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m(z) =M+ SIOgIO(% y( |k|f[(1 + Z/)Z(l + sz/) -7(2+ Z/)QA]—I/de,))

0

=> for a given SN-la explosion you aim to find it’s redshift

* known: m, M, Q,, Q,,
¢ unknown: 7
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* root finding - example

m(z) =M+ 510g10(% y( |k|f[(1 + Z/)Z(l + sz/) -7(2+ Z/)QA]—I/de,))

0

=> for a given SN-la explosion you aim to find it’s redshift

* known: m, M, Q,, Q,,
¢ unknown: 7

Z

=> 0=f(z)=m—(M+510g10 (% y( |k|f[(1+z’)2 (1+sz’)—z’(2+z’)QA]_”2 dz’)]]

0

bi-section method:

_ a+b while(abs (b-a)>eps) {
- = (a+b)/2;

z0
2 f(Z) if(f(a)*f(z0) > 0)
a = z0;
""" >r ] > else

\\/a/ ;? } S
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we can find a solution to the least-square minimization by solving a linear system for a=(a;,a,,a;,...)
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* curve fitting

= linear least-square fitting

* in case f{x,a;,a,,a3,...) only contains a linear combination of the N, fit parameters a,,a;,a;,...
N

param

fra)= Ya, ¢, x)

j=1
we can find a solution to the least-square minimization by solving a linear system for a=(a;,a,,a;,...)

* the optimization is then equivalent to solving
0= E — f(xn@) 9,(x)  YIEN,,..

which is a linear system for a,,a,,a;,...

al O yl @C(x (_i) ¢1(xl) ¢Nparam ('xl)
=(X"x) x| .. X, =TT () = X =
a .
aN,mm,,, YN i: line indei ¢l ('xN) ¢Nparam (xN)

\COIUmn index

(X, %) ..., (X, ¥y ) are your data points

* Note: the ¢(x) can be arbitrary (non-linear!) functions of x
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= we want to calculate the definite integral...

] = } £(x)dx

* no difference to solving for the anti-derivative, i.e. let b = x...

F(x)= Tf(x)dx
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= we want to calculate the definite integral...

] = } £(x)dx

...given two arrays x () and £ ()

J(x)

£(N)

we have several options
to numerically “estimate” the integral

£(3)

£(2)

£(1)

/ Ax=x(i+1l
€D

-x(1)

x(1l)=a x(2) x(3)

x (N)=b X
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= we want to calculate the definite integral...
b
I= [ f(x)dx
a
...given two arrays x () and £ () option #1/

J(x)

£(N)

£(3)

£(2)

,«—””””A

£(1)

1

/

o

Ax=x(1i+1)

«—>

-x(1)

L= 2 f(x) (3 =)

X(1)=a

x(2) X

(3)

x (N)=b X
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= we want to calculate the definite integral...
b
I= [ f(x)dx
a
...given two arrays x () and £ () option #2
J(x)
£(N) /
co) /
f(2) / .
£(1) I, =Ef(xi) (x; = x;))
i=2
AX=x(i+1)-x(1)
7 —>

x(1l)=a x(2) x(3) X (N)=b
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= we want to calculate the definite integral...
b
I= [ f(x)dx
a
...given two arrays x () and £ () option #3
f(x)
mean(f;,fi4;)
£(N)
\J\
£(3)
£(2) N-
(le) +f(x)
£(1) (X1 = X;)
i=1
/ AX=x(i+1)-x(1)
«—>
x(1)=a x(2) x(3) x (N)=b X
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= we want to calculate the definite integral...

] = } £(x)dx

...given two arrays x () and £ () option #4
J(x)
£ (x+Ax/2)
f(N) \/\
£(3) J
£(2) N-1 X +x
X,
£(1) 1, = f(%) (X —X;)
i=1
/ AX=x(i+1)-x(1)
«—>

x(1)=a x(2) x(3) x(N)=b X
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] = } £(x)dx

...given two arrays x () and £ ()

N-1
= option | I = Ef(xl-) (X — X;)
i=1
N
= option 2 I, = Ef(x,-) (x; —x;p)
=2
 fx,)+ f(x)
= option 3 I, = ol > (X — X;)

i=1

N-1

= option 4 f( Xin T ) (x;,, —X,)

i=1
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= we want to calculate the definite integral...

] = } £(x)dx

...given two arrays x () and £ ()

N-1
= option | I = Ef(xl-) (X — X;)

i=l1

N
= option 2 I, = Ef(x,-) (x; —x;p)

i=2

N- 1f(x )+ f(x ) )
= option 3 I, = = > (X, = X;)

i=1

>~ equal to |** order
N-1

option 4 f( Yin T ) (x,,, —X,)

i=1

~/
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] = } £(x)dx

...given two arrays x () and £ ()

N -1
= option | I = Ef(xl-) (X — X;)
i=1
N
= option 2 I, = Ef(x,-) (x; = x;y)
=2
 fx,)+ f(x)
= option 3 I, = ol (X — X;)
i=1 2
D (X + X,
= option 4 f( = ) (X, —X;)
i=1
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® 3ctual set of equations (coupled set of first order partial differential equations)

* collisionless matter (e.g. dark matter)

dx -
dt DM
av,,,
—21 =V
dt ?
* collisional matter (e.g. gas) Ay =4nGp
tot
i—f +V-(pv) =0
ol ov - - -
(pv) +V: p\7®\7+(p+iBz)l—lB®B =P(‘V¢)
ot 2u u
d(pE) 1ol 11 215 _
V-|[|pE —B°lv—-—|v-B|B =pv-(-V I'-L
p + o +p+2M ] M[ ]) pv- (-Ve) +( )
ﬁ +Vx(—17xl§) =0
ot




Computational Astrophysics

solving differential equations

Review of Numerical Methods

= actual set of equations

* collisionless matter (e.g. dark matter)

dx -
dl DM
av,,,
—2 =_V
dt ¢

* collisional matter (e.g. gas)

(coupled set of first order partial differential equations)

“

A¢ = 4nGptot

ap T L
PR = 0 Jpoi:::::::%.:;im
d( pv - -

() +V- pﬁ®§+(p+i32)1-13®3 =p (-V¢)

ot 2u u
d(pE) | Y B e _

V|| pE —B°lv-—|v-B|B =pv- (- -

ranll o +p+2M ] M[ ] ) pv- (=V¢)+(T'-L)

9B +Vx(—17x§) =0

ot

p=(r-1)pe
1
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* ordinary differential equation

0 = G(f(n),f(n_l),...,f(z),f(l),f(o),t) f(n) =
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= |5t order ordinary differential equation

0 = G(

<

5
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= |st order explicit ordinary differential equation
P Y q

df
—=G(f.1)
dt
dx .
i A
dv
=-V
dt ¢
A¢ =4‘T[Gpt0t
D i
o V(o) =0 > explicit
Aev) +V- P\7®\7+(p+iBz)i—ll§®l§ =p (-V9)
ot 2u u
IPE) | . L 1 BB - (- -
p +V pE+p+2MB]v M[V B]B) = pv- (-V¢)+(r-L)

0;—? +Vx(—\7x§) =0 /
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= |st order explicit ordinary differential equation
P Y q

4 _
=G

f () and t () are given in two arrays, i.e.fand ¢ are not continuous
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= |st order explicit ordinary differential equation

daf

i G(f.0)

A _ J) =S @) _ = fi_ g

At t., —1 t,

i+1 i

=> f;,+1 = fi + At G(f‘l,tl)

1)
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= |st order explicit ordinary differential equation

daf

E=G(f,f)

A _ J) =S @) _ = fi_ g

1)
At t.—t ., —1t

i+1 i

=> f;,+1 = fi + At G(f‘l,t,)

Taylor expansion of f(t) about ¢;
up to It order...

lf

d
—| dt
dt

f(t,+Ar)= f(z,)+

t.

1
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= |st order explicit ordinary differential equation % =G(f,t)
* Euler scheme
f(1) (tangent)\lir: with slope dfldt = G(f,, t,
T T e
fer —
Ji
/
t t g

[ i+l

=> fi+1 = fi + At G(fiati)
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= |st order explicit ordinary differential equation

e Euler scheme

Jin =1+ AL G(f1)

daf

E:

G(f.1)
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daf

= |st order explicit ordinary differential equation o G(f,t)
5

* Euler scheme
Jfin =1+ At G(f,.t))

* local error estimate (F = correct solution, f = numerical solution)

F(t,)=F(t)+At F(t)+ F(t)+ ..

(Ar)®
2

S e}ocal oC (At)2
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daf

= |st order explicit ordinary differential equation T
5

G(f.1)

* Euler scheme
Jfin =1+ At G(f,.t))

* global error estimate

- T,-T
e8" o Y (A1)* = N(At)” = X—2(Ar)* o At
P e X (AN = N(AD? = 20 (A

i=1

= e?loml < (At)  “first order accurate”

increase accuracy by including higher derivates...
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= |st order explicit ordinary differential equation j’—f =G(f,t)
5
* modified Euler scheme
(@
I. “trial step” with slope G(f,, t)
fra My
-
Ji

i+l
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= |st order explicit ordinary differential equation

* modified Euler scheme

f (@)
I. “trial step” with slope G(f,, t)
f;'+1 \AN
fi

df
o G(f.1)
/

i+l
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daf

= |st order explicit ordinary differential equation o G(f,t)
5

* modified Euler scheme

3. “result” slope (G(f;, t)+G* (1.1, tir1)/2

@) \'\‘/
fiil .

i+l
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daf

= |st order explicit ordinary differential equation o G(f,t)
5

* modified Euler scheme

f (@) /
fi +1 / /

i+l
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= |st order explicit ordinary differential equation % =G(f.,t)
* modified Euler scheme
f (@) fi = [+ Af|—/—L
-t -
- —
Ji

i+l
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= |st order explicit ordinary differential equation % =G(f.,t)
* modified Euler scheme
2 additional calculations required!
f () fo=f. + At @ G, =G(t,+ A1, f, + Mt G)
L |
i+l - —
Ji

i+l
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= |st order explicit ordinary differential equation % =G(f.,t)
* modified Euler scheme
f(1) fio = f +At % G., =G(t,+At, f, + AtG,)
Jisi fo 7} el —
Ji

i+l
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= |st order explicit ordinary differential equation j’—f =G(f,t)
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* modified Euler scheme
fio = f +At M G, =G(t,+At, f, + AtG))

* local error estimate
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= |st order explicit ordinary differential equation j’—f =G(f,t)
5
* modified Euler scheme
fio = f +At M G, =G(t,+At, f, + AtG))

* local error estimate

...eliminate G,
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= |st order explicit ordinary differential equation j’—f =G(f,t)
5
* modified Euler scheme
fio = f +At M G, =G(t,+At, f, + AtG))

* local error estimate

dzf -G = GZ—I -G,
a’ At
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= |st order explicit ordinary differential equation j’—f =G(f,t)
5
* modified Euler scheme
fo=f +At Gi+Gin Gl = Gt,+At, f,+ AtG)
* local error estimate
G=-9==C _ G _AG+G,

l At
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= |st order explicit ordinary differential equation j’—f =G(f,t)
5
* modified Euler scheme
fio = f +At M G, =G(t,+At, f, + AtG))

fi+1 = fi + At G,‘ + %(At)zG.i + ...
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= |st order explicit ordinary differential equation j’—f =G(f,t)
5
* modified Euler scheme
fio = f +At M G, =G(t,+At, f, + AtG))

d>f

additional term G =~
dt
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= |st order explicit ordinary differential equation j’_f =G(f,t)
5
* modified Euler scheme
fio = f +At M G., =G(t,+At, f, + AtG,)

fi+1 = fi + At G,‘ + %(At)zG.i + ...

Taylor expansion of f(t) about ¢;
1 dzf up to 2"9 order...

dt + —
. 2 dt

daf

J@+Ar)=f(t,)+—
dt

(de)

t.

1
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= |st order explicit ordinary differential equation j’—f =G(f,t)
5
* modified Euler scheme
fio = f +At M G, =G(t,+At, f, + AtG))

* local error estimate

fi+1 = fi + At G,‘ + %(At)zG.i + ...

comparison to Fi,

— e;ocal e (At)3
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. : : : : d
= |st order explicit ordinary differential equation ?f =G(f,t)
5
* modified Euler scheme
fo=f +At Gi+Giy G =G(t +At, f,+ArG)
* global error estimate
= ef@l‘)bal o (At)’ “second order accurate”

(at the expanse of more calculations)
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daf

= |st order explicit ordinary differential equation o G(f,t)
5

» 2" order Runge-Kutta scheme

(@

“mid-point” slope G(f,., ti.112)

i “ /

fT ==

/

I ti+1/2 I

i+l
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daf

= |st order explicit ordinary differential equation o G(f,t)
5

» 2" order Runge-Kutta scheme
additional calculations required!

t,=t+At/2
() Jin = 1+ At fin=f+At12G(f,t1)
Jivir /

f

/

I ti+1/2 I

i+l
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daf

= |st order explicit ordinary differential equation o G(f,t)
5

» 2" order Runge-Kutta scheme
additional calculations required!

t,=t+At/2
£(1) Jin =1 +At [ fon=f+At12G(f,1,) ]

Note: this is an Euler step with At/2

f

/

I ti+1/2 I

i+l
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= |st order explicit ordinary differential equation j’—f =G(f,t)
5
» 2" order Runge-Kutta scheme
t,=t+At/2
Jin = Ji + AL G(f11)00810002) f.=f+At12G(f.1)

* global error estimate

Kutta agree to

\\ modified E

uler & 2 order Runge-
(cf. I; and I,

|st order \\

in Numerical |ntegration)

lobal >
es " o (Ar) “second order accurate”

(at the expanse of more calculations)
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daf

= |st order explicit ordinary differential equation o G(f,t)
5

* 4t order Runge-Kutta scheme

1
fin =1 +At g(k1 +2k, +2k, +k,)

k =G(f,.t,)
(ti+ _ti) (ti+ _ti)

k, =G(fi+kllT,ti+lT)
(ti+ _ti) (ti+ _ti)

k, =G(f,.+kle,ti+lT)

k, = G(fz +ky(t,, = 1), ti+l)

* global error estimate
global 4 “ )
= e, o (Ar) fourth order accurate

(at the expanse of far more calculations)
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= |st order explicit ordinary differential equation
P Y q

* 4t order Runge-Kutta scheme

f;+1

Graphical depiction of the slope estimates comprising the fourth-order RK method.

y i kzl E kl
e
kl: /::/_/rk/ i | 496‘
e | . i
w2 ]
% Xis1/2 X1 :
* global error estimate
lobal 4
= e?" “ o (AY)

d—]; —~G(f.1)

fi+ At —(k +2k, +2k, +k,)

G

G

(£:1:)
1+1 (ti+l — ti)
G(f +k, ,ti+—2 )
z+1 i (ti+1 — ti)
(f +k, ,ti+—2 )
(

=G(f, +k,(t,,, - t>,r,+1)

“fourth order accurate”

(at the expanse of far more calculations)
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= |st order explicit ordinary differential equation fl_f =G(f,t)
5
* Euler scheme /fl.+1 = f. + At G(f,,t) A
» modified Euler scheme fin=fi+At %

* 2" order Runge-Kutta scheme fi =i+ At G(fi,) )05t i010)

1
* 4th order Runge-Kutta scheme Jin =T+ At g(kl +2k, +2k; + k)
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= |st order explicit ordinary differential equation fl_f =G(f,t)
5
a ; A
* Euler scheme fia =1+ At|G(f,,1)
» modified Euler scheme fin=fi+At %

* 2" order Runge-Kutta scheme foo = F + AG(fi,1 )05t i010)

1
* 4th order Runge-Kutta scheme Jin =T+ At g(kl +2k, +2k; + k)

- >

the only difference lies in
the slope to be used...
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= |st order explicit ordinary differential equation — Taylor expansion view...
P y q Yy P
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= |st order explicit ordinary differential equation — Taylor expansion view...
P y q Yy P

f=Y

n=0

(x —x,)"

AKED.
n!
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= |st order explicit ordinary differential equation — Taylor expansion view...
P y q Yy P

© (n)
f) = flrys 300

n=1

(x —x,)"
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= |st order explicit ordinary differential equation — Taylor expansion view...

(x —x,)"

© (n)
f) = flrys 300

n=1

+ if we know the function and all its derivatives in x, we know the function everywhere

+ the fewer derivatives we know the closer to x, this approximation is valid, e.g.

201
n=8

157

107
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= |st order explicit ordinary differential equation — Taylor expansion view...

(x —x,)"

© (n)
f) = flrys 300

n=1

+ if we know the function and all its derivatives in x, we know the function everywhere

+ the fewer derivatives we know the closer to x, this approximation is valid, e.g.

201
n=7

157

107
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= |st order explicit ordinary differential equation — Taylor expansion view...

(x —x,)"

© (n)
f) = flrys 300

n=1

+ if we know the function and all its derivatives in x, we know the function everywhere

+ the fewer derivatives we know the closer to x, this approximation is valid, e.g.

207
=6

157

107
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= |st order explicit ordinary differential equation — Taylor expansion view...

(x —x,)"

© (n)
f) = flrys 300

n=1

+ if we know the function and all its derivatives in x, we know the function everywhere

+ the fewer derivatives we know the closer to x, this approximation is valid, e.g.

207
=5

157

107
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= |st order explicit ordinary differential equation — Taylor expansion view...

(x —x,)"

© (n)
f) = flrys 300

n=1

+ if we know the function and all its derivatives in x, we know the function everywhere

+ the fewer derivatives we know the closer to x, this approximation is valid, e.g.

20r
n=4

157

107
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= |st order explicit ordinary differential equation — Taylor expansion view...

(x —x,)"

© (n)
f) = flrys 300

n=1

+ if we know the function and all its derivatives in x, we know the function everywhere

+ the fewer derivatives we know the closer to x, this approximation is valid, e.g.

201
157

107




Computational Astrophysics solving differential equations

Review of Numerical Methods

= |st order explicit ordinary differential equation — Taylor expansion view...

(x —x,)"

© (n)
f) = flrys 300

n=1

+ if we know the function and all its derivatives in x, we know the function everywhere

+ the fewer derivatives we know the closer to x, this approximation is valid, e.g.

201
157

107
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= |st order explicit ordinary differential equation — Taylor expansion view...

(x —x,)"

© (n)
f) = flrys 300

n=1

+ if we know the function and all its derivatives in x, we know the function everywhere

+ the fewer derivatives we know the closer to x, this approximation is valid, e.g.

201
157

107
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= |st order explicit ordinary differential equation — Taylor expansion view...

(x —x,)"

© (n)
f) = flrys 300

n=1

+ if we know the function and all its derivatives in x, we know the function everywhere

+ the fewer derivatives we know the closer to x, this approximation is valid, e.g.

207
=0

157

107
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= |st order explicit ordinary differential equation — Taylor expansion view...

F)=flx)+ Y

n=1

(x —x,)"

AKED,
n!

+ if we know the function and all its derivatives in x, we know the function everywhere

+ the fewer derivatives we know the closer to x, this approximation is valid

+ the Taylor expansion can be used to approximate f{(x) in the vicinity of x,
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= |st order explicit ordinary differential equation — Taylor expansion view...

F)=flx)+ Y

n=1

(x —x,)"

AKED,
n!

+ if we know the function and all its derivatives in x, we know the function everywhere

+ the fewer derivatives we know the closer to x, this approximation is valid

+ the Taylor expansion can be used to approximate f{(x) in the vicinity of x;

f(xo"'Ax):f(xo)"‘E

n=1

; Ax = x — X

S L0
n!




Computational Astrophysics solving differential equations

Review of Numerical Methods

= |st order explicit ordinary differential equation — Taylor expansion view...

© (n)
f) = flrys 300

n=1

(x —x,)"

fferential) equations \\

: integrating (di
umerlca“)’ Integ 5 tain point are known...

is is the key to : :
this is Y d its derivative(s) in a cer

where the function an

+ the Taylor expansion can be used to approximate f{(x) in the vicinity of x;

; Ax = x — X

© (n)
Flr A0 = f i+ T e

n=1
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daf

= |st order explicit ordinary differential equation T G(f,t)
5

( N

* Euler scheme fin =1+ At G(f,,1)
* modified Euler scheme fio=fi+At Gi+( +2Gi+1

* 2" order Runge-Kutta scheme fi =i+ At G(fi,) )05t i010)

1
* 4th order Runge-Kutta scheme Jin =T+ At g(kl +2k, +2k; + k)

f(")( to) .

* Taylor expansion Fto + At) = F(t) + Z
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Review of Numerical Methods

daf

= |t order !? ordinary differential equation T G(f,t)
4

( N

* Euler scheme fin =1+ At G(f,,1)
* modified Euler scheme fio=fi+At Gi+( +2Gi+1

* 2" order Runge-Kutta scheme fi =i+ At G(fi,) )05t i010)

1
* 4th order Runge-Kutta scheme Jin =T+ At g(kl +2k, +2k; + k)

f(")( to) .

* Taylor expansion Fto + At) = F(t) + Z
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solving differential equations
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= 2" order explicit ordinary differential equation

dzf
dt?

=G(f.f.1)




Computational Astrophysics

solving differential equations

Review of Numerical Methods

= 2" order explicit ordinary differential equation

af
= h( D

dh

E = g(f’hat)

single 2™ order equation

>

<€

system of two It order equations

dzf
dt?

=G(f.f.1)
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solving differential equations
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= 2" order explicit ordinary differential equation

a = h(f,h,t)

single 2™ order equation

dt >
dh <€
E =8 (f 7h ! ) system of two [ order equations
\ J

%

solve using schemes for 1t order equations

dt?

=G(f.f.1)
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= 2" order explicit ordinary differential equation

df single 2™ order equation
dl’ - h(f,h’t) ) dzf .
ah < 1 =G(f.f.1)
= g(f’hvt) tem of two I ord ti
dt system of two [ order equations
N J
Y

solve using schemes for 15t order equations:

* Euler method * 2" order Runge-Kutta
fio = fi+h(f,,h,t) At t o=t +At/2
Ry =h +g(fht;) At Foia =+ h(fh,t) At/2

h . =h +g(f.h.t)At/2

fi+1 = fi + h(fmid ’hmid ’tmid) At
By =h+ 8(f g s Piastmia) At
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= 2" order explicit ordinary differential equation

df single 2™ order equation
dl’ - h(f,h’t) ) dzf .
ah < 1 =G(f.f.1)
= g(f’hvt) tem of two I ord ti
dt system of two [ order equations
N J
Y

solve using schemes for 15t order equations:

* Euler method * 24 order Runge-Kutta
fou = f+h(f b)) At tyig =1+ AL/2
both variables f and h have to be advanced to the mid-point fmid = fi + h(fz ’hi’ti) At /2
before making the actual integration step hmid _ hl- " g(f,-,h,-,l‘,-) Ar/2

fi+1 = fi + h(fmid ’hmid ’tmid) At
By =h+ 8(f g s Piastmia) At
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= 2" order explicit ordinary differential equation

daf

L _p , h t single 2™ order equation
dt (f-h.0) > dzf—G(fft)
dh = >
= g(f’h9t) t ft Ist ord ti
dt system of two [ order equations
\ J
%

solve using schemes for 15t order equations:

* 4t order Runge-Kutta (coefficients) * 24 order Runge-Kutta

fg =1 +At/2
k1= h(fi;hi;ti)
mlzg(fi:hi:ti) fmid =fi+h(_fi7hiati) At/z
(tiv1 — ) (tiv1 — &) Mg =h; +8(f;,h,.t) At/2
k, = h<ﬂ+le,hi+mlT,ti
m; =g (fi + k4 —(tiﬂz_ ) yhy +my —(tiﬂz_ ) , tl-)

fi+1 = fi + h(fmid ’hmid ’tmid) At
By =h+ 8(f g s Piastmia) At
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solving differential equations
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= 2" order explicit ordinary differential equation

df single 2" order equation
— = h(f,h,t s !
T L _Gj. 10
dh < a7
E =8 (f ’h’t ) system of two [** order equations
N J
Y

solve using schemes for 15t order equations:

* 4th order Runge-Kutta (coefficients)

,
k1: h(fi;hi;ti)
my =S g(ﬁ.l hi: tl)
tirs — £ tivs — ¢
k2=h<fi+k1(l+12 l),hl-l- 1(l+12 l),tl>
tivs — L tivg —t
m2=g<fi+k1(l+12 l),hi_l_ 1(L+12 l),ti>

analytical functions of f,h ¢

» 2" order Runge-Kutta
t .=t +At/2

fmid =fi h(ﬁahiati) t/2
hmid =hi g(fi’hi,ti) t/2

fi+1 = fi h(fmid ’hmid ’tmid) [
hi+1 = g(fmid’hmid’tmid) 4
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solving differential equations
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= 2" order explicit ordinary differential equation

daf

single 2™ order equation

d’f

A7 = G(fafat)

— =h(f,h,t
” (f,h,t) >
dh <€
E - g(f7hat) system of two [*" order equations
\ )
'

solve using schemes for 15t order equations:

* 4th order Runge-Kutta (coefficients)
higher order schemes require...

S—
ko g h(fi, by ) .additional calculations
my ::g(fi:hi:ti) o4 0
...additional storage
1 (tiv1 — ) (tiv1 — )
t:ivs — t: t:in, — t:
m, ¥ g(fl +k1( l+12 l),hi +m1( L+12 l),ti>
H

* 24 order Runge-Kutta

t V=t +At/2
mid |~ fi + h(ﬁ,hiati) At/z
mid |~ hi + g(fi’hi,ti) At/2

fi+1 = fi + h(fmid ’hmid ’tmid) At
By =N+ 8(S ia Poia »Emia) AN
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= 2" order explicit ordinary differential equation

df single 2" order equation
=h(f,h,t j )
d (f,h,t) > d’ :
= G(f ’ f ¥ )
dh <€
d / =8 (f h ! ) system of two I*! order equations
N J
Y
solve using schemes for 15t order equations:
* 4t order Runge-Kutta (coefficients) » 2" order Runge-Kutta

’—1:: . ‘ all Z!Zﬂ =t +At/2
"Il{l %}’2\ maybe not = f,+h(f,,h;,t;) At/2

\ : <.additional storage
.| h( (tiv1 — 1) (tia =), =h,+g(f,,h;,t;) At/2
2§ h{fi + ks ) yhi +my

(tivr — &) (tiv1 — &)
my § g (fit by L e S )
e 2 2 f1+1 fi + h(fmid ’hmid ’tmid) At

B =N+ ([ ia s Mo oLmia) AT
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solving differential equations
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= 2" order explicit ordinary differential equation

* leap-frog scheme

d’f

o =G(f.f.1)
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solving differential equations

Review of Numerical Methods

= 2" order explicit ordinary differential equation

* leap-frog scheme

d’f PP
dt* _G(X’f%




Computational Astrophysics

solving differential equations

Review of Numerical Methods

= 2" order explicit ordinary differential equation

* leap-frog scheme

df
-7 = 6()
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solving differential equations

Review of Numerical Methods

= 2" order explicit ordinary differential equation

* leap-frog scheme

a _, dh _
dt_h’ dt o)

/N

rhs only depends on £

rhs only depends on f
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= 2" order explicit ordinary differential equation

* leap-frog scheme

df dh
Y oh, =G
dt dt ()

rhs only depends on £ rhs only depends on f

fi+1 = fi + At hi+1/2

hi+3/2 = hi+1/2 + AtG(fm)
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solving differential equations

Review of Numerical Methods

= 2" order explicit ordinary differential equation

* leap-frog scheme

a _, dh _
dt_h’ dt o)

fi+1 = fi +A dfldt only depends on

dh/dt only depends on f
Pivsn = Miyn + At
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= 2" order explicit ordinary differential equation

* leap-frog scheme

d>f

-G
e (f)
l+l f +Athl+l/2
| N
| ! | : | -
l; Livip lLivi liv3n livo

\/\/

Bisn =Ny, +ALG(f,)
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= 2" order explicit ordinary differential equation

* leap-frog scheme - jumpstart

dzf _
e =G(f)
= f, +Ath,,
| ' | ' | >
[1/2 13/2

hy), = G(fo
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= 2" order explicit ordinary differential equation

* leap-frog scheme - resync

P G(f)

= fya t ARy ),

/\/\

| ! | ! |
IN-2 tN 32 IN.] fN 12

\/\/

N 1/2 G(fN

v
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= 2" order explicit ordinary differential equation

* leap-frog scheme

2 fin=Jf+Ath,,,
T _6(f) —>

t2

hi+3/2 = hi+1/2 + At G(fi+1)
+ second order accurate scheme
+ no additional calculations or storage
+ symplectic scheme (energy conservation...)
d’f

+ very well suited for systems of type 0 =G(f)
4
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= 2" order explicit ordinary differential equation

K- leap-frog scheme \

fi+1 = fz + At hi+1/2

IS _G(f) —>

t2

hi+3/2 = hi+1/2 + At G(fi+1)
+ second order accurate scheme
+ no additional calculations or storage

+ symplectic scheme (energy conservation...)

2
+ very well suited for systems of type Cfl]: =G(f)
t

\_ J

more accurate than 4t order Runeg-Kutta scheme!?
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= 2" order explicit ordinary differential equation

K- leap-frog scheme \

fi+1 = fz + At hi+1/2

IS _G(f) —>

t2

hi+3/2 = hi+1/2 + At G(fi+1)
+ second order accurate scheme
+ no additional calculations or storage

+ symplectic scheme (energy conservation...)

2
+ very well suited for systems of type Cfl]: =G(f)
t

\_ J

more accurate than 4t" order Runeg-Kutta scheme!
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Review of Numerical Methods

" the basics
= solving differential equations
= symplectic integration

" accuracy checks
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Review of Numerical Methods

" symplectic integrators

* motivation:

2 LR BB T T T T T T T T T T T T T
Leapfrog (fixed stepsize)

e=09
1 200 orbits

(IR ERENE

2010.6 steps / orbit

or o
1= 3

- (only every 10-th orbit drawn) 1
L TR TN AT SN T AR R PR AR AR AR FEREn

-1 0 1 2

symplectic integrator,
2n order accurate

W

LI B

second-order Runge-Kutta

e=09

51 orbits

2784.6 steps / orbit

5569.2 forces / orbit

(only every 10-th orbit drawn)

-1

0 1

oo

2T [T I T T I T I I [TI T T I T I T [TT T I T TITT[TTTT)

fourth-order Runge-Kutta

e=09
15 200 orbits

502.8 steps / orbit

£ 2011.0 forces / orbit
o
L

AF

AEEEEEEE F AR AR R FE TR E FNE AT

(only every 10-th orbit drawn)

AT PR EEEN PR TR ST TS TS

21

-1 0 1 2

non-symplectic integrators,

2nd order accurate

4th order accurate

taken from Volker Springel’s GADGET-2 paper (astro-ph/0505010)
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" symplectic integrators

the (numerical) evolution of the system (i.e. x and p) from ¢, to ¢,
xO 5":n
. —_—

pO i)n

is a canonical coordinate transformation

“symplectic” says nothing about the accuracy of the integrator,

but rather preserves the geometric structure of the original Hamiltonian flow!




Computational Astrophysics symplectic integration

Review of Numerical Methods

" symplectic integrators

1
H =— p* + mP(X)
2m

e equations of motion:

(x,9}
p={p.H}

X




Computational Astrophysics symplectic integration

Review of Numerical Methods

" symplectic integrators

1
H =— p* + mP(X)
2m

e equations of motion:

X

(X,HY=HX
{ﬁ,j—[}=Hﬁ

\

Poisson bracket = linear operator

p




Computational Astrophysics symplectic integration

Review of Numerical Methods

" symplectic integrators

1
=—p° +mP(X)
2m
e equations of motion:
5'(? = {3&,5‘[} =HXx evolution of system 35(2‘) = etHiO
p={p.H}=Hp p(1) =" p,

\

Poisson bracket = linear operator




Computational Astrophysics

symplectic integration

Review of Numerical Methods

" symplectic integrators

e equations of motion:

X

p

1
=—p° +mP(X)
2m

{3&,5‘[} =HXx evolution of system
{p.H}=Hp

H=H +H =T+Vv

x(t)=e"x,

ﬁ(t) = etHl_io
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symplectic integration

Review of Numerical Methods

" symplectic integrators

e equations of motion:

X

p

1
H =— p* + mP(X)
2m

{3&,5‘[} =HXx evolution of system 35(2‘) = etHiO

{p.H}=Hp p(1) ="' p,

H=H +H =T+Vv

separation of potential and kinetic flow possible!?
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" symplectic integrators

1
H =— p* + mP(X)
2m

e equations of motion:

X

{3_6,5—[} =HXx evolution of system )_c'(t) = et(T"“V)}C’O

{p.H}=Hp p(t)=e""""p,

p

H=H +H =T+Vv

separation of potential and kinetic flow possible!?
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symplectic integration

Review of Numerical Methods

" symplectic integrators

1
H =— p* + mP(X)
2m

e equations of motion:

X

{3_6,5—[} =HXx evolution of system )_c'(t) = et(T"“V)}C’O

{p.H}=Hp p(t)=e""""p,

p

H=H +H =T+Vv

try to split ¢7*Y) into something like e¢7e’V 2!
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" symplectic integrators

1
=—p° +mP(X)
2m

e equations of motion:

X

{3_6,5—[} =HXx evolution of system )_c'(t) = et(T"“V)}C’O

{p.H}=Hp p(t)=e""""p,

p

H=H +H =T+Vv

 Baker-Campbell-Hausdorff identity:

A B A+B
e'e” #e’”

e’e®? = e with C=A+B+%{A,B}+...
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" symplectic integrators

1
=—p° +mP(X)
2m

e equations of motion:

X

{3_6,5—[} =HXx evolution of system )_c'(t) = et(T"“V)}C’O

{p.H}=Hp p(t)=e""""p,

p

H=H +H =T+Vv

 Baker-Campbell-Hausdorff identity:

o THY) _ o 12,1V T 12 O(t3)
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" symplectic integrators

1
=—p° +mP(X)
2m
e equations of motion:
5.5 = {f,j‘[} =HXx evolution of system )?(l‘) = etT/zetVetT/zch + 0(13)
p={p.H}=Hp p(1)=e"e" e py + O(t")

H=H +H =T+Vv

N

because the Hamiltonian can be split into two independent parts™,

we are able to separate the evolution of the system’s position and momentum...

*i.e. kinetic energy T and potential energy V
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" symplectic integrators

1
H =— p* + mP(X)
2m

e equations of motion:

= {)C j‘[} H x evolution of system x(t) = etT/zetVetT/zxo + 0(;3)

={p j—[} Hp B(t) = o120 o727, +O(t )

we rather approximate the true Hamiltonian
than discretizing the equations of motions

=> symplectic integration scheme!
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" symplectic integrators

1
H =— p* + mP(X)
2m

¢ second-order accurate scheme:

)?(t) =ezT/2ezv ezT/zch)

ﬁ(t) _ ezT/zezv (etT/ZﬁO)

\

|. evolve the system for A#/2 under 5-1;
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" symplectic integrators

1
H =— p* + mP(X)
2m

¢ second-order accurate scheme:

|. evolve the system for A#/2 under 5-1;
2. evolve the system for At under




Computational Astrophysics symplectic integration
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" symplectic integrators

1
H =— p* + mP(X)
2m

¢ second-order accurate scheme:
(1) = (etT/2(etV (etT/ZX»O)))

B(1) = etT/Z(etV (etT/po)))

|. evolve the system for A#/2 under 5-1;
2. evolve the system for At under
3. evolve the system for At/2 under 5-1;
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symplectic integration

Review of Numerical Methods

* Drift-Kick-Drift time integration

superscript indicates ¢, i.e. x" = x(t,)
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* Drift-Kick-Drift time integration

.;C’n —n+l

Y 1
->n - n+
P P

superscript indicates ¢, i.e. x" = x(t,)
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* Drift-Kick-Drift time integration

.;C’n —n+l

Y 1
->n - n+
P P

X ={%H} \
= Lp2 + mP(Xx)
. 2m

superscript indicates ¢, i.e. x" = x(t,)
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symplectic integration

Review of Numerical Methods

* Drift-Kick-Drift time integration

e
I
3 |~

!
[
|
<
=)

superscript indicates ¢, i.e. x" = x(t,)

.;C’n %n+l
Y 1

-n - n+

P P
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symplectic integration
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* Drift-Kick-Drift time integration

;=% = H,
p=-Vo =>H,

superscript indicates ¢, i.e. x" = x(t,)

2.

3.

evolve the system for A#/2 under 5-[1,
evolve the system for At under H,

evolve the system for A#/2 under 5-[1,
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* Drift-Kick-Drift time integration

.;C’n %n+l
Y 1
—-n —n+
p p
—n+l/2
T
symplectic integrators
m => —n+l
p=-VO
—n+l
xn

superscript indicates ¢, i.e. x" = x(t,)

- n

—n+1/2
xn

At p"
LA Pt
2 m
_ At §®n+1/2
AZ_ —n+l
+ P
2 m
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* Drift-Kick-Drift time integration

ottt la,,

-;C’n —n+l
Y 1
-”n - n+
P P
.0
‘0
‘O
‘O
“
L )
“
! s
P )
m [}
n+1/2

n+1
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* Drift-Kick-Drift time integration

—n —n+l
X

->n —-n+l

% %
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* Drift-Kick-Drift time integration

-;C’n —n+l
Y 1

->n - n+

P P

ETLLLLLL LT Yy
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* Drift-Kick-Drift time integration
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= recovering the leap-frog scheme
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= recovering the leap-frog scheme
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symplectic integration

= recovering the leap-frog scheme
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= recovering the leap-frog scheme
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= recovering the leap-frog scheme
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Computational Astrophysics symplectic integration

Review of Numerical Methods

" |eap-frog scheme for minimal memory usage & minimal flops

* requires only one force evaluation per time step
e only one copy of variables stored

" Drift-Kick-Drift scheme for memory economy & synchronisation

=> e both schemes are 2nd order accurate in time

* even though DKD scheme requires N more operations,

it is favourable for adaptive mesh refinement codes...




Computational Astrophysics symplectic integration
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" |eap-frog scheme for minimal memory usage & minimal flops

* requires only one force evaluation per time step
e only one copy of variables stored

" Drift-Kick-Drift scheme for memory economy & synchronisation

=> e both schemes are 2nd order accurate in time

* even though DKD scheme requires N more operations,

it is favourable for adaptive mesh refinement codes...

— how to check your integrator?

— how to choose the correct time step!?
— how to monitor the accuracy?




Computational Astrophysics overview
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" the basics
= solving differential equations
" symplectic integration

* accuracy checks
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" the time integration

X, =x+e,

n \
numerically obtained value true value global error due to numerics
(at end of simulation!)

< =i




Computational Astrophysics accuracy checks

Review of Numerical Methods

" the time integration

X, =x+e,

n \
numerically obtained value true value global error due to numerics
(at end of simulation!)

< =i

e Mt order accurate integration scheme:

e =C(At )"

integrate problem with different time steps...
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" the time integration

X, =x+e,

n \
numerically obtained value true value global error due to numerics
(at end of simulation!)

< =i

e Mt order accurate integration scheme:

e =C(At )"
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" the time integration

+e

n n

/LN

numerically obtained value true value global error due to numerics
(at end of simulation!)

X =

< =i

e Mt order accurate integration scheme:

e =C(At )"

¥ -X% =X+é —(¥+¢,) ¥ -X¥=X+é —(i+8)
=En_gm =§m_€l

I
)

((Atn)M_(Atm)M) =c((Atm)M_(At, )M)

let: Af, =kAt, =..=k"At,
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" the time integration

X, =x+e,

n \
numerically obtained value true value global error due to numerics
(at end of simulation!)

< =i

e Mt order accurate integration scheme:

e =C(At )"

X, —X 1

~ - =T
X, —X k

let: Af, =kAt, =..=k"At,
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" the time integration

X, =x+e,

n \
numerically obtained value true value global error due to numerics
(at end of simulation!)

< =i

 second order accurate leap-frog — test in practice:

— integrate with three different choices for (constant!) time step:

At, 2At, and 4At

I~

— calculate Xar = Xoar 1
Xoar ~ Xaar 4

— repeat exercise for (2At,4At, and 8Ar), (4At, 8At, and 16A1), ...
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= time step criteria

* system criterion

At<t,,

the time step should be smaller than the dynamical time of your system

* acceleration/velocity criterion

& &
At |[— Ats——

a Vv

max max

“objects” in your system should not move farther than some preselected threshold ¢

N

¢ of order the force resolution
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" momentum conservation

|

N
Sil-c
i=1

=> development of net momentum during simulation?

* practical test:

M=
el

~
I
—_

L ~10™

o

s

I
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" energy conservation
e Hamiltonian (= total energy)

1
H =— p* + md(F) A® = 4aGp
2m
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