful to catch incompatible compilers or incompatible defines

– #pragma
– implementation specific preprocessor flags
– used for nifty compiler specific features
– if the used compiler does not know a given pragma statement, it will be ignored (generally

producing a warning message)
– most prominent use: OpenMP parallelizations

Overview The Language The Library Everyday Usage

Alphabet Keywords Identifiers Types Expressions Statements Preprocessor

#ifdef _OPENMP
pragma omp parallel for
#endif
for (int i = 0; i < N; i++) {

arr[i] = expensiveFunction(arr[i]);
}

Features

– The standard (C90, C99) defines a set of functions, that facilitate standard
tasks (and also the headers where the functions are provided from)
– Input/Output: Getting data into the code and throwing it out again
– Math: implementations of standard mathematical functions
– Strings: Handling of set of characters (i.e. 'strings')
– Memory: Providing a framework for dynamical memory allocations
– and more...
– Full list of standard headers:

assert.h complex.h ctype.h errno.h fenv.h float.h inttypes.h iso646.h limits.h
locale.h math.h setjmp.h signal.h stdarg.h stdbool.h stddef.h stdint.h stdio.h
stdlib.h string.h tgmath.h time.h wchar.h wctype.h

– We will only deal with a small subset of the standard functions

– A half-decent working environment will provide a complete documentation of
the standard functions, e.g. in unixoid systems 'man function'

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

Features

– The standard (C90, C99) defines a set of functions, that facilitate standard
tasks (and also the headers where the functions are provided from)
– Input/Output: Getting data into the code and throwing it out again
– Math: implementations of standard mathematical functions
– Strings: Handling of set of characters (i.e. 'strings')
– Memory: Providing a framework for dynamical memory allocations
– and more...
– Full list of standard headers:

assert.h complex.h ctype.h errno.h fenv.h float.h inttypes.h iso646.h limits.h
locale.h math.h setjmp.h signal.h stdarg.h stdbool.h stddef.h stdint.h stdio.h
stdlib.h string.h tgmath.h time.h wchar.h wctype.h

– We will only deal with a small subset of the standard functions

– A half-decent working environment will provide a complete documentation of
the standard functions, e.g. in unixoid systems 'man function'

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

Features

– The standard (C90, C99) defines a set of functions, that facilitate standard
tasks (and also the headers where the functions are provided from)
– Input/Output: Getting data into the code and throwing it out again
– Math: implementations of standard mathematical functions
– Strings: Handling of set of characters (i.e. 'strings')
– Memory: Providing a framework for dynamical memory allocations
– and more...
– Full list of standard headers:

assert.h complex.h ctype.h errno.h fenv.h float.h inttypes.h iso646.h limits.h
locale.h math.h setjmp.h signal.h stdarg.h stdbool.h stddef.h stdint.h stdio.h
stdlib.h string.h tgmath.h time.h wchar.h wctype.h

– We will only deal with a small subset of the standard functions

– A half-decent working environment will provide a complete documentation of
the standard functions, e.g. in unixoid systems 'man function'

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

Features

– The standard (C90, C99) defines a set of functions, that facilitate standard
tasks (and also the headers where the functions are provided from)
– Input/Output: Getting data into the code and throwing it out again
– Math: implementations of standard mathematical functions
– Strings: Handling of set of characters (i.e. 'strings')
– Memory: Providing a framework for dynamical memory allocations
– and more...
– Full list of standard headers:

assert.h complex.h ctype.h errno.h fenv.h float.h inttypes.h iso646.h limits.h
locale.h math.h setjmp.h signal.h stdarg.h stdbool.h stddef.h stdint.h stdio.h
stdlib.h string.h tgmath.h time.h wchar.h wctype.h

– We will only deal with a small subset of the standard functions

– A half-decent working environment will provide a complete documentation of
the standard functions, e.g. in unixoid systems 'man function'

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

Before re-inventing the wheel,
check the standard,

ask Google (Bing, Yahoo...),
or a fellow programmer!

The functionality you look for
might be in the standard!

Input/Output

– Getting data into your code

– Writing the results to disk, report progress to user

– Concept of file descriptors (FILE *)
– Three named standard ones:

stdin: data stream from the keyboard/input redirection
stdout: 'the screen'
stderr: 'the screen' (but with the notion that something bad happened)

– Files can be connected to file descriptors

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

Input/Output: fprintf

– Prototype

– Parameters
– *stream

The output target (stdout, stderr, or any other appropriate file handle)
– *format

Description of what to write out
– …

List of variables to write out (according to the format)

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

int fprintf(FILE *stream, const char *format, ...);

Input/Output: fprintf

– Prototype

– Parameters
– *stream

The output target (stdout, stderr, or any other appropriate file handle)
– *format

Description of what to write out
– …

List of variables to write out (according to the format)

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

int fprintf(FILE *stream, const char *format, ...);

fprintf(stdout, “Hello World!\n”);

int i = 42;
fprintf(stdout, “i = %i\n”, i);

double d = 1223.14451233;
fprintf(stdout, “d = %e\nd^2 = %e\n”, d, d*d);

int i = 42;
long l = (long)i;
fprintf(stdout, “i = %i\nl = %li\n”, i, l);

Input/Output: fprintf

– Formats

– Modifiers

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

%i, %d Writes an int
%e Writes a double as [-]d.ddde±dd
%f Writes a double as [-]ddd.ddd
%g Selects between %e and %f depending on the number
%s Writes a \0-terminated string
%% Prints a %

l long int (i.e. %li)
ll long long int (i.e. %llu)
L long double (i.e. %Lg)

Input/Output: sprintf and printf

– They work like fprintf, but printf will write to stdout and sprintf into a
character array instead of a file stream.

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

int printf(const char *format, ...);

int sprintf(char *s, const char *format, ...);

Input/Output: (|s|f)printf return value

– The number of characters printed is returned

– In the case of errors, a negative value is returned

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

Input/Output: fscanf

– Prototype

– Parameters
– *stream

The input source (stdin, or any other appropriate file handle)
– *format

Description of what to read in
– …

List of pointers to variables to store the values in(according to the format)

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

int fscanf(FILE *stream, const char *format, ...);

int i;
fscanf(stdin, “%i”, &i);

float f;
double d;
fscanf(stdin, “%f %lf”, %f, &d);

int i;
long l;
fscanf(stdin, “%i %li”, &i, &l);

Input/Output: fscanf

– Formats

– Modifiers

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

%i, %d Reads an int
%u Reads an unsigned int
%f Reads a float

l long int (i.e. %li) or double (e.g. %lf)

Input/Output: sscanf and scanf

– They work like fscanf, but scanf will read from stdin and sscanf from a
character array instead of a file stream.

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

int scanf(const char *format, ...);

int sscanf(char *s, const char *format, ...);

Input/Output: (|s|f)scanf return value

– The number of successfully matched and assigned

– That might not be equal to the number of parameters asked for

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

Input/Output: fopen

– Prototype

– Parameters
– *path

The file to open (with path, if required)
– *mode

The mode with which to open the file

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

FILE * fopen(const char *path, const char *mode);

FILE *f;
f = fopen(“test.dat”, “r”);

FILE *f;
f = fopen(“/data/test.dat”, “w”);

FILE *f;
f = fopen(“../test.dat”, “rb”);

FILE *f;
f = fopen(“run/out/test.dat”, “r+”);

Input/Output: fopen

– Modes

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

“r”, “rb” Open for reading only
(positioned at beginning of file)

“r”, “r+b” Open for reading and writing
(positioned at beginning of file)

“w”, “wb” Open for writing
(file is truncated if existed)

“w+”, “w+b” Open for writing and reading
(file is truncated if existed)

“a”, “ab” Open for appending (writing at end of file)
(positioned at end of file)

“a+”, “a+b” Open for appending at end of file and reading
(write position always at end of file, read position beginning of file)

Input/Output: fopen return value

– A file pointer providing access to the file

– If the opening failed, NULL will be returned

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

Input/Output: More on fopen

– There exists another function, that can change the access mode of an already
available file pointer:

– Once the file handle is not needed anymore, the file should be closed:

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

FILE * freopen(const char *path, const char *mode, FILE *f);

int fclose(FILE *f);

Input/Output: fread/fwrite

– Prototype

– Parameters
– *ptr: Target memory area
– size: Number of bytes per element
– nmeb: Number of elements to read
– *stream: The stream from which to read

– Prototype

– Parameters
– *ptr: Memory area from which to copy to the file
– size: Number of bytes per element
– nmeb: Number of elements to read
– *stream: The stream from which to read

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

Input/Output: fread/fwrite examples

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

FILE *f;
int data[48];

f = fopen(“test.dat”, “r”);
fread(data, sizeof(int), 48, f);
fclose(f);

FILE *f;
int data[48];

f = fopen(“/data/test.dat”, “w”);
fwrite(data, sizeof(int), 48, f);
fclose(f);

Input/Output: fread/fwrite return value

– Number of items read/written

– If errors occur, the a smaller item count (or zero)
(error could be, e.g. end-of-file)

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

Math

– The functions are generally named as you would expect and do what you
would guess they do

– There are functions for all three types of floating point values

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

sin(x), cos(x), acos(x), asin(x), atan(x), tan(x)
log(x), exp(x), sqrt(x), pow(x, y)

double sin(double x);
float sinf(float x);
long double sinl(long double x);

Memory

– C allows for dynamic memory management

– requires #include <stdlib.h>

– A memory chunk can be allocated, then used and later freed

– Lifetime of allocated objects extends from allocation up to deallocation

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

Memory: Allocation

– Two (actually, three, see next slide) functions are available for allocation of
memory:

calloc (all bits set to zero)
– Prototype

– Parameters
– nmeb: Number of elements to allocate
– size: The size (in bytes) of one element

malloc (unspecified initial values)
– Prototype

– Parameters
– size: The number of bytes to allocate

– Both return a pointer to the lowest byte of the allocated memory region, or
NULL, if no large enough contiguous memory chunk could be allocated

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

Memory: Allocation

– Two (actually, three, see next slide) functions are available for allocation of
memory:

calloc (all bits set to zero)
– Prototype

– Parameters
– nmeb: Number of elements to allocate
– size: The size (in bytes) of one element

malloc (unspecified initial values)
– Prototype

– Parameters
– size: The number of bytes to allocate

– Both return a pointer to the lowest byte of the allocated memory region, or
NULL, if no large enough contiguous memory chunk could be allocated

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

void * calloc(size_t nmemb, size_t size);

Memory: Allocation

– Two (actually, three, see next slide) functions are available for allocation of
memory:

calloc (all bits set to zero)
– Prototype

– Parameters
– nmeb: Number of elements to allocate
– size: The size (in bytes) of one element

malloc (unspecified initial values)
– Prototype

– Parameters
– size: The number of bytes to allocate

– Both return a pointer to the lowest byte of the allocated memory region, or
NULL, if no large enough contiguous memory chunk could be allocated

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

void * calloc(size_t nmemb, size_t size);

void * malloc(size_t size);

Memory: Allocation

– Two (actually, three, see next slide) functions are available for allocation of
memory:

calloc (all bits set to zero)
– Prototype

– Parameters
– nmeb: Number of elements to allocate
– size: The size (in bytes) of one element

malloc (unspecified initial values)
– Prototype

– Parameters
– size: The number of bytes to allocate

– Both return a pointer to the lowest byte of the allocated memory region, or
NULL, if no large enough contiguous memory chunk could be allocated

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

void * calloc(size_t nmemb, size_t size);

void * malloc(size_t size);

Memory: Reallocation

– Allocated memory can be changed in size

realloc (new elements have undetermined values, old ones are kept)
– Prototype

– Parameters
– *ptr: Pointer to old memory region
– size: The new size

– if *ptr is NULL, then realloc behaves like malloc

– if *ptr is not a pointer returned by a previous call of malloc, calloc, or realloc, the
behaviour is undefined

– realloc works in these steps
– allocate new space
– copy old data to new memory location
– deallocate old memory

– If the new space cannot be allocated, NULL is returned and the old space is not
deallocated

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

void * realloc(void *ptr, size_t size);

Memory: Reallocation

– Allocated memory can be changed in size

realloc (new elements have undetermined values, old ones are kept)
– Prototype

– Parameters
– *ptr: Pointer to old memory region
– size: The new size

– if *ptr is NULL, then realloc behaves like malloc

– if *ptr is not a pointer returned by a previous call of malloc, calloc, or realloc, the
behaviour is undefined

– realloc works in these steps
– allocate new space
– copy old data to new memory location
– deallocate old memory

– If the new space cannot be allocated, NULL is returned and the old space is not
deallocated

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

void * realloc(void *ptr, size_t size);

Memory: Reallocation

– Allocated memory can be changed in size

realloc (new elements have undetermined values, old ones are kept)
– Prototype

– Parameters
– *ptr: Pointer to old memory region
– size: The new size

– if *ptr is NULL, then realloc behaves like malloc

– if *ptr is not a pointer returned by a previous call of malloc, calloc, or realloc, the
behaviour is undefined

– realloc works in these steps
– allocate new space
– copy old data to new memory location
– deallocate old memory

– If the new space cannot be allocated, NULL is returned and the old space is not
deallocated

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

void * realloc(void *ptr, size_t size);

Memory: Reallocation

– Allocated memory can be changed in size

realloc (new elements have undetermined values, old ones are kept)
– Prototype

– Parameters
– *ptr: Pointer to old memory region
– size: The new size

– if *ptr is NULL, then realloc behaves like malloc

– if *ptr is not a pointer returned by a previous call of malloc, calloc, or realloc, the
behaviour is undefined

– realloc works in these steps
– allocate new space
– copy old data to new memory location
– deallocate old memory

– If the new space cannot be allocated, NULL is returned and the old space is not
deallocated

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

void * realloc(void *ptr, size_t size);

Memory: Reallocation

– Allocated memory can be changed in size

realloc (new elements have undetermined values, old ones are kept)
– Prototype

– Parameters
– *ptr: Pointer to old memory region
– size: The new size

– if *ptr is NULL, then realloc behaves like malloc

– if *ptr is not a pointer returned by a previous call of malloc, calloc, or realloc, the
behaviour is undefined

– realloc works in these steps
– allocate new space
– copy old data to new memory location
– deallocate old memory

– If the new space cannot be allocated, NULL is returned and the old space is not
deallocated

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

void * realloc(void *ptr, size_t size);

Memory: Deallocation

– Return memory chunk back to the system for other usage

free
– Prototype

– Parameters
– *ptr: Pointer to memory region that should be freed

– *ptr must be a pointer returned by a previous call of malloc, calloc, or realloc

– *ptr may be NULL, in which case no operation is performed

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

void free(void *ptr);

Memory: Deallocation

– Return memory chunk back to the system for other usage

free
– Prototype

– Parameters
– *ptr: Pointer to memory region that should be freed

– *ptr must be a pointer returned by a previous call of malloc, calloc, or realloc

– *ptr may be NULL, in which case no operation is performed

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

void free(void *ptr);

Memory: Deallocation

– Return memory chunk back to the system for other usage

free
– Prototype

– Parameters
– *ptr: Pointer to memory region that should be freed

– *ptr must be a pointer returned by a previous call of malloc, calloc, or realloc

– *ptr may be NULL, in which case no operation is performed

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

void free(void *ptr);

Memory: Pitfalls

– not dealing with NULLs

– the size is precious

– double free corruptions

– memory leaks

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

double *data;
uint64_t num = 1L << 50; // 1024TB

data = malloc(sizeof(double) * num); // returns NULL

for (uint64_t i = 0; i < num; i++)
data[i] = (double)i; // Produces a segmentation fault

Memory: Pitfalls

– not dealing with NULLs

– the size is precious

– double free corruptions

– memory leaks

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

int
f(double *data, int numElements)
{

for (int i = 0; i < numElements; i++)
data[i] = exp(data[i]);

}

Memory: Pitfalls

– not dealing with NULLs

– the size is precious

– double free corruptions

– memory leaks

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

int
f(double *data, int numElements)
{

for (int i = 0; i < numElements; i++)
printf(“%15.10f\n”, data[i]);

free(data);
}

// ...

f(data, numElements);
free(data); // Black dragons...

// ...

Memory: Pitfalls

– not dealing with NULLs

– the size is precious

– double free corruptions

– memory leaks

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

void
leakingMemory(void)
{

double *data = malloc(sizeof(double) * 1024);

return;
}

Error handling

Basically falls under 'best practise' but there are two noteworthy things provided by
the library:

– <errno.h> provides a error variable that may be set by several functions

– <assert.h> provides a macro to do hard runtime checks

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

#include <errno.h>
#include <string.h>
#include <stdlib.h>

if (fclose(stdout) != 0) {
int errnum = errno;
fprintf(stderr, “%s”, strerror(errnum));
exit(EXIT_FAILURE);

}

Error handling

Basically falls under 'best practise' but there are two noteworthy things provided by
the library:

– <errno.h> provides a error variable that may be set by several functions

– <assert.h> provides a macro to do hard runtime checks

Overview The Language The Library Everyday Usage

Features <stdio.h> <math.h> Memory Error handling

#include <errno.h>
#include <string.h>
#include <stdlib.h>

if (fclose(stdout) != 0) {
int errnum = errno;
fprintf(stderr, “%s”, strerror(errnum));
exit(EXIT_FAILURE);

}

#include <assert.h>

int
f(double *a, int n)
{

assert(a != NULL);
assert(n > 0 && n < 1024);
assert(1 == 0); // Aborts code and produces a core file

Files

Two types of (plain text) files:
– Header Files (*.h)
– declare things that can be used

– Source Files (*.c)
– implement things

Generated (binary) files:
– Object files (*.o)
– contains the compiled code

– Libraries (lib*.a, lib*.so, *.dll, …)
– collection of object files

– Executable (no specific ending)
– Can be executed

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

Files

Two types of (plain text) files:
– Header Files (*.h)
– declare things that can be used

– Source Files (*.c)
– implement things

Generated (binary) files:
– Object files (*.o)
– contains the compiled code

– Libraries (lib*.a, lib*.so, *.dll, …)
– collection of object files

– Executable (no specific ending)
– Can be executed

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

/*--- Includes --*/
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <math.h>
#include “xmem.h”

/*--- M A I N ---*/
int
main(int argc, char **argv)
{

uint64_t numDataPoints = 4294967295; // 2^32 - 1
double *data = xmalloc(sizeof(double)*(numDataPoints));

for (uint64_t i = 0; i < numDataPoints; i++)
data[i] = sqrt((double)i);

xfree(data);

return EXIT_SUCCESS;
}

main.c xmem.h xmem.c

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

#ifndef XMEM_H
#define XMEM_H

/*--- Includes --*/
#include <stdlib.h>

/*--- Exported global variables ---*/
extern size_t global_bytesAllocated;

/*--- Prototypes of exported functions ----------------------------------*/
extern void *
xmalloc(size_t size);

extern void
xfree(void *ptr);

#endif

main.c xmem.h xmem.c

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

/*--- Includes --*/
#include “xmem.h”
#include <stdio.h>

/*--- Implementations of exported variables -----------------------------*/
size_t global_bytesAllocated = 0;

/*--- Implementations of exported functions -----------------------------*/
extern void *
xmalloc(size_t size)
{

void *ptr;

ptr = malloc(size);
if (ptr == NULL) {

fprintf(stderr, “Failed to allocate %zi bytes\n”, size);
exit(EXIT_FAILURE);

}
global_bytesAllocated += size;

return ptr;
}

extern void
xfree(void *ptr)
{

if (ptr != NULL) {
free(ptr);
global_bytesAllocated -= size;

}
}

main.c xmem.h xmem.c

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

Compiling

'Compiling the code' generally means:

– translating all .c files to .o files

– linking the .o files (and external libraries) together, thereby producing an
executable

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

Compiling: Translating

For gcc:

Compiler used here: Gnu C Compiler (gcc)

Flags:
– -c: Tells to compiler to produce an object file
– -o: Specifies the filename of the output file
– -std: Select the C standard (here: C99)
– -W: Specifying compiler warning (here: all)

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

export CC=gcc

$(CC) -std=c99 -Wall -c -o main.o main.c
$(CC) -std=c99 -Wall -c -o xmem.o xmem.c

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

Compiling: Translating

For gcc:

Compiler used here: Gnu C Compiler (gcc)

Flags:
– -c: Tells to compiler to produce an object file
– -o: Specifies the filename of the output file
– -std: Select the C standard (here: C99)
– -W: Specifying compiler warning (here: all)

export CC=gcc

$(CC) -std=c99 -Wall -c -o main.o main.c
$(CC) -std=c99 -Wall -c -o xmem.o xmem.c

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

export CC=gcc

$(CC) -o myProgram main.o xmem.o -lm

Compiling: Linking

For gcc:

Compiler used here: Gnu C Compiler (gcc)

Flags:
– -o: Specifies the filename of the output file
– -l: Linking a library (here: -lm, linking the math library)

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

export CC=gcc

$(CC) -o myProgram main.o xmem.o -lm

Compiling: Linking

For gcc:

Compiler used here: Gnu C Compiler (gcc)

Flags:
– -o: Specifies the filename of the output file
– -l: Linking a library (here: -lm, linking the math library)

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

Compiling: Translating & Linking

For simple one file programs it is more convenient to directly produce the binary
without first generating the object file:

export CC=gcc

$(CC) -std=c99 -Wall -o myProgram mySourceCode.c -lm

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

Makefiles

– Building project with more than one file tends to be tedious if done by hand

– make is a utility that can automate the compilation

– this requires a Makefile that describes the dependencies of the source files
(that file should be names Makefile or makefile)

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

Makefiles: Simple Example

Instead of

simply

with

export CC=gcc

$(CC) -std=c99 -Wall -c -o main.o main.c
$(CC) -std=c99 -Wall -c -o xmem.o xmem.c
$(CC) -o myProgram main.o xmem.o -lm

make myProgram

CC = gcc
CFLAGS = -std=c99 -Wall

myProgram: main.o xmem.o
$(CC) -o myProgram main.o xmem.o -lm

Makefile

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

Makefiles: Structure

Generally, makefiles consist of a list of rules of the form

– Note that the commands must be intended with a tab!

– make knows a few rules a-priori, especially, it knows how to generate object
files from source files (hence there was no need to specify a rule how to
generate main.o and xmem.o in the previous example).

– It is possible to generate complex dependencies (e.g. a.c needs to be
recompiled, because b.h changed) on the fly with pattern rules (see info
make for more details).

target: prerequisites
command1
command2

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

Makefiles: Complex Example
CC=gcc
DEPCC=gcc
CFLAGS=-std=c99 -Wall -O3 -fopenmp
CPPFLASG=-I/opt/fftw/include/
LDFLAGS=-L/opt/fftw/lib/
LIBS=-lfftw -lm

.PHONY: all clean

progName = myProg

sources = main.c $(progName).c read.c write.c work.c

%.d: %.c
@set -e; rm -f $@; \

$(DEPCC) -MM $(CPPFLAGS) $< > $@.$$$$; \
sed 's,\($*\)\.o[:]*,\1.o $@ : ,g' < $@.$$$$ > $@; \
rm -f $@.$$$$

all:
$(MAKE) $(progName)

clean:
rm -f $(progName) $(sources:.c=.o)

$(progName): $(source:.c=.o)
$(CC) $(LDFLAGS) $(CFLAGS) -o $(progName) $(sources:.c=.o) $LIBS

-include $(sources:.c=.d)

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

Debugging

First rule of debugging:
Read compiler error messages.

Second rule of debugging:
Read compiler warning messages.

Methods of debugging:
– printf-statements

used to figure out at what point the code breaks and to print out values of
possibly affected variables

– gdb
interactive way to follow to program flow with complete access to all variables
and the complete stack

– valgrind
used to catch errors in memory handling (memory leaks, wrong access,
undefined values)

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

Debugging

First rule of debugging:
Read compiler error messages.

Second rule of debugging:
Read compiler warning messages.

Methods of debugging:
– printf-statements

used to figure out at what point the code breaks and to print out values of
possibly affected variables

– gdb
interactive way to follow to program flow with complete access to all variables
and the complete stack

– valgrind
used to catch errors in memory handling (memory leaks, wrong access,
undefined values)

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

Debugging

First rule of debugging:
Read compiler error messages.

Second rule of debugging:
Read compiler warning messages.

Methods of debugging:
– printf-statements

used to figure out at what point the code breaks and to print out values of
possibly affected variables

– gdb
interactive way to follow to program flow with complete access to all variables
and the complete stack

– valgrind
used to catch errors in memory handling (memory leaks, wrong access,
undefined values)

Overview The Language The Library Everyday Usage

Files Compiling DebuggingMakefiles

Debugging

First rule of debugging:
Read compiler error messages.

Second rule of debugging:
Read compiler warning messages.

Methods of debugging:
– printf-statements

used to figure out at what point the code breaks and to print out values of
possibly affected variables

– gdb
interactive way to follow to program flow with complete access to all variables
and the complete stack

– valgrind
used to catch errors in memory handling (memory leaks, wrong access,
undefined values)

	Titlepage
	Overview: Overview
	Overview: Why C? I
	Overview: Why C? II
	Overview: Why C? III
	Overview: Why C? IV
	Overview: Why C? V
	Overview: Why C? VI
	Overview: Why C? VII
	Overview: History
	Overview: Example I
	Overview: Example II (bad style)
	Overview: Example III (bad style)
	Overview: Example IV
	Overview: Example V
	Overview: Example VI
	Overview: Example VII
	Overview: Example VIII
	Overview: Example IX
	Overview: Example X
	Overview: Example XI
	Overview: Example XII
	Overview: Example XIII
	The Language: Alphabet I
	The Language: Alphabet II
	The Language: Alphabet III
	The Language: Alphabet IV
	The Language: Alphabet V
	The Language: Keywords I
	The Language: Identifiers I
	The Language: Identifiers II
	The Language: Identifiers III (Scope)
	The Language: Identifiers IV (Scope)
	The Language: Identifiers V (Linkage)
	The Language: Identifiers VI (Linkage)
	The Language: Identifiers VII (Linkage)
	The Language: Identifiers VIII (Linkage)
	The Language: Identifiers IX (Linkage)
	The Language: Identifiers X (Linkage)
	The Language: Identifiers XI (Lifetime)
	The Language: Identifiers XII (Lifetime)
	The Language: Types I
	The Language: Types II (Object Types)
	The Language: Types III (Object Types)
	The Language: Types IV (Derived Types)
	The Language: Types V (Derived Types)
	The Language: Types VI (Derived Types)
	The Language: Types VII (Derived Types)
	The Language: Types VIII (Derived Types)
	The Language: Types IX (Derived Types)
	The Language: Types X (Derived Types)
	The Language: Types XI (Derived Types)
	The Language: Types XII (Derived Types)
	The Language: Types XIII (Derived Types)
	The Language: Expressions I
	The Language: Expressions II
	The Language: Expressions III
	The Language: Expressions IV
	The Language: Expressions V
	The Language: Expressions VI
	The Language: Expressions VII
	The Language: Expressions VIII
	The Language: Expressions IX
	The Language: Expressions X
	The Language: Expressions XI
	The Language: Expressions XII
	The Language: Expressions XIII
	The Language: Expressions XIV
	The Language: Expressions XV
	The Language: Expressions XVI
	The Language: Expressions XVII
	The Language: Expressions XVIII
	The Language: Expressions XIX
	The Language: Expressions XX
	The Language: Expressions XXI
	The Language: Statements I
	The Language: Statements II
	The Language: Statements III
	The Language: Statements IV
	The Language: Statements V
	The Language: Statements VI
	The Language: Statements VII
	The Language: Statements VIII
	The Language: Statements IX
	The Language: Statements X
	The Language: Statements XI
	The Language: Statements XII
	The Language: Statements XIII
	The Language: Statements XIV
	The Language: Statements XV
	The Language: Statements XVI
	The Language: Preprocessor I
	The Language: Preprocessor II
	The Language: Preprocessor III
	The Language: Preprocessor IV
	The Language: Preprocessor V
	The Language: Preprocessor VI
	The Language: Preprocessor VII
	The Language: Preprocessor VIII
	The Language: Preprocessor IX
	The Language: Preprocessor X
	The Library: Features I
	The Library: Features II
	The Library: Features III
	The Library: Features IV
	The Library: stdio I
	The Library: stdio II
	The Library: stdio III (printf)
	The Library: stdio IV (printf)
	The Library: stdio V (printf)
	The Library: stdio VI (printf)
	The Library: stdio VII (scanf)
	The Library: stdio VIII (scanf)
	The Library: stdio IX (scanf)
	The Library: stdio X (scanf)
	The Library: stdio XI (fopen)
	The Library: stdio XII (fopen)
	The Library: stdio XIII (fopen)
	The Library: stdio XIV (fopen)
	The Library: stdio XV (fread/fwrite)
	The Library: stdio XVI (fread/fwrite)
	The Library: stdio XVII (fread/fwrite)
	The Library: math I
	The Library: Memory I
	The Library: Memory II (allocation)
	The Library: Memory III (allocation)
	The Library: Memory IV (allocation)
	The Library: Memory V (allocation)
	The Library: Memory VI (reallocation)
	The Library: Memory VII (reallocation)
	The Library: Memory VIII (reallocation)
	The Library: Memory IX (reallocation)
	The Library: Memory X (reallocation)
	The Library: Memory XI (deallocation)
	The Library: Memory XII (deallocation)
	The Library: Memory XIII (deallocation)
	The Library: Memory XIV (pitfalls)
	The Library: Memory XV (pitfalls)
	The Library: Memory XVI (pitfalls)
	The Library: Memory XVII (pitfalls)
	The Library: Error Handling I
	The Library: Error Handling II
	Everday Usage: Files I
	Everday Usage: Files II
	Everday Usage: Files III
	Everday Usage: Files IV
	Everday Usage: Files V
	Everday Usage: Compiling I
	Everday Usage: Compiling II
	Everday Usage: Compiling III
	Everday Usage: Compiling IV
	Everday Usage: Compiling V
	Everday Usage: Compiling VI
	Everday Usage: Makefiles I
	Everday Usage: Makefiles II
	Everday Usage: Makefiles III
	Everday Usage: Makefiles IV
	Everday Usage: Debugging I
	Everday Usage: Debugging II
	Everday Usage: Debugging III
	Everday Usage: Debugging IV

