
Computational Astrophysics
Computer Architectures Alexander Knebe, Universidad Autonoma de Madrid



Computational Astrophysics
Computer Architectures

! architectures

! real machines

! computing concepts

! parallel programming



Computational Astrophysics
Computer Architectures

! architectures

! real machines

! computing concepts

! parallel programming



Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM= CPU



Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU:
! very primitive commands,

obtained from compilers or interpreters of higher-level languages

CPU



Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU:
! very primitive commands,

obtained from compilers or interpreters of higher-level languages

! cycle chain:
• fetch     – get instruction and/or data from memory
• decode – store instruction and/or data in register
• execute – perform instruction

CPU



Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU:
! very primitive commands,

obtained from compilers or interpreters of higher-level languages

! cycle chain:
• fetch     – get instruction and/or data from memory
• decode – store instruction and/or data in register
• execute – perform instruction

CPU

arithmetical/logical instructions:  +,   -,   *,   /,   bitshift,   if
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! serial machine

RAM=

CPU:
! very primitive commands,

obtained from compilers or interpreters of higher-level languages

! cycle chain:
• fetch     – get instruction and/or data from memory
• decode – store instruction and/or data in register
• execute – perform instruction

! some CPU allow multi-threading,
i.e. already fetch next instruction while still executing

CPU
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(e.g., ‘+’ requires less cycles than ‘*’)



Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU:
! execution time:   t = ni x CPI x tc

number of instructions time per cycle
cycles per instruction

CPU

speed-ups: improve your algorithm to require less instructions

example:
a factor like “3/(8piG)” inside a for-loop should be avoided;
define FAC=3/(8piG) outside the loop and use FAC inside the loop instead…
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! serial machine

RAM=

CPU:
! execution time:   t = ni x CPI x tc

number of instructions time per cycle

CPU

speed-ups: improve your algorithm to use more adequate instructions

cycles per instruction
(how many cycles does

your instruction require)

example:
avoid at all costs pow(), log(), etc.,
e.g. pow(x,2) should be replaced with x*x
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number of instructions time per cycle
cycles per instruction

CPU

speed-ups: buy a machine with higher clock-frequency
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number of instructions time per cycle
cycles per instruction

CPU

speed-ups: improve your algorithm!
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! serial machine

RAM=

CPU:
! execution time:   t = ni x CPI x tc

number of instructions time per cycle
cycles per instruction

CPU

speed-ups: ...or wait for technology to advance ;-)
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! serial machine

RAM=

CPU – evolution during the past years:

CPU

clock speed:
saturation level reached!

single thread:
saturation approaching!
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! serial machine

CPU RAM=

RAM:
! Random Access Memory, i.e. read and write

! storage in binary system:
• 1 bit     = 0 or 1
• 8 bits   = 1 byte
• 4 bytes = 1 float     (=32 bits, standard for 32-bit architectures)
• 8 bytes = 1 double   (=64 bits, standard for 64-bit architectures)

! latency = time for memory access (bus width also relevant)

! speed-ups:
• multi-threading CPU’s
• larger bus width:

! ‘80s 8-bit wide
! ‘90s 16-bit wide
! ‘00s 32-bit wide
! today 64-bit wide

(internal ‘highway’ for data transfer)
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RAM:
! Random Access Memory, i.e. read and write

! storage in binary system:
• 1 bit     = 0 or 1
• 8 bits   = 1 byte
• 4 bytes = 1 float     (=32 bits, standard for 32-bit architectures)
• 8 bytes = 1 double   (=64 bits, standard for 64-bit architectures)

! latency = time for memory access (bus width also relevant)

! speed-ups:
• multi-threading CPU’s
• larger bus width
• clever usage of Cache
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! Random Access Memory, i.e. read and write

! built into motherboard next to CPU

! when ‘fetch a[i]’  also  ‘fetch a[i+1]’  into Cache (in fact, full lines or pages are “cached”)

! nowadays multiple Cache levels

! bad programming will lead to “Cache misses”:

• t = f x tCache + ( 1- f ) x tRAM

Cache hit rate RAM access timeCache access time



Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

Cache:
! Random Access Memory, i.e. read and write

! built into motherboard next to CPU

! when ‘fetch a[i]’  also  ‘fetch a[i+1]’  into Cache (in fact, full lines or pages are “cached”)

! nowadays multiple Cache levels

! bad programming will lead to “Cache misses”:

• t = f x tCache + ( 1- f ) x tRAM

€ 

f = 0.1, tCache =10ns, tRAM =100ns ⇒ 91ns
f = 0.9, tCache =10ns, tRAM =100ns ⇒19ns

example:

Cache

Cache hit rate RAM access timeCache access time



Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

Cache:
! Random Access Memory, i.e. read and write

! built into motherboard next to CPU

! when ‘fetch a[i]’  also  ‘fetch a[i+1]’  into Cache (in fact, full lines or pages are “cached”)

! nowadays multiple Cache levels

! bad programming will lead to “Cache misses”:

• t = f x tCache + ( 1- f ) x tRAM

€ 

f = 0.1, tCache =10ns, tRAM =100ns ⇒ 91ns
f = 0.9, tCache =10ns, tRAM =100ns ⇒19ns

example:

Cache

Cache hit rate RAM access timeCache access time



Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

Cache:
! Random Access Memory, i.e. read and write

! built into motherboard next to CPU

! when ‘fetch a[i]’  also  ‘fetch a[i+1]’  into Cache (in fact, full lines or pages are “cached”)

! nowadays multiple Cache levels

! bad programming will lead to “Cache misses”:

• t = f x tCache + ( 1- f ) x tRAM

€ 

f = 0.1, tCache =10ns, tRAM =100ns ⇒ 91ns
f = 0.9, tCache =10ns, tRAM =100ns ⇒19ns

example:

Cache

Cache hit rate RAM access timeCache access time



Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

Cache:
! Random Access Memory, i.e. read and write

! built into motherboard next to CPU

! when ‘fetch a[i]’  also  ‘fetch a[i+1]’  into Cache (in fact, full lines or pages are “cached”)

! nowadays multiple Cache levels

! bad programming will lead to “Cache misses”:

• t = f x tCache + ( 1- f ) x tRAM

€ 

f = 0.1, tCache =10ns, tRAM =100ns ⇒ 91ns
f = 0.9, tCache =10ns, tRAM =100ns ⇒19ns

example:

Cache

Cache hit rate RAM access timeCache access time

factor of 4.5!
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! serial machine

CPU RAM=

Cache:
! Random Access Memory, i.e. read and write

! built into motherboard next to CPU

! when ‘fetch a[i]’  also  ‘fetch a[i+1]’  into Cache (in fact, full lines or pages are “cached”)

! nowadays multiple Cache levels

! bad programming will lead to “Cache misses”:

• t = f x tCache + ( 1- f ) x tRAM

design your code in order to access contiguous memory blocks!

Cache

Cache hit rate RAM access timeCache access time
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! serial machine

CPU RAM=

! Cache hits and misses:

• 2D array in C: density[2][3]

• memory alignment:

density[0][0] ...

BAD!

Cache

density[0][2] ... density[1][0] ...

for(i=0; i<3; i++)
for(j=0; j<2; j++)

whatever(density[j][i]);
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! serial machine

CPU RAM=

! Cache hits and misses:

• 2D array in C: density[2][3]

• memory alignment:

density[0][0] ...

for(j=0; j<2; j++)
for(i=0; i<3; i++)

whatever(density[j][i]);

GOOD!

Cache

density[0][2] ... density[1][0] ...

memory alignment depends on the language...

check before programming!

(e.g. C uses row-major ordering while Fortran & MATLAB use column-major ordering)
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! serial machine

CPU RAMCache=

CPU clock frequency vs. bus frequency:

• CPU frequency determines execution speed of commands

• bus frequency determines how quickly to get new commands/data

=> bus frequency (and width) is more relevant for actual speed!
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! serial machine

CPU RAMCache=

out-of-core applications:

! not all data fits into RAM => use hard-drive like RAM
! practically all databases work like this...

hard-drive
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possible speed-ups by the programmer:

• improve your algorithm to require less instructions, e.g. f=4*PI/Grav

• improve your algorithm to use more adequate instructions, e.g. x*x instead of pow(x,2)

• proper usage of cache, e.g. check memory alignment
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! serial machine

CPU RAMCache=

any other possibility to speed things up?
possible speed-ups by the programmer:

• improve your algorithm to require less instructions, e.g. f=4*PI/Grav

• improve your algorithm to use more adequate instructions, e.g. x*x instead of pow(x,2)

• proper usage of cache, e.g. check memory alignment
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=
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! serial machine – multi-cored

! shared memory architecture
• easy to adapt existing serial code
• limited by RAM to be placed into a single machine

CPU Cache
=

CPU Cache
RAM

! OpenMP – www.openmp.org
• most commonly used standard to parallelize code on shared memory architectures
• primarily distribute for-loop components onto different CPU’s
• natively by supported by gcc since v4.2you(!) have to add extra commands to the code
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CPU Cache
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CPU Cache
RAM

Hard
Drive
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! parallel machine

CPU Cache
=

CPU Cache
RAM

CPU Cache
=

CPU Cache
RAM

! performance highly sensitive to interconnect, e.g.
• FireWire 50 MB/s
• Gigabit 125 MB/s
• Myrinet 250 MB/s
• Infiniband 1000 MB/s
• ...
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! distributed memory architecture:
• existing code difficult to adapt
• easy to built (cluster of PC’s)
• speed-up limited by inter-computer communication

! MPI – Message Passing Interface
• “standard” library for work dispersal

on distributed memory architectures
• e.g., www.open-mpi.org
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! parallel machine

CPU Cache
=

CPU Cache
RAM

CPU Cache
=

CPU Cache
RAM

! distributed memory architecture:
• existing code difficult to adapt
• easy to built (cluster of PC’s)
• speed-up limited by inter-computer communication

! MPI – Message Passing Interface
• “standard” library for work dispersal

on distributed memory architectures
• e.g., www.open-mpi.org

you(!) have to substantially restructure your code
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Name:            MareNostrum
Vendor:          IBM
#CPU’s:          10240
performance:  60 Tflops/sec

#136 in 06/2011

Name:            Magerit
Vendor:          IBM
#CPU’s:          3920
performance:  100 Tflops/sec? ?
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real machines

! www.top500.org

#136 in 06/2011

Name:            Magerit
Vendor:          IBM
#CPU’s:          3920
performance:  100 Tflops/sec

interconnect:   Infiniband, up to 1500 Gbits/sec

#170 in 06/2011

Name:            MareNostrum
Vendor:          IBM
#CPU’s:          10240
performance:  60 Tflops/sec

interconnect:   Myrinet, ca. 2Gbit/sec
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• distributed computing where resources are linked together to solve a single problem

! Cloud computing:
• use remote resources for your (personal) needs (music storage, email correspondence, ...)

⇨ access to results via databases

Computing Concepts

⇨ actually running simulations

there actually exists a GRID network with 21 x 106 Pflops* !!!!!!

*as of Oct 2016
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! GRID computing:
• distributed computing where resources are linked together to solve a single problem

! Cloud computing:
• use remote resources for your (personal) needs (music storage, email correspondence, ...)

⇨ access to results via databases

Computing Concepts

⇨ actually running simulations

there actually exists a GRID network with 21 x 106 Pflops:

Bitcoin Network



Computational Astrophysics
Computer Architectures

! GRID computing:
• distributed computing where resources are linked together to solve a single problem

! Cloud computing:
• use remote resources for your (personal) needs (music storage, email correspondence, ...)

Computing Concepts

⇨ actually running simulations

⇨ access to results via databases
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your algorithm must be parallel,
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data parallelisation:
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all CPUs have the same data, but execute different calculations
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! how to program such machines?

serial algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

}

1D array

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]
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parallel programming

! how to program such machines?

serial algorithm

⇨ not parallelizable as a[i]
depends on all previous a[]’s!

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

}

general remark:
recursion is elegant yet not parallelizable...

1D array

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]
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parallel programming

! how to program such machines?

serial algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

}

parallel algorithm

1D array

each CPU runs the same code,

but on a different part of the problem...

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]
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parallel programming

! how to program such machines?

serial algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

}

parallel algorithm

1D array

example:
shared memory architecture

(i.e. all CPU’s can access the same memory)

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]
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parallel programming

! how to program such machines?

serial algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);
}

parallel algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

1D array

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]
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parallel programming

! how to program such machines?

serial algorithm parallel algorithm

the i-loop can now be parallelized as
all a[i] are calculated independently

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

1D array

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);
}

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]
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! how to program such machines?

serial algorithm parallel algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

we eliminated the recursion/dependence
by expanding it explicitly.

(by introducing yet another recursion, but c’est la vie...)

1D array

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);
}

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]
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! how to program such machines?

serial algorithm parallel algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

1D array

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);
}

#pragma omp parallel for private(i,j,b) shared(a)

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]
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! how to program such machines?

serial algorithm parallel algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

1D array

each CPU gets its own private copy of these variables

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);
}

#pragma omp parallel for private(i,j,b) shared(a)

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]
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parallel programming

! how to program such machines?

serial algorithm parallel algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

1D array

these variables remain where they are in RAM and
can be accessed by each CPU

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);
}

#pragma omp parallel for private(i,j,b) shared(a)

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]
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parallel programming

! how to program such machines?

serial algorithm parallel algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

1D array

N: shared or private?

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);
}

#pragma omp parallel for private(i,j,b) shared(a)

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]
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! how to program such machines?

serial algorithm parallel algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

1D array

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);
}

#pragma omp parallel for private(i,j,b) shared(a,N)

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]
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parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]

STARTVALUE = 1.35;
N          = 8;
a          = (float *) calloc(N, sizeof(float));
a[0]       = STARTVALUE;
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parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]

STARTVALUE = 1.35;
N          = 8;
a          = (float *) calloc(N, sizeof(float));
a[0]       = STARTVALUE;

N=8, a[0]=1.35, a[1:7]=0
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parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]

STARTVALUE = 1.35;
N          = 8;
a          = (float *) calloc(N, sizeof(float));
a[0]       = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)

double calc_b(int i, double sv)
{

double b;
int j;

b = sv;

for(j=0; j<i; j++)  {
b = function(b);

}

return(b);
}

N=8, a[0]=1.35, a[1:7]=0
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parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]

STARTVALUE = 1.35;
N          = 8;
a          = (float *) calloc(N, sizeof(float));
a[0]       = STARTVALUE;

i=1,2
j,b only known to CPU #1
a[0:7] fully accessible
N fully accessible

i=3,4
j,b only known to CPU #2
a[0:7] fully accessible
N fully accessible

i=5,6,7
j,b only known to CPU #3
a[0:0] fully accessible
N fully accessible

#pragma omp parallel for private(i,j,b) shared(a,N)

N=8, a[0]=1.35, a[1:7]=0
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parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

STARTVALUE = 1.35;
N          = 8;
a          = (float *) calloc(N, sizeof(float));
a[0]       = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

no communicationno communication

#pragma omp parallel for private(i,j,b) shared(a,N)

N=8, a[0]=1.35, a[1:7]=0

i=1,2
j,b only known to CPU #1
a[0:7] fully accessible
N fully accessible

i=3,4
j,b only known to CPU #2
a[0:7] fully accessible
N fully accessible

i=5,6,7
j,b only known to CPU #3
a[0:0] fully accessible
N fully accessible
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parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

STARTVALUE = 1.35;
N          = 8;
a          = (float *) calloc(N, sizeof(float));
a[0]       = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

no communicationno communication

N=8
a[0:7] filled with desired values
i, j, b undefined values

...

#pragma omp parallel for private(i,j,b) shared(a,N)

N=8, a[0]=1.35, a[1:7]=0

i=1,2
j,b only known to CPU #1
a[0:7] fully accessible
N fully accessible

i=3,4
j,b only known to CPU #2
a[0:7] fully accessible
N fully accessible

i=5,6,7
j,b only known to CPU #3
a[0:0] fully accessible
N fully accessible
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#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):
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#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

start parallel environment
(can be started everywhere in code...)
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#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

start parallel environment
(can be started everywhere in code...)

parallel environment
only for next for-loop
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#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

start parallel environment
(can be started everywhere in code...)

parallel environment
only for next for-loop

each thread stores its own
local copy of these variables
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#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

start parallel environment
(can be started everywhere in code...)

parallel environment
only for next for-loop

each thread stores its own
local copy of these variables

variables accessible
by each thread
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parallel programming

#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

start parallel environment
(can be started everywhere in code...)

parallel environment
only for next for-loop

each thread stores its own
local copy of these variables

variables accessible
by each thread

Note:
• if you only read the value of a variable, it can be ‘shared’
• if you write into a variable, think carefully about its status!
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parallel programming

#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

start parallel environment
(can be started everywhere in code...)

parallel environment
only for next for-loop

each thread stores its own
local copy of these variables

variables accessible
by each thread

Note:
• the loop-counter has to be private
• if you only read the value of a variable, it can be ‘shared’
• if you write into a variable, think carefully about its status

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);

}
a[i] = b;

}

#pragma omp parallel for private(i,j,b) shared(a,N)
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parallel programming

#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

start parallel environment
(can be started everywhere in code...)

parallel environment
only for next for-loop

each thread stores its own
local copy of these variables

variables accessible
by each thread

Note:
• the loop-counter has to be private
• if you only read the value of a variable, it can be ‘shared’
• if you write into a variable, think carefully about its status

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);

}
a[i] = b;

}

#pragma omp parallel for private(i,j,b) shared(a,N)

j?
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parallel programming

#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

start parallel environment
(can be started everywhere in code...)

parallel environment
only for next for-loop

each thread stores its own
local copy of these variables

variables accessible
by each thread

Note:
• the loop-counter has to be private
• if you only read the value of a variable, it can be ‘shared’
• if you write into a variable, think carefully about its status

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);

}
a[i] = b;

}

#pragma omp parallel for private(i,j,b) shared(a,N)

j?
there is a far more elegant way to write this code!
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! how to program such machines (OpenMP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)
for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}

a[i] = b;
}
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parallel programming

! how to program such machines (OpenMP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)
for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}

a[i] = b;
}

put this into a function!
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parallel programming

! how to program such machines (OpenMP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)
for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}

a[i] = b;
}

put this into a function: double calc_b(int i, double sv)
{

double b;
int j;

b = sv;

for(j=0; j<i; j++)  {
b = function(b);

}

return(b);
}
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! how to program such machines (OpenMP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc_b(i, a[0]);
}

double calc_b(int i, double sv)
{

double b;
int j;

b = sv;

for(j=0; j<i; j++)  {
b = function(b);

}

return(b);
}
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parallel programming

! how to program such machines (OpenMP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc_b(i, a[0]);
}

double calc_b(int i, double sv)
{

double b;
int j;

b = sv;

for(j=0; j<i; j++)  {
b = function(b);

}

return(b);
}
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parallel programming

! how to program such machines (OpenMP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc_b(i, a[0]);
} double calc_b(int i, double sv)

{
double b;
int j;

b = sv;

for(j=0; j<i; j++)  {
b = function(b);

}

return(b);
}
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double calc_b(int i, double sv)
{

double b;
int j;

b = sv;

for(j=0; j<i; j++)  {
b = function(b);

}

return(b);
}

parallel programming

! how to program such machines (OpenMP standard):

?   #pragma omp parallel for...

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc_b(i, a[0]);
}
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double calc_b(int i, double sv)
{

double b;
int j;

b = sv;

for(j=0; j<i; j++)  {
b = function(b);

}

return(b);
}

parallel programming

! how to program such machines (OpenMP standard):

2 reasons for not parallelizing this for-loop...

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc_b(i, a[0]);
}

?   #pragma omp parallel for...
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parallel programming

! how to program such machines (OpenMP standard):

2 reasons for not parallelizing this for-loop:
• it is a recursion
• we already parallelized outside of calc_b()

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc_b(i, a[0]);
} double calc_b(int i, double sv)

{
double b;
int j;

b = sv;

for(j=0; j<i; j++)  {
b = function(b);

}

return(b);
}

?   #pragma omp parallel for...
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parallel programming

! how to program such machines (OpenMP standard):

general advise:
• make your code modular, i.e. use functions

• modular code is easier to parallelize

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc_b(i, a[0]);
} double calc_b(int i, double sv)

{
double b;
int j;

b = sv;

for(j=0; j<i; j++)  {
b = function(b);

}

return(b);
}
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parallel programming

! how to program such machines (OpenMP standard):

general advise:
• make your code modular, i.e. use functions

• modular code is easier to parallelize

CPU #1 CPU #2 CPU #3

a[0]  a[1]   a[2]   a[3]  a[4]   a[5]   a[6]   a[7]

...but which CPU gets what i values?

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc_b(i, a[0]);
} double calc_b(int i, double sv)

{
double b;
int j;

b = sv;

for(j=0; j<i; j++)  {
b = function(b);

}

return(b);
}
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parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

but how to divide the domain?

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]
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! how to program such machines? 1D array

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

CPU #1 CPU #2 CPU #3

but how to divide the domain?
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! how to program such machines? 1D array

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

CPU #1 CPU #2 CPU #3

but how to divide the domain?
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! how to program such machines? 1D array

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

CPU #1 CPU #2 CPU #3

but how to divide the domain?
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! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

but how to divide the domain:
distribute the work evenly!

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]
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parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

but how to divide the domain:
distribute the work evenly!

=> CPU’s dealing with higher i ’s have more work to do!

b = a[0];
for(j=0; j<i; j++) {
b = function(b);

}

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]
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parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

but how to divide the domain:
distribute the work evenly!

=> CPU’s dealing with higher i ’s have more work to do!

b = a[0];
for(j=0; j<i; j++) {
b = function(b);

}

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

OpenMP work distribution:

schedule(dynamic): loop index = 0-Nthreads-1 ⤻ Nthreads ⤻ Nthreads+1 ⤻ etc.

schedule (static): evenly divide loop index amongst Nthreads

usage:

#pragma omp parallel for private(...) shared(...) schedule(...)
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! how to program such machines? 2D array
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parallel programming

! how to program such machines? 2D array

domain decomposition* needs to ensure...
• data locality
• optimized load-balancing
• minimal communication

*this is not to be confused with domain discretisation!
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! how to program such machines? 3D array
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! how to check the speed-up of your program?
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! how to check the speed-up of your program?

strong scaling weak scaling

you keep the number of CPU’s fixed,
but increase the problem size

you keep the problem size fixed,
but increase the number of CPU’s
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! how to check the speed-up of your program?

strong scaling weak scaling

you keep the problem size fixed,
but increase the number of CPU’s

you aim at running a given problem
as fast as possible...

you keep the number of CPU’s fixed,
but increase the problem size

you aim at running the largest possible
problem in a given amount of time...
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parallel programming

! how to check the speed-up of your program?

strong scaling weak scaling

you keep the problem size fixed,
but increase the number of CPU’s

you aim at running a given problem
as fast as possible...

you keep the number of CPU’s fixed,
but increase the problem size

you aim at running the largest possible
problem in a given amount of time...

actually more important nowadays
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! how to actually write a program?



Computational Astrophysics
Computer Architectures

parallel programming

! how to actually write a program?

• define the problem

• decide on organisation
o choose essential elements (variables, structures, etc.)
o shape relevant tasks
o design your algorithm to be parallelizable
o draw a flowchart

• code in your preferred language

• test code using simple/known test cases



Computational Astrophysics
Computer Architectures

parallel programming

! how to actually write a program?

• define the problem

• decide on organisation
o choose essential elements (variables, structures, etc.)
o shape relevant tasks
o design your algorithm to be parallelizable
o draw a flowchart

• code in your preferred language

• test code using simple/known test cases

try to break problem down into pieces/modules
that can be coded separately from each other...
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parallel programming

! shaping relevant tasks?
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! shaping relevant tasks – data 

divide data into sub-sets,
and perform different calculation with each sub-set…
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divide data into sub-sets,
and perform different calculation with each sub-set…

! shaping relevant tasks – data 

void Analyse(Data) {
for(Data) {
if(redData){

Calculation(Data)
}

else {
Calculation(Data)
}

} }

Analyse(Data)
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divide data into sub-sets,
and perform different calculation with each sub-set…

! shaping relevant tasks – data 

void Analyse(Data) {
for(Data) {
if(redData){

Calculation(Data)
}

else {
Calculation(Data)
}

} }

Analyse(Data)
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parallel programming

! shaping relevant tasks – data 

divide data into sub-sets,
and perform different calculation with each sub-set…
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! shaping relevant tasks – data 

SelectData

Calcuation(Data1)

Calculation(Data2)
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parallel programming

! shaping relevant tasks – data 

SelectData

Calcuation(Data1)

Calculation(Data2)

modular and hence more flexible!
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parallel programming

! how to actually write a program?

• define the problem

• decide on organisation
o choose essential elements (variables, structures, etc.)
o shape relevant tasks
o design your algorithm to be parallelizable
o draw a flowchart

• code in your preferred language

• test code using simple/known test cases

each CPU runs the same code,
but on a different part of the problem...
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SelectData

CPU#1

CPU#2

! design your algorithm to be parallelizable!

Calcuation(Data1)

Calculation(Data2)
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SelectData

CPU#1

CPU#2

! design your algorithm to be parallelizable!

data parallelisation

task parallelisation

Calcuation(Data1)

Calculation(Data2)
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SelectData

CPU#1

CPU#2

! design your algorithm to be parallelizable!

data parallelisation

task parallelisation

CPU#1

CPU#2

Calcuation1(Data1)

Calculation2(Data1)

Calcuation(Data1)

Calculation(Data2)



Computational Astrophysics
Computer Architectures

parallel programming

! some coding recommendations:

• make proper use of the Cache (see above)

o avoid complicated indices
o know how arrays are aligned in memory

• avoid conditions, I/O, and (sub-)routine calls inside loops

• avoid unnecessary operations inside loops in general

• use multiplications rather than divisions or powers

• keep it simple!
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let’s put our knowledge into action:

write a code that calculates

𝜋 ≈ 12&
!"#

$

−
1
3

! 1
2𝑘 + 1



Computational Astrophysics
Computer Architectures

pi += pow(-1.0/3.0, (double)k) / (2.*(double)k+1.);

pi += pow(-1.0/3.0, (double)k) / (2.*(double)k+1.);

pi += pow(-1.0/3.0, (double)k) / (2.*(double)k+1.);

k=0,1,2,3,4

k=5,6,7,8,9

k=10,11,12,13


