Computational Astrophysics

Computer Architectures Alexander Knebe, Universidad Autonoma de Madrid
... 17’5 LOOKING
GooD FoR ‘;HE CLoud COMPUTING
WEEKEND WITH FORECAST
PLENTY oF
ClLoudb APPS
COMING IN C‘Ib

FRoM THE
&2k

Computational Astrophysics

Computer Architectures

architectures
real machines
computing concepts

parallel programming

Computational Astrophysics

Computer Architectures

architectures
real machines
computing concepts

parallel programming

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

CPU:
" very primitive commands,
obtained from compilers or interpreters of higher-level languages

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

" very primitive commands,
obtained from compilers or interpreters of higher-level languages

= cycle chain:
* fetch — get instruction and/or data from memory
* decode - store instruction and/or data in register
* execute — perform instruction

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine

CPU:
" very primitive commands,
obtained from compilers or interpreters of higher-level languages

= cycle chain:
* fetch - get instruction and/or data from memory
» decode - store instruction and/or data in register
* execute — perform instruction

arithmetical/logical instructions: +, - * / bitshift, if

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

CPU:
" very primitive commands,
obtained from compilers or interpreters of higher-level languages

= cycle chain:
* fetch — get instruction and/or data from memory
* decode - store instruction and/or data in register
* execute — perform instruction

= some CPU allow multi-threading,
i.e. already fetch next instruction while still executing

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

_cPu

CPU:
= execution time: t=n,xCPIx¢,

— | T

number of instructions
cycles per instruction
(e.g., ‘+ requires less cycles than)

time per cycle

Computational Astrophysics

Computer Architectures

ARCHITECTURES

» serial machine

CPU:

= execution time: t=n,xCPIx¢,

— | T

(number of instructions)

time per cycle

speed-ups:

cycles per instruction

improve your algorithm to require less instructions

example:

a factor like “3/(8piG)” inside a for-loop should be avoided;
define FAC=3/(8piG) outside the loop and use FAC inside the loop instead...

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

CPU:
= execution time: t=n,xCPIx¢,

— | T

number of instructions time per cycle
cycles per instruction
(how many cycles does
your instruction require)

speed-ups: improve your algorithm to use more adequate instructions

example:
avoid at all costs pow(), log(), etc,,

e.g. pow(x, 2) should be replaced with x*x

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

speed-ups:

_cPu

CPU:
= execution time: t=n,xCPIx¢,

number of instructions

= =

time per cycle

)

cycles per instruction

buy a machine with higher clock-frequency

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

speed-ups:

_cPu

CPU:
= execution time: t=n,xCPIx¢,

/

number of instructions v

cycles per instruction

improve your algorithm!

T

time per cycle

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

speed-ups:

_cPu

CPU:
= execution time: t=n,xCPIx¢,

number of instructions
cycles per instruction

...or wait for technology to advance ;-)

= =

time per cycle

)

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

CPU - evolution during the past years:

40 Years of Microprocessor Trend Data

v VvV

v : ‘
vv : » g
v | 5 s
"""""" QQ‘QQQ“MWQQ-

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 103)

Frequency (MHz)

Typical Power
(Watts)

Number of
Logical Cores

1970 1980 1990

2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2015 by K. Rupp

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine

CPU - evolution during the past years:

40 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 103)

clock speed:

. saturation level reached!
Typical Power

(Watts)

Number of
Logical Cores

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine

CPU - evolution during the past years:

40 Years of Microprocessor Trend Data

Transistors
(thousands)

single thread:
(Seggogln,\ﬁ”f?os) saturation approaching!

clock speed:

. saturation level reached!
Typical Power

(Watts)

Number of
Logical Cores

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine

RAM:
* Random Access Memory, i.e. read and write

= storage in binary system:
*lbit =O0orl
* 8 bits = | byte
* 4 bytes = | float (=32 bits, standard for 32-bit architectures)
* 8 bytes = | double (=64 bits, standard for 64-bit architectures)

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

/

7P

= u

RAM:
* Random Access Memory, i.e. read and write

= storage in binary system:
*lbit =O0orl
* 8 bits = | byte
* 4 bytes = | float (=32 bits, standard for 32-bit architectures)
* 8 bytes = | double (=64 bits, standard for 64-bit architectures)

® latency = time for memory access (bus width also relevant)

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

/

= u

RAM:
* Random Access Memory, i.e. read and write

= storage in binary system:
*lbit =O0orl
* 8 bits = | byte
* 4 bytes = | float (=32 bits, standard for 32-bit architectures)
* 8 bytes = | double (=64 bits, standard for 64-bit architectures)

® latency = time for memory access (bus width also relevant)

» speed-ups:
* multi-threading CPU’s
* larger bus width

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine

= m_u

—— RAM:
., = Random Access Memory, i.e. read and write

7

= storage in binary system:
*lbit =O0orl
* 8 bits = | byte
* 4 bytes = | float (=32 bits, standard for 32-bit architectures)
* 8 bytes = | double (=64 bits, standard for 64-bit architectures)

® latency = time for memory access (bus width also relevant)

» speed-ups:
* multi-threading CPU’s
e larger bus width:
= ‘80s 8-bit wide
= ‘90s | 6-bit wide
= ‘00s 32-bit wide
= today 64-bit wide

(internal ‘highway’ for data transfer)

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

/

: u

RAM:
* Random Access Memory, i.e. read and write

= storage in binary system:
*lbit =O0orl
* 8 bits = | byte
* 4 bytes = | float (=32 bits, standard for 32-bit architectures)
* 8 bytes = | double (=64 bits, standard for 64-bit architectures)

® latency = time for memory access (bus width also relevant)

» speed-ups:
* multi-threading CPU’s
* larger bus width
* clever usage of Cache

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

/

RAM:
* Random Access Memory, i.e. read and write

= storage in binary system:
*lbit =O0orl
* 8 bits = | byte
* 4 bytes = | float (=32 bits, standard for 32-bit architectures)
* 8 bytes = | double (=64 bits, standard for 64-bit architectures)

® latency = time for memory access (bus width also relevant)

= speed-ups:
* multi-threading CPU’s
* larger bus width
* clever usage of Cache

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

/

7D

e

Cache:
* Random Access Memory, i.e. read and write
® built into motherboard next to CPU
= when ‘fetch a[i]’ also ‘fetch a[i+ 1]’ into Cache (in fact, full lines or pages are “cached”)

* nowadays multiple Cache levels

* bad programming will lead to “Cache misses’:

* 1=fxlcpene + (1-f) X trap

4N N

Cache hit rate Cache access time RAM access time

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

/

7D

e

example:

Cache:
* Random Access Memory, i.e. read and write
® built into motherboard next to CPU
= when ‘fetch a[i]’ also ‘fetch a[i+ 1]’ into Cache (in fact, full lines or pages are “cached”)

* nowadays multiple Cache levels

* bad programming will lead to “Cache misses’:

* 1=fxlcpene + (1-f) X trap

4N N

Cache hit rate Cache access time RAM access time

tewne =10ms, 1o, =100ns

eune =10ms, 14, =100ns

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

/

— Cache:
A R

e

* Random Access Memory, i.e. read and write

® built into motherboard next to CPU

= when ‘fetch a[i]’ also ‘fetch a[i+ 1]’ into Cache (in fact, full lines or pages are “cached”)
* nowadays multiple Cache levels

* bad programming will lead to “Cache misses’:

* 1=fxlcpene + (1-f) X trap

4N N

Cache hit rate Cache access time RAM access time

example:

f=0.1, t.., =10ns, tz,, =100ns
f=09, t... =10ns, t,,, =100ns

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

/

— Cache:
A R

e

* Random Access Memory, i.e. read and write

® built into motherboard next to CPU

= when ‘fetch a[i]’ also ‘fetch a[i+ 1]’ into Cache (in fact, full lines or pages are “cached”)
* nowadays multiple Cache levels

* bad programming will lead to “Cache misses’:

* 1=fxlcpene + (1-f) X trap

4N N

Cache hit rate Cache access time RAM access time

example:

f=0.1, t.., =10ns, ty,, =100ns =>9lns
f=09, t. =10ns, t,, =100ns =>19ns

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

/

— Cache:
A R

e

* Random Access Memory, i.e. read and write

® built into motherboard next to CPU

= when ‘fetch a[i]’ also ‘fetch a[i+ 1]’ into Cache (in fact, full lines or pages are “cached”)
* nowadays multiple Cache levels

* bad programming will lead to “Cache misses’:

* 1=fxlcpene + (1-f) X trap

4N N

Cache hit rate Cache access time RAM access time

example:

f=01 t., =10ns, tz,, =100ns = 9lns

> factor of 4.5!
f=09, t. =10ns, t,, =100ns =>19ns

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

/

7D

e

Cache:
* Random Access Memory, i.e. read and write
® built into motherboard next to CPU
= when ‘fetch a[i]’ also ‘fetch a[i+ 1]’ into Cache (in fact, full lines or pages are “cached”)

* nowadays multiple Cache levels

* bad programming will lead to “Cache misses’:

* 1=fxlcpene + (1-f) X trap

4N N

Cache hit rate Cache access time RAM access time

design your code in order to access contiguous memory blocks!

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

7D

e

= Cache hits and misses:

*2D array in C:

density[2][3]

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

7D

e

= Cache hits and misses:

*2D array in C:

density[2][3]

* memory alighment:

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

7D

e

= Cache hits and misses:

*2D array in C:

density[2]]

3]

* memory alighment:

L~

density[0][0]

!

. density[0][2]

S

. density[1]1[0]

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine

7'
= Cache hits and misses: for(i=0; i<3; i++)
for(J=0; 3j<2; j++)
) . whatever (density[J][1]);
* 2D array in C: density[2][3]
BAD!
* memory alighment: | || g

S

density[0][0] ... density[0][2] ... density[1][0]

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine

7
= Cache hits and misses: for (j=0; j<2; j++)
for(i=0; i<3; i++)
. . whatever (density[J][1]);
* 2D array in C: density[2][3]
GOOD!
* memory alighment: | || g

S

density[0][0] ... density[0][2] ... density[1][0]

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine

e |anguage Y

ent depends on th
re programming!

B use column-
or(J=0; j<2; j++)
for(i=0; i<3; i++)
whatever (density[J][1]);

GOOD!

memory alignm
check befo

ing while Fortran & MATLA

major ordering)

-major order
(e.g. C uses row majo

* 2D array in C: density[2][3]

* memory alighment: | || ~

S

density[0][0] ... density[0][2] ... density[1][0]

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine

Q CPU clock frequency vs. bus frequency:

-

7

* CPU frequency determines execution speed of commands

* bus frequency determines how quickly to get new commands/data

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine

CPU clock frequency vs. bus frequency:

* CPU frequency determines execution speed of commands
* bus frequency determines how quickly to get new commands/data

=> bus frequency (and width) is more relevant for actual speed!

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

7P

>

out-of-core applications:

® not all data fits into RAM => use hard-drive like RAM

= practically all databases work like this...

hard-drive

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine

7D

e

possible speed-ups by the programmer:

* improve your algorithm to require less instructions, e.g. f=4*PI/Grav
* improve your algorithm to use more adequate instructions, e.g. X*X instead of pow(x,2)

» proper usage of cache, e.g. check memory alignment

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine

= any other possibility to speed things up?

7D

possible speed-ups by the programmer:

* improve your algorithm to require less instructions, e.g. f=4*PI/Grav
* improve your algorithm to use more adequate instructions, e.g. X*X instead of pow(x,2)

» proper usage of cache, e.g. check memory alignment

Computational Astrophysics

ARCHITECTURES

Computer Architectures

» serial machine

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine — multi-cored

o M@g

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine — multi-cored

o M@“

" shared memory architecture
* easy to adapt existing serial code
* limited by RAM to be placed into a single machine

7P

d

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine — multi-cored

= latency negligible <:>u

" shared memory architecture
* easy to adapt existing serial code
* limited by RAM to be placed into a single machine

7P

d

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine — multi-cored

o M@“

" shared memory architecture
* easy to adapt existing serial code
* limited by RAM to be placed into a single machine

7D

d

* OpenMP — www.openmp.org
* most commonly used standard to parallelize code on shared memory architectures
e primarily distribute for-loop components onto different CPU’s
* natively by supported by gcc since v4.2

Computational Astrophysics ARCHITECTURES

Computer Architectures

» serial machine — multi-cored

o M@“

" shared memory architecture
* easy to adapt existing serial code
* limited by RAM to be placed into a single machine

7D

d

* OpenMP — www.openmp.org

* most commonW- ” mands to the code}tures

\ you(!) have to add extra com
! T hce v4.

Computational Astrophysics ARCHITECTURES

Computer Architectures

 parallel machine

Computational Astrophysics ARCHITECTURES

Computer Architectures
’ = u

 parallel machine

7R = performance highly sensitive to interconnect, e.g.
* FireWire 50 MB/s
* Gigabit 125 MB/s
* Myrinet 250 MB/s

* Infiniband 000 MB/s

, o M@u

7R

Computational Astrophysics ARCHITECTURES

Computer Architectures

 parallel machine

7R

= distributed memory architecture:
* existing code difficult to adapt
* easy to built (cluster of PC’s)
* speed-up limited by inter-computer communication

o M@u

7R

Computational Astrophysics ARCHITECTURES

Computer Architectures

 parallel machine

e e

7R

= distributed memory architecture: = MP| — Message Passing Interface
* existing code difficult to adapt * “standard” library for work dispersal
* easy to built (cluster of PC’s) on distributed memory architectures

* speed-up limited by inter-computer communicatior * e.g., Www.open-mpi.org

o Mﬁu

7R

Computational Astrophysics ARCHITECTURES

Computer Architectures

 parallel machine

Mﬁﬁu

. distributed memory architecture: = MP| — Me.uam-n—:l_\;\terface
* exi : . ture your cO € Hispersal
jally restruc
*ea you(') have to SUbSta“t y o astributed memory architectures
ited by inter-computer communicatior * e.g., WWww.open-mpi.org

o M@u

Computational Astrophysics

Computer Architectures

architectures
real machines
computing concepts

parallel programming

Computational Astrophysics

REAL MACHINES

Computer Architectures

= parallel machine in reality = multi-level hybrid machines

IBM Blue Gene/L

(131072 CPUr’s in total!)

Computational Astrophysics REAL MACHINES

Computer Architectures

= parallel machine in reality = multi-level hybrid machines

System
(64 cabinets, 64x32x32)

IBM Blue Gene/L Cabinet
(131072 CPUrs in total!) (32 Node boards, 8x8x16)
P
Node Board E 1
(32 chips, 4x4x2) <
16 Compute Cards -

Compute Card

(2 chips, 2x1x1) 180/360 TF/s

16 TB DDR

2.9/5.7 TF/s

256 GB DDR
90/180 GF/s

8 GB DDR

5.6/11.2 GF/s
2.8/5.6 GF/s 0.5 GB DDR

4 MB

Computational Astrophysics REAL MACHINES
Computer Architectures
= www.top500.org
Home | TOP500 Supercomputing Sites
< @ & |+ g®hip://www.top500.0rg/ .~ Google -
&3 [0 Dict-EN Dict-ES Astrov UAMv MADv Bankingv Lifestylev Macv Mailv Miscv Moviesv Newspaperv Musicv Shoppingy AK TV
Home | TOP500 Supercomputing.. +

e : (1
=1 events
‘ Eﬁﬁ cloud computing

SUPERCOMPUTER SITES

PROJECT LISTS STATISTICS RESOURCES NEWS

» Japan Reclaims Top Ranking on Latest TOP500
List of World’s Supercomputers
Thu, 2011-06-16 19:24

TOP 10 Systems - 06/2011

K computer, SPARC64 VIIIfx
2.0GHz, Tofu interconnect

Tianhe-1A - NUDT TH MPP,
X5670 2.93Ghz 6C, NVIDIA
GPU, FT-1000 8C

Jaguar - Cray XT5-HE Opteron
6-core 2.6 GHz

Nebulae - Dawning TC3600
Blade, Intel X5650, NVidia
Tesla C2050 GPU

TSUBAME 2.0 - HP ProLiant
SL390s G7 Xeon 6C X5670,
Nvidia GPU, Linux/Windows

Cielo - Cray XE6 8-core 2.4
GHz

Pleiades - SGI Altix ICE
8200EX/8400EX, Xeon HT QC
3.0/Xeon 5570/5670 2.93 Ghz,
Infiniband

HAMBURG, Germany—A Japanese supercomputer capable of
performing more than 8 quadrillion calculations per second
(petaflop/s) is the new number one system in the world, putting
Japan back in the top spot for the first time since the Earth
Simulator was dethroned in November 2004, according the latest
edition of the TOP500 List of the world's top supercomputers. The
system, called the K Computer, is at the RIKEN Advanced Institute
for Computational Science (AICS) in Kobe.

» Read more

& Mannheim, Germany
September 26-27, 2011

CONTACT [3#suBMissioNs [lLNKs (YHOME

Delivering

SUPERMICR®
We Keep IT Green™

Deep

Computing?

“Computing”

the ideal future i

Computational Astrophysics REAL MACHINES

Computer Architectures

= www.top500.org

#170 in 06/201 1

#136 in 06/201 1

Name: Magerit Name: MareNostrum
Vendor: IBM Vendor: IBM

#CPUr’s: 3920 #CPUr’s: 10240

performance: 100 Tflops/sec performance: 60 Tflops/sec

Computational Astrophysics REAL MACHINES

Computer Architectures

= www.top500.org

#170 in 06/201 1

#136 in 06/201 1
Name: Magerit Name: MareNostrum
Vendor: IBM Vendor: IBM

P (#CPus: 3920 HCPU's: 10240 14
® | performance: 100 Tflops/sec performance: 60 Tflops/sec | ®

Computational Astrophysics REAL MACHINES

Computer Architectures

= www.top500.org

#136 in 06/201 1 #170 in 06/201 1

Name: Magerit Name: MareNostrum
Vendor: IBM Vendor: IBM

#CPU's: 3920 #CPU's: 10240
performance: 100 Tflops/sec performance: 60 Tflops/sec

interconnect: Infiniband, up to 1500 Gbits/sec interconnect: Mpyrinet, ca. 2Gbit/sec

Computational Astrophysics

Computer Architectures

architectures
real machines
computing concepts

parallel programming

Computational Astrophysics COMPUTING CONCEPTS

Computer Architectures

= GRID computing / Cloud computing?

Computational Astrophysics COMPUTING CONCEPTS

Computer Architectures

= GRID computing:

e distributed computing where resources are linked together to solve a single problem

Computational Astrophysics COMPUTING CONCEPTS

Computer Architectures

= GRID computing:

e distributed computing where resources are linked together to solve a single problem

* Cloud computing:
* use remote resources for your (personal) needs (music storage, email correspondence, ...)

Control ¢
Node

Computational Astrophysics

COMPUTING CONCEPTS

Computer Architectures

= GRID computing:

= actually running simulations

e distributed computing where resources are linked together to solve a single problem

* Cloud computing:

= access to results via databases

* use remote resources for your (personal) needs (music storage, email correspondence, ...)

Cloud Computing Wo

Database

Control ¢
Node

rks 08 HowStuffworks How Grid Computing Works

Computational Astrophysics

COMPUTING CONCEPTS

Computer Architectures

= GRID computing:

= actually running simulations

* distributed computing where resources are linked together to solve a single problem

* Cloud computing:

= access to results via databases

* use remote resources for your (personal) needs (music storage, email correspondence, ...)

first GRID computing?

Computational Astrophysics COMPUTING CONCEPTS

Computer Architectures

" GRID computing: = actually running simulations

* distributed computing where resources are linked together to solve a single problem

* Cloud computing: = access to results via databases
* use remote resources for your (personal) needs (music storage, email correspondence, ...)

SETI@home
® ¢ 'v{http://5etiathome.berkeley.edu/ 'RSS | Google
&3 [1] Dict-EN Dict-ES Astrov UAMv MADv Bankingv Lifestylev Macv Mailv Miscv Moviesv Newspaperv Musicv Shoppingy AK TV
SETi@home

\
NS SETI@home is a scientific experiment that uses Internet-connected computers in the Search for Extraterrestrial Intelligence (SETI). You can participate
Needs your Help by running a free program that downloads and analyzes radio telescope data.
Donate to SETI@home
Click Here for More Information
PARTICIPATE ABOUT COMMUNITY YOUR ACCOUNT STATISTICS
Download About SETI@home Message boards Your account Top participants
Get help About Astropulse Questions & answers Preferences Top computers
Tell a friend Science newsletters Profiles Certificate Top teams
Donate Technical news User search Top GPU models

Porting & optimization Server status Teams
... more Science status Web sites & IRC

Sponsors Pictures & music site search: [

... more

Languages

1 Another way to support SETI@home
In addition to crunching, you can provide some support to SETI@home by using and
These search engines redirect a half their advertising to revenues to charity. Just be sure to choose

E , install and run the BOINC software used by "University of California - SETI@home" as your charity of choice. 12 Sep 2011 | 20:38:21 UTC -
SETI@home. When prompted, enter the URL:

http://setiathome.berkeley.edu
more data on the way

Have questions or need help? Contact a volunteer using In an attempt to push some older unanalyzed files through the pipeline we encountered data that could not
be successfully preprocessed or split. This has resulted in work distribution going to near zero. We are
currently transferring newer files from off site storage and soon will be receiving a disk shipment from Arecibo.

Once these data are on hand work distribution will pick up. 8 Sep 2011 | 16:56:49 UTC -
Special instructions:
. storage service is back up
. . We have migrated storage service to thumper. Now it's a matter of transferring raw data to thumper,

preprocessing it, and splitting it. This will all take some time. The Overland server is up and its raid is
, operational (thanks Overland!). Diagnosis of this unit is proceeding.
veren 8y | Keep your computer busy when SETI@home has no P () 9 p 9

Ld L work - 28 May 2011 | 14:30:01 UTC -

Computational Astrophysics COMPUTING CONCEPTS

Computer Architectures

" GRID computing: = actually running simulations

* distributed computing where resources are linked together to solve a single problem

* Cloud computing: = access to results via databases
* use remote resources for your (personal) needs (music storage, email correspondence, ...)

SETI@home
® 'v{http://5etiathome.berkeley.edu/ 'RSS | Google
&3 [0 Dict-EN Dict-ES Astrov UAMv MADv Bankingv Lifestylev Macv Mailv Miscv Moviesv Newspaperv Musicv Shoppingy AK TV
SETi@home

NS SETI@home is a scientific experiment that uses Internet-connected computers in the Search for Extraterrestrial Intelligence (SETI). You can participate
Needs your Help by running a free program that downloads and analyzes radio telescope data.
Donate to SETI@home
Click Here for More Information
PARTICIPATE COMMUNITY YOUR ACCOUNT STATISTICS

* over 3.5 mio. computers participating

| * (virtual) machine reaches ~0.8 Pflops !!!

L * no signs of ET yet ...

to choose
B8:21 UTC -

* ...but distributed computing works well! [::::z

ipment from Arecibo.
op. B oep 2UII [16:56:49 UTC

Special instructions:

storage service is back up
We have migrated storage service to thumper. Now it's a matter of transferring raw data to thumper,
preprocessing it, and splitting it. This will all take some time. The Overland server is up and its raid is
, operational (thanks Overland!). Diagnosis of this unit is proceeding.
sy | Keep your computer busy when SETI@home has no P () 9 p 9

NERED E
28 May 2011 | 14:30:01 UTC -
L2 P work - ay l °

Computational Astrophysics

COMPUTING CONCEPTS

Computer Architectures

= GRID computing:

= actually running simulations

e distributed computing where resources are linked together to solve a single problem

OO0 [« 5] @ setiathome.berkeley.edu ¢ ™]
= Cl
Dict-EN Dict-ES Astov UAMv MADv Macv Mailv Bankingv Miscv Moviesv Newspaperv Musicv Shoppingv Anjav AK 300sheet >>
SETI@home —+
- ce,...)

Science v Computing ~

SETILHOME Project -

What is SETI@home?

SETI@home is a scientific experiment, based at UC Berkeley, that
uses Internet-connected computers in the Search for
Extraterrestrial Intelligence (SETI). You can participate by running a
free program that downloads and analyzes radio telescope data.

Join SETI@home

Already joined? Log in.

User of the Day

Xcure
A We are now on self quarantine and a pandemicis

| coweren sy | Keep your computer busy when SETI@home has no
=N le o | work - narticinate in ather BOTNC-haced

Community ~

Site v

News

SETI@home and COVID-19

SETI@home will stop distributing tasks soon, but we encourage you
to continue donate computing power to science research - in
particular, research on the COVID-19 virus. The best way to do this
is to join Science United and check the "Biology and Medicine" box.
23 Mar 2020, 21:33:54 UTC - Discuss

New SETI Perspectives: "How did life begin

on Earth and elsewhere?"

Richard Lawn has posted a new SETI Perspective entitled How did
life begin on Earth and elsewhere?.

19 Mar 2020, 22:49:24 UTC - Discuss

28 May 2011 | 14:30:01 UTC - Comment

Computational Astrophysics COMPUTING CONCEPTS

Computer Architectures

" GRID computing: = actually running simulations

* distributed computing where resources are linked together to solve a single problem

* Cloud computing: = access to results via databases
* use remote resources for your (personal) needs (music storage, email correspondence, ...)

*as of Oct 2016

Computational Astrophysics COMPUTING CONCEPTS

Computer Architectures

" GRID computing: = actually running simulations

* distributed computing where resources are linked together to solve a single problem

* Cloud computing: = access to results via databases
* use remote resources for your (personal) needs (music storage, email correspondence, ...)

there actually exists a GRID network with 21 x 10° Pflops:

Bitcoin Network

Computational Astrophysics

COMPUTING CONCEPTS

Computer Architectures

= GRID computing:

= actually running simulations

* distributed computing where resources are linked together to solve a single problem

* Cloud computing:

= access to results via databases

* use remote resources for your (personal) needs (music storage, email correspondence, ...)

O0O0 (] www.cosmosim.org @]] a
Wunschzettel Dict-EN Dict-ES Astro UAM MAD Lifestyle Mac Mai Banking Misc Movies Newspaper Music Shopping Anja AK
CosmoSim }

CosmoSim Blog Documentation Database Files Query

Contact Login

ACMOSIIT

The CosmoSim database provides results from cosmological simulations performed within different

Register to CosmoSim
projects: MultiDark and Bolshoi, CLUES, and Galaxies.

: Bolshoi *+

The Spanish MultiDark Consolider
project supports efforts to identify
and detect matter, including dark
matter simulations of the

universe.

MDR1 BigMDPL
SMDPL Bolshoi
MDPL BolshoiP
MDPL2

https://www.cosmosim.org/#

Available now for the MDPL2
simulation - galaxy catalogs
contain galaxy properties from

different semi-analytical codes.

MDPL2 Galacticus
MDPL2 SAG
MDPL2 SAGE

Constrained Local Uni

CLUES.

The CLUES project produces
constrained simulations of the
local universe, partially with gas
and star formation.

Clues3_LGDM
Clues3_LGGas

Simutations

AIP

CosmoSim.org is hosted and
maintained by the Leibniz-Institute
for Astrophysics Potsdam (AIP).

GERMAN ASTROPHYSICAL

GAVO

VIRTUAL OBSERVATORY

Computational Astrophysics

Computer Architectures

architectures
real machines
computing concepts

parallel programming

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines?

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines?

your algorithm must be parallel,

then it’'s only a matter of using parallel libraries to distribute the work...

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines?

your algorithm must be parallel,

then it’'s only a matter of using parallel libraries to distribute the work...

data parallelisation:
all CPUs execute the same code, but have different parts of the data

task parallelisation
all CPUs have the same data, but execute different calculations

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines?

your algorithm must be parallel,

then it’'s only a matter of using parallel libraries to distribute the work...

data parallelisation:
all CPUs execute the same code, but have different parts of the data

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines? ID array

af0] afl] af2] af[3] a[4] a[5] a[6] af[7]

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines? ID array

CPU #1 CPU #2 CPU #3

af0] afl] af2] af[3] a[4] a[5] a[6] af[7]

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

serial algorithm

a[0] = STARTVALUE;
for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

CPU #1 CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

|D array

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

serial algorithm

a[0] = STARTVALUE;
for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

CPU #1 CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

|D array

= not parallelizable as a[1]
depends on all previous a[1’s!

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

serial algorithm

a[0] = STARTVALUE;
for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

|D array

= not parallelizable as a[1]
depends on all previous a[1’s!

general remark:
recursion is elegant yet not parallelizable...

CPU #1 CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

serial algorithm

a[0] = STARTVALUE;
for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

CPU #1 CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

|D array

parallel algorithm

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

serial algorithm

a[0] = STARTVALUE;
for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

CPU #1 CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

|D array

parallel algorithm

s the same code,
each CPU run ¢ of the problem...

butona different par

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

serial algorithm

a[0] = STARTVALUE;
for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

CPU #1 CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

|D array

parallel algorithm

example:

shared memory architecture
(i.e.all CPU’s can access the same memory)

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

serial algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

CPU #1 CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

|D array

parallel algorithm

a[0] = STARTVALUE;
for(i=1; i<N; i++) {

b = af[0];

for(j=0; J<i; Jj++) {
b = function(b);

}

a[i] = b;

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

serial algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

—

af[i] function(a[i-11]);

CPU #1 CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

|D array

parallel algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];

for(Jj=0; Jj<i; Jj++) {
b function(b);

}

a[i]

b;

the i-loop can now be parallelized as
all a[1] are calculated independently

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

serial algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

CPU #1 CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

|D array

parallel algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b =a[0];

for(j=0; J<i; Jj++) {
b = function(b);

}

a[i] = b;

— we eliminated the recursion/dependence

by expanding it explicitly.

(by introducing yet another recursion, but C’est la vie...)

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

serial algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

CPU #1 CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

|D array

parallel algorithm

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a)
for(i=1; i<N; i++) {

b = af[0];

for(j=0; J<i; Jj++) {
b = function(b);

}

a[i] = b;

Computatio

nal Astrophysics

PARALLEIL PROGRAMMING

Computer Arch

" how to program such machines?

itectures

serial algorithm

a[o] =

STARTVALUE;

for(i=1; i<N; i++) {

a[i]

CPU #1

= function(a[i-1]);

CPU #2 CPU #3

a[0] a[l] a[2]

a[3] a[4] a[5] a[6] a[7]

|D array

parallel algorithm

a[0] = STARTVALUE;

#pragma omp parallel for|private(i,j,b)| shared(a)
for(i=1; i<N; i++)

b = a[0];

for(j=0; J<i;/j++) {
b = functiop(b);

}

a[i] =

each CPU gets its own private copy of these variables

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

serial algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

CPU #1 CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

|D array

parallel algorithm

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b)| shared(a)

for(i=1; i<N; i++) {

b =a[0];
for(j=0;
b =
}

a[i] = b;

J<i; Jj++) {
function(b);

these variables remain where they are in RAM and
can be accessed by each CPU

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

serial algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

CPU #1 CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

|D array

parallel algorithm

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a)

for(i=1; iKNj i++) {

b = a[0];
for(j3=0;
b = function(b);

N: shared or private?

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

serial algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

CPU #1 CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

|D array

parallel algorithm

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)
for(i=1; i<N; i++) {

b = af[0];

for(j=0; J<i; Jj++) {
b = function(b);

}

a[i] = b;

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

CPU #1

STARTVALUE
N

a

af[0]

1.35;

8;

(float *) calloc(N, sizeof(float));
STARTVALUE;

CPU #2 CPU #3

a[0] a[l] a[2]

a[3] a[4] a[5] a[6] a[7]

|D array

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

CPU #1

STARTVALUE
N

a

af[0]

1.35;

8;

(float *) calloc(N, sizeof(float));
STARTVALUE;

N=8, a[0]=1.35, a[1:7]=0

CPU #2 CPU #3

a[0] a[l] a[2]

a[3] a[4] a[5] a[6] a[7]

|D array

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines? ID array

1.35;

8;

(float *) calloc(N, sizeof(float));
STARTVALUE;

STARTVALUE
N

a

af[0]

N=8, a[0]=1.35, a[1:7]=0

#pr P parallel f?k private(i,3J; red(a,N)

double calc b(int i, double sv)

{

double b;
int j;
b = sv;

for(j=0; Jj<i; Jj++) |
b = function(b);
}

return(b);

CPU #1 CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines? ID array
STARTVALUE = 1.35;
N = 8;
a = (float *) calloc(N, sizeof(float));
a[o0] = STARTVALUE;
N=8, a[0]=1.35, a[1:7]=0
#pr P parallel fo& private(i,3J; red(a,N)
i=1,2 i=3,4 i=5,6,7
j,b only known to CPU #1 j,b only known to CPU #2 j,b only known to CPU #3

a[0:7] fully accessible
N fully accessible

a[0:7] fully accessible
N fully accessible

a[0:0] fully accessible
N fully accessible

CPU #1 CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

STARTVALUE
N

a

af[0]

1.35;
8;

(float *) calloc(N, sizeof(float));

STARTVALUE;

N=8, a[0]=1.35, a[1:7]=0

#pr

i=1,2
j,b only known to CPU #1
a[0:7] fully accessible
N fully accessible

for(i=1; i<N; i++) {
no communication

b = a[0]; ¢ >
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;
}
CPU #I CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

P parallel fo

r private(i,J; red(a,N)
A

i=3,4
j,b only known to CPU #2
a[0:7] fully accessible
N fully accessible

for(i=1; i<N; i++) {

b = a[0];

for(j=0; j<i; Jj++) {
b = function(b);

}

a[i] = b;

no communication

+—>

|D array

>

i=5,6,7
j,b only known to CPU #3
a[0:0] fully accessible
N fully accessible

for(i=1; i<N; i++) {

b = a[0];

for(j=0; j<i; j++) {
b = function(b);

}

a[i] = b;

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines?

STARTVALUE
N

a

af[0]

1.35;
8;

STARTVALUE;

N=8, a[0]=1.35, a[1:7]=0

(float *) calloc(N, sizeof(float));

#pr

i=1,2
j,b only known to CPU #1
a[0:7] fully accessible
N fully accessible

for(i=1; i<N; i++) {
no communication

P parallel fo

r private(i,J; red(a,N)
A

i=3,4
j,b only known to CPU #2
a[0:7] fully accessible
N fully accessible

for(i=1; i<N; i++) {

no communication

+—>

b = a[0]; «— b = a[0];

for(j=0; j<i; j++) { for(j=0; j<i; j++) {

b = function(b); b = function(b);

} }

a[fi] = b; a[i] = b;

} }
N=8
a[0:7] filled with desired values
i, j, b undefined values
CPU #| CPU#2 CPU#3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

|D array

>

i=5,6,7
j,b only known to CPU #3
a[0:0] fully accessible
N fully accessible

for(i=1; i<N; i++) {

b = a[0];

for(j=0; j<i; j++) {
b = function(b);

}

a[i] = b;

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

#pragma omp parallel for private() shared()

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

#pragma omp parallel for private() shared()

- /
'

start parallel environment
(can be started everywhere in code...)

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

#pragma omp parallel for private() shared()
\—

e

start parallel environme
(can be started everywherg’in code...)

parallel environment
only for next for-loop

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

#pragma omp parallel for private() shared()
\—

e

start parallel environme
(can be started everywherg’in code...)

v

parallel environment each thread stores its own
only for next for-loop local copy of these variables

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

#pragma omp parallel for private() shared()
\—

e

start parallel environme
(can be started everywherg’in code...)

v

parallel environment each thread stores its own variables accessible
only for next for-loop local copy of these variables by each thread

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

#pragma omp parallel for private() shared()
\—

e

start parallel environme
(can be started everywherg’in code...)

v

parallel environment each thread stores its own variables accessible
only for next for-loop local copy of these variables by each thread
Note:

* if you only read the value of a variable, it can be ‘shared’
* if you write into a variable, think carefully about its status!

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

#pragma omp parallel for private() shared()
\—

e

start parallel environme
(can be started everywherg’in code...)

parallel environment each thread stores its own variables accessible

only for next for-loop local copy of these variables by each thread

#pragma omp parallel for private(i,j,b) shared(a,N)
for(i=1; i<N; i++) {

Note:
lf)oz(?ig:;j<i; 1) ¢ * the loop-counter has to be private
b = function(b); * if you only read the value of a variable, it can be ‘shared’
! * if you write into a variable, think carefully about its status

a[i] = b;

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

#pragma omp parallel for private() shared()
\—

e

start parallel environme
(can be started everywherg’in code...)

parallel environment each thread stores its own variables accessible

only for next for-loop local copy of these variables by each thread
#pragma omp parallel for private(i,j,b) shared(a,N)
for(i=1; i<N; i++) {
Note:
* the loop-counter has to be private
* if you only read the value of a variable, it can be ‘shared’

i[i] L * if you write into a variable, think carefully about its status

b = a[0];
for(3=0; j<i; j++) { j')
b = function(b); °

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

#pragma omp parallel for private() shared()
\—

e

start parallel environme
(can be started everywherg’in code...)

v

parallel environment each thread stores its own variables accessible

only for next for-loop local copy of these variables by each thread
#pragma omp parallel for private(i,j,b) shared(a,N)

for(i=1; i<N; i++) {
_Note: . |
Ca : code:
fo—— ‘e elegant-way to write fhis
}b there'is d far mo sseoriy read the value of a variable, it can be ‘shared’

T * if you write into a variable, think carefully about its status

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)
for(i=1; i<N; i++) {

b = a[0];

for(j=0; J<i; Jj++) {
b = function(b);

}

a[i] = b;

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)
for(i=1; i<N; i++) {

b = a[0];

for(j=0; J<i; Jj++) {
b = function(b);

}

put this into a function!

a[i] = b;

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) { .. .
b = function(b)s put this into a function:

}

a[i] = b;

double calc b(int i, double

{
double b;
int j;

b = sv;
for(J=0; j<i; Jj++)

b = function(b);
}

return(b);

SV)

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)
for(i=1; i<N; i++) {

double calc b(int i, double
{
double b;
. , int Jj;
a[i] = calc _b(1i, a[0]);
} b = sv;

for(j=0; Jj<i; Jj++) |
b = function(b);
}

return(b);

SV)

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i,>»<&) shared(a,N)
for(i=1; i<N; i++) {

double calc b(int i, double
{
double b;
. , int Jj;
a[i] = calc _b(1i, a[0]);
} b = sv;

for(j=0; Jj<i; Jj++) |
b = function(b);
}

return(b);

SV)

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc b(i, a[0]);
} double calc b(int i, double
{
double b;
int j;
b = sv;

for(j=0; j<i; j++) {

}

b = function(b);

return(b);

SV)

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc b(i, a[0]);
} double calc b(int i, double
{
double b;
int j;
b = sv;
?

#pragma omp parallel for...
for(3=0; Jj<i; J++) {
b = function(b);

}

return(b);

SV)

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc b(i, a[0]);

} double calc b(int i, double sv)
{
double b;
int j;

2 reasons for not parallelizing this for-loop...

J<i; Jj++) A
unction(b);

o
Il
Hh e

return(b);

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc b(i, a[0]);

} double calc b(int i, double sv)
{
double b;
int j;

2 reasons for not parallelizing this for-loop:
* it is a recursion

* we already parallelized outside of calc by()

J<i; Jj++) A
unction(b);

o
Il
Hh e

return(b);

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc b(i, a[0]);
} double calc b(int i, double
{
double b;
int j;
general advise: b = sv;
* make your code modular i.e. use functions for(j=0; j<i; j++) {
))) b = function(b);
* modular code is easier to parallelize }

return(b);

SV)

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to program such machines (OpenMZP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc b(i, a[0]);

general advise:

* make your code modular i.e. use functions

* modular code is easier to parallelize

...but which CPU gets what i values?

CPU #I CPU #2 CPU #3

a[0] a[l] a[2] a[3] a[4] a[5] a[6] a[7]

double calc b(int i, double

{
double b;
int j;

b = sv;
for(J=0; j<i; Jj++)

b = function(b);
}

return(b);

SV)

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines? ID array

CPU #1 CPU #2 CPU #3

af0] afl] af2] af[3] a[4] a[5] a[6] af[7]

but how to divide the domain?

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines? ID array

CPU #1 CPU #2 CPU #3

af0] afl] af2] af[3] a[4] a[5] a[6] af[7]

but how to divide the domain?

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines? ID array

CPU #1 CPU #2 CPU #3

af0] afl] af2] af[3] a[4] a[5] a[6] af[7]

but how to divide the domain?

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines? ID array

CPU #1 CPU #2 CPU #3

af0] afl] af2] af[3] a[4] a[5] a[6] af[7]

but how to divide the domain?

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines? ID array

CPU #1 CPU #2 CPU #3

af0] afl] af2] af[3] a[4] a[5] a[6] af[7]

but how to divide the domain:
distribute the work evenly!

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines? ID array

CPU #1 CPU #2 CPU #3

af0] afl] af2] af[3] a[4] a[5] a[6] af[7]

but how to divide the domain:
distribute the work evenly!

b = a[0];
for(3=0; Jj<i; J++) { , , : : s
b = function(b); => CPU’s dealing with higher i ’s have more work to do!

}

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines? ID array

OpenMP work distribution:
schedule (dynamic): loop index = 0-Nthreads-1 “» Nthreads “» Nthreads+| - etc.

schedule (static): evenly divide loop index amongst Nthreads

usage:

#pragma omp parallel for private(...) shared(...) schedule(...)

b = a[0];
for(j=0; j<i; j++) { , . . .)
b = function(b); => CPU’s dealing with higher i ’s have more work to do!

}

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines? 2D array

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines? 2D array

domain decomposition® needs to ensure...
* data locality
* optimized load-balancing
* minimal communication

*this is not to be confused with domain discretisation!

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to program such machines? 3D array

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to check the speed-up of your program?

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to check the speed-up of your program?

strong scaling weak scaling

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to check the speed-up of your program?

strong scaling weak scaling

you keep the problem size fixed, you keep the number of CPU’s fixed,
but increase the number of CPU’s but increase the problem size

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to check the speed-up of your program?

strong scaling weak scaling
you keep the problem size fixed, you keep the number of CPU’s fixed,
but increase the number of CPU’s but increase the problem size
you aim at running a given problem you aim at running the largest possible

as fast as possible... problem in a given amount of time...

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to check the speed-up of your program?

-

~

strong scaling weak scaling

you keep the problem size fixed, you keep the number of CPU’s fixed,

but increase the number of CPU’s but increase the problem size

you aim at running a given problem you aim at running the largest possible
as fast as possible... problem in a given amount of time...

_ /

actually more important nowadays

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to actually write a program?

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" how to actually write a program?
* define the problem

* decide on organisation

o choose essential elements (variables, structures, etc.)

o shape relevant tasks
o design your algorithm to be parallelizable
o draw a flowchart

* code in your preferred language

* test code using simple/known test cases

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" how to actually write a program?

* define the problem

* decide on organisation
o choose essential elements (variables, structures, etc.)
o shape relevant tasks
o design your algorithm to be parallelizable
o draw a flowchart

* code in your preferred language

* test code using simple/known test cases

try to break problem down into pieces/modules
that can be coded separately from each other...

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

* shaping relevant tasks!?

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" shaping relevant tasks — data

divide data into sub-sets,

and perform different calculation with each sub-set...

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" shaping relevant tasks — data

divide data into sub-sets,

and perform different calculation with each sub-set...

EREREE

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" shaping relevant tasks — data

divide data into sub-sets,

and perform different calculation with each sub-set...

EREREE

Analyse(Data)

void Analyse(Data) {
for(Data) {
if (redData){
Calculation(Data)
}
else {
Calculation(Data)

}
P}

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" shaping relevant tasks — data

divide data into sub-sets,

and perform different calculation with each sub-set...

|

Analyse(Data)

void Analyse(Data) {
for(Data) {

culation(Data)

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" shaping relevant tasks — data

divide data into sub-sets,

and perform different calculation with each sub-set...

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" shaping relevant tasks — data

4)

SelectData —_—>

Calcuation(Datal)

EEEREE

Calculation(Data2)

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

" shaping relevant tasks — data

f

SelectData

\

Calcuation(Datal)

w Calculation(Data2)

modular and hence more flexible!

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures
" how to actually write a program?
* define the problem
* decide on organisation
o choose essential elements (variables, structures, etc.)
o shape relevant tasks

o design your algorithm to be parallelizable
o draw a flowchart

* code in your preferred language
* test code using simple/known test cases

each CPU runs the same code,
but on a different part of the problem...

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

= design your algorithm to be parallelizable!

SelectData

f

\

EEEREE

Calcuation(Datal)

Calculation(Data2)

CPU#I

CPU#2

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

= design your algorithm to be parallelizable!

data parallelisation

f

SelectData

o

task parallelisation

\

EEEREE

Calcuation(Datal)

Calculation(Data2)

CPU#I

CPU#2

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

= design your algorithm to be parallelizable!

data parallelisation

f

SelectData

o

task parallelisation

Calcuation | (Datal)

Calculation2(Datal)

\

EEEREE

CPU#I

CPU#2

Calcuation(Datal)

Calculation(Data2)

CPU#I

CPU#2

Computational Astrophysics PARALLEL PROGRAMMING

Computer Architectures

" some coding recommendations:

* make proper use of the Cache (see above)
o avoid complicated indices
o know how arrays are aligned in memory

* avoid conditions, /O, and (sub-)routine calls inside loops
* avoid unnecessary operations inside loops in general
 use multiplications rather than divisions or powers

* keep it simple!

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

Computational Astrophysics

PARALLEIL PROGRAMMING

Computer Architectures

let’s put our knowledge into action:

write a code that calculates

”z‘/EZ(_Q 2k
k=0

1
+1

Computational Astrophysics

Computer Architectures

k=0,1,2,3,4

pi += pow(-1.0/3.0, (double)k) / (2.*(double)k+1l.);

k=5,6,7,8,9

pi += pow(-1.0/3.0, (double)k) / (2.*(double)k+1l.);

k=10,11,12,13

pi += pow(-1.0/3.0, (double)k) / (2.*(double)k+1l.);

