
Computational Astrophysics
Computer Architectures Alexander Knebe, Universidad Autonoma de Madrid

Computational Astrophysics
Computer Architectures

! architectures

! real machines

! computing concepts

! parallel programming

Computational Astrophysics
Computer Architectures

! architectures

! real machines

! computing concepts

! parallel programming

Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM= CPU

Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU:
! very primitive commands,

obtained from compilers or interpreters of higher-level languages

CPU

Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU:
! very primitive commands,

obtained from compilers or interpreters of higher-level languages

! cycle chain:
• fetch – get instruction and/or data from memory
• decode – store instruction and/or data in register
• execute – perform instruction

CPU

Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU:
! very primitive commands,

obtained from compilers or interpreters of higher-level languages

! cycle chain:
• fetch – get instruction and/or data from memory
• decode – store instruction and/or data in register
• execute – perform instruction

CPU

arithmetical/logical instructions: +, -, *, /, bitshift, if

Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU:
! very primitive commands,

obtained from compilers or interpreters of higher-level languages

! cycle chain:
• fetch – get instruction and/or data from memory
• decode – store instruction and/or data in register
• execute – perform instruction

! some CPU allow multi-threading,
i.e. already fetch next instruction while still executing

CPU

Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU:
! execution time: t = ni x CPI x tc

number of instructions time per cycle

CPU

cycles per instruction
(e.g., ‘+’ requires less cycles than ‘*’)

Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU:
! execution time: t = ni x CPI x tc

number of instructions time per cycle
cycles per instruction

CPU

speed-ups: improve your algorithm to require less instructions

example:
a factor like “3/(8piG)” inside a for-loop should be avoided;
define FAC=3/(8piG) outside the loop and use FAC inside the loop instead…

Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU:
! execution time: t = ni x CPI x tc

number of instructions time per cycle

CPU

speed-ups: improve your algorithm to use more adequate instructions

cycles per instruction
(how many cycles does

your instruction require)

example:
avoid at all costs pow(), log(), etc.,
e.g. pow(x,2) should be replaced with x*x

Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU:
! execution time: t = ni x CPI x tc

number of instructions time per cycle
cycles per instruction

CPU

speed-ups: buy a machine with higher clock-frequency

Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU:
! execution time: t = ni x CPI x tc

number of instructions time per cycle
cycles per instruction

CPU

speed-ups: improve your algorithm!

Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU:
! execution time: t = ni x CPI x tc

number of instructions time per cycle
cycles per instruction

CPU

speed-ups: ...or wait for technology to advance ;-)

Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU – evolution during the past years:

CPU

Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU – evolution during the past years:

CPU

clock speed:
saturation level reached!

Computational Astrophysics
Computer Architectures

architectures

! serial machine

RAM=

CPU – evolution during the past years:

CPU

clock speed:
saturation level reached!

single thread:
saturation approaching!

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

RAM:
! Random Access Memory, i.e. read and write

! storage in binary system:
• 1 bit = 0 or 1
• 8 bits = 1 byte
• 4 bytes = 1 float (=32 bits, standard for 32-bit architectures)
• 8 bytes = 1 double (=64 bits, standard for 64-bit architectures)

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

RAM:
! Random Access Memory, i.e. read and write

! storage in binary system:
• 1 bit = 0 or 1
• 8 bits = 1 byte
• 4 bytes = 1 float (=32 bits, standard for 32-bit architectures)
• 8 bytes = 1 double (=64 bits, standard for 64-bit architectures)

! latency = time for memory access (bus width also relevant)

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

RAM:
! Random Access Memory, i.e. read and write

! storage in binary system:
• 1 bit = 0 or 1
• 8 bits = 1 byte
• 4 bytes = 1 float (=32 bits, standard for 32-bit architectures)
• 8 bytes = 1 double (=64 bits, standard for 64-bit architectures)

! latency = time for memory access (bus width also relevant)

! speed-ups:
• multi-threading CPU’s
• larger bus width

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

RAM:
! Random Access Memory, i.e. read and write

! storage in binary system:
• 1 bit = 0 or 1
• 8 bits = 1 byte
• 4 bytes = 1 float (=32 bits, standard for 32-bit architectures)
• 8 bytes = 1 double (=64 bits, standard for 64-bit architectures)

! latency = time for memory access (bus width also relevant)

! speed-ups:
• multi-threading CPU’s
• larger bus width:

! ‘80s 8-bit wide
! ‘90s 16-bit wide
! ‘00s 32-bit wide
! today 64-bit wide

(internal ‘highway’ for data transfer)

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

RAM:
! Random Access Memory, i.e. read and write

! storage in binary system:
• 1 bit = 0 or 1
• 8 bits = 1 byte
• 4 bytes = 1 float (=32 bits, standard for 32-bit architectures)
• 8 bytes = 1 double (=64 bits, standard for 64-bit architectures)

! latency = time for memory access (bus width also relevant)

! speed-ups:
• multi-threading CPU’s
• larger bus width
• clever usage of Cache

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAMCache=

RAM:
! Random Access Memory, i.e. read and write

! storage in binary system:
• 1 bit = 0 or 1
• 8 bits = 1 byte
• 4 bytes = 1 float (=32 bits, standard for 32-bit architectures)
• 8 bytes = 1 double (=64 bits, standard for 64-bit architectures)

! latency = time for memory access (bus width also relevant)

! speed-ups:
• multi-threading CPU’s
• larger bus width
• clever usage of Cache

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAMCache=

Cache:
! Random Access Memory, i.e. read and write

! built into motherboard next to CPU

! when ‘fetch a[i]’ also ‘fetch a[i+1]’ into Cache (in fact, full lines or pages are “cached”)

! nowadays multiple Cache levels

! bad programming will lead to “Cache misses”:

• t = f x tCache + (1- f) x tRAM

Cache hit rate RAM access timeCache access time

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

Cache:
! Random Access Memory, i.e. read and write

! built into motherboard next to CPU

! when ‘fetch a[i]’ also ‘fetch a[i+1]’ into Cache (in fact, full lines or pages are “cached”)

! nowadays multiple Cache levels

! bad programming will lead to “Cache misses”:

• t = f x tCache + (1- f) x tRAM

€

f = 0.1, tCache =10ns, tRAM =100ns ⇒ 91ns
f = 0.9, tCache =10ns, tRAM =100ns ⇒19ns

example:

Cache

Cache hit rate RAM access timeCache access time

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

Cache:
! Random Access Memory, i.e. read and write

! built into motherboard next to CPU

! when ‘fetch a[i]’ also ‘fetch a[i+1]’ into Cache (in fact, full lines or pages are “cached”)

! nowadays multiple Cache levels

! bad programming will lead to “Cache misses”:

• t = f x tCache + (1- f) x tRAM

€

f = 0.1, tCache =10ns, tRAM =100ns ⇒ 91ns
f = 0.9, tCache =10ns, tRAM =100ns ⇒19ns

example:

Cache

Cache hit rate RAM access timeCache access time

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

Cache:
! Random Access Memory, i.e. read and write

! built into motherboard next to CPU

! when ‘fetch a[i]’ also ‘fetch a[i+1]’ into Cache (in fact, full lines or pages are “cached”)

! nowadays multiple Cache levels

! bad programming will lead to “Cache misses”:

• t = f x tCache + (1- f) x tRAM

€

f = 0.1, tCache =10ns, tRAM =100ns ⇒ 91ns
f = 0.9, tCache =10ns, tRAM =100ns ⇒19ns

example:

Cache

Cache hit rate RAM access timeCache access time

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

Cache:
! Random Access Memory, i.e. read and write

! built into motherboard next to CPU

! when ‘fetch a[i]’ also ‘fetch a[i+1]’ into Cache (in fact, full lines or pages are “cached”)

! nowadays multiple Cache levels

! bad programming will lead to “Cache misses”:

• t = f x tCache + (1- f) x tRAM

€

f = 0.1, tCache =10ns, tRAM =100ns ⇒ 91ns
f = 0.9, tCache =10ns, tRAM =100ns ⇒19ns

example:

Cache

Cache hit rate RAM access timeCache access time

factor of 4.5!

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

Cache:
! Random Access Memory, i.e. read and write

! built into motherboard next to CPU

! when ‘fetch a[i]’ also ‘fetch a[i+1]’ into Cache (in fact, full lines or pages are “cached”)

! nowadays multiple Cache levels

! bad programming will lead to “Cache misses”:

• t = f x tCache + (1- f) x tRAM

design your code in order to access contiguous memory blocks!

Cache

Cache hit rate RAM access timeCache access time

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

! Cache hits and misses:

• 2D array in C: density[2][3]

Cache

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

! Cache hits and misses:

• 2D array in C: density[2][3]

• memory alignment:

Cache

Computational Astrophysics
Computer Architectures

! Cache hits and misses:

• 2D array in C: density[2][3]

• memory alignment:

architectures

! serial machine

CPU RAM=

density[0][0] ... density[0][2] ... density[1][0] ...

Cache

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

! Cache hits and misses:

• 2D array in C: density[2][3]

• memory alignment:

density[0][0] ...

BAD!

Cache

density[0][2] ... density[1][0] ...

for(i=0; i<3; i++)
for(j=0; j<2; j++)

whatever(density[j][i]);

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

! Cache hits and misses:

• 2D array in C: density[2][3]

• memory alignment:

density[0][0] ...

for(j=0; j<2; j++)
for(i=0; i<3; i++)

whatever(density[j][i]);

GOOD!

Cache

density[0][2] ... density[1][0] ...

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAM=

! Cache hits and misses:

• 2D array in C: density[2][3]

• memory alignment:

density[0][0] ...

for(j=0; j<2; j++)
for(i=0; i<3; i++)

whatever(density[j][i]);

GOOD!

Cache

density[0][2] ... density[1][0] ...

memory alignment depends on the language...

check before programming!

(e.g. C uses row-major ordering while Fortran & MATLAB use column-major ordering)

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAMCache=

CPU clock frequency vs. bus frequency:

• CPU frequency determines execution speed of commands

• bus frequency determines how quickly to get new commands/data

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAMCache=

CPU clock frequency vs. bus frequency:

• CPU frequency determines execution speed of commands

• bus frequency determines how quickly to get new commands/data

=> bus frequency (and width) is more relevant for actual speed!

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAMCache=

out-of-core applications:

! not all data fits into RAM => use hard-drive like RAM
! practically all databases work like this...

hard-drive

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAMCache=

possible speed-ups by the programmer:

• improve your algorithm to require less instructions, e.g. f=4*PI/Grav

• improve your algorithm to use more adequate instructions, e.g. x*x instead of pow(x,2)

• proper usage of cache, e.g. check memory alignment

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAMCache=

any other possibility to speed things up?
possible speed-ups by the programmer:

• improve your algorithm to require less instructions, e.g. f=4*PI/Grav

• improve your algorithm to use more adequate instructions, e.g. x*x instead of pow(x,2)

• proper usage of cache, e.g. check memory alignment

Computational Astrophysics
Computer Architectures

architectures

! serial machine

CPU RAMCache=

Computational Astrophysics
Computer Architectures

architectures

! serial machine – multi-cored

CPU Cache
=

CPU Cache
RAM

Computational Astrophysics
Computer Architectures

architectures

! serial machine – multi-cored

! shared memory architecture
• easy to adapt existing serial code
• limited by RAM to be placed into a single machine

CPU Cache
=

CPU Cache
RAM

Computational Astrophysics
Computer Architectures

architectures

! serial machine – multi-cored

! shared memory architecture
• easy to adapt existing serial code
• limited by RAM to be placed into a single machine

CPU Cache
=

CPU Cache
RAMlatency negligible

Computational Astrophysics
Computer Architectures

architectures

! serial machine – multi-cored

! shared memory architecture
• easy to adapt existing serial code
• limited by RAM to be placed into a single machine

CPU Cache
=

CPU Cache
RAM

! OpenMP – www.openmp.org
• most commonly used standard to parallelize code on shared memory architectures
• primarily distribute for-loop components onto different CPU’s
• natively by supported by gcc since v4.2

Computational Astrophysics
Computer Architectures

architectures

! serial machine – multi-cored

! shared memory architecture
• easy to adapt existing serial code
• limited by RAM to be placed into a single machine

CPU Cache
=

CPU Cache
RAM

! OpenMP – www.openmp.org
• most commonly used standard to parallelize code on shared memory architectures
• primarily distribute for-loop components onto different CPU’s
• natively by supported by gcc since v4.2you(!) have to add extra commands to the code

Computational Astrophysics
Computer Architectures

architectures

! parallel machine

CPU Cache
=

CPU Cache
RAM

CPU Cache
=

CPU Cache
RAM

Hard
Drive

Computational Astrophysics
Computer Architectures

architectures

! parallel machine

CPU Cache
=

CPU Cache
RAM

CPU Cache
=

CPU Cache
RAM

! performance highly sensitive to interconnect, e.g.
• FireWire 50 MB/s
• Gigabit 125 MB/s
• Myrinet 250 MB/s
• Infiniband 1000 MB/s
• ...

Computational Astrophysics
Computer Architectures

architectures

! parallel machine

CPU Cache
=

CPU Cache
RAM

CPU Cache
=

CPU Cache
RAM

! distributed memory architecture:
• existing code difficult to adapt
• easy to built (cluster of PC’s)
• speed-up limited by inter-computer communication

Computational Astrophysics
Computer Architectures

architectures

! parallel machine

CPU Cache
=

CPU Cache
RAM

CPU Cache
=

CPU Cache
RAM

! distributed memory architecture:
• existing code difficult to adapt
• easy to built (cluster of PC’s)
• speed-up limited by inter-computer communication

! MPI – Message Passing Interface
• “standard” library for work dispersal

on distributed memory architectures
• e.g., www.open-mpi.org

Computational Astrophysics
Computer Architectures

architectures

! parallel machine

CPU Cache
=

CPU Cache
RAM

CPU Cache
=

CPU Cache
RAM

! distributed memory architecture:
• existing code difficult to adapt
• easy to built (cluster of PC’s)
• speed-up limited by inter-computer communication

! MPI – Message Passing Interface
• “standard” library for work dispersal

on distributed memory architectures
• e.g., www.open-mpi.org

you(!) have to substantially restructure your code

Computational Astrophysics
Computer Architectures

! architectures

! real machines

! computing concepts

! parallel programming

Computational Astrophysics
Computer Architectures

real machines

! parallel machine in reality = multi-level hybrid machines

IBM Blue Gene/L
(131072 CPU’s in total!)

Computational Astrophysics
Computer Architectures

real machines

! parallel machine in reality = multi-level hybrid machines

IBM Blue Gene/L
(131072 CPU’s in total!)

Computational Astrophysics
Computer Architectures

real machines

! www.top500.org

Computational Astrophysics
Computer Architectures

real machines

! www.top500.org

#170 in 06/2011

Name: MareNostrum
Vendor: IBM
#CPU’s: 10240
performance: 60 Tflops/sec

#136 in 06/2011

Name: Magerit
Vendor: IBM
#CPU’s: 3920
performance: 100 Tflops/sec

Computational Astrophysics
Computer Architectures

real machines

! www.top500.org

#170 in 06/2011

Name: MareNostrum
Vendor: IBM
#CPU’s: 10240
performance: 60 Tflops/sec

#136 in 06/2011

Name: Magerit
Vendor: IBM
#CPU’s: 3920
performance: 100 Tflops/sec? ?

Computational Astrophysics
Computer Architectures

real machines

! www.top500.org

#136 in 06/2011

Name: Magerit
Vendor: IBM
#CPU’s: 3920
performance: 100 Tflops/sec

interconnect: Infiniband, up to 1500 Gbits/sec

#170 in 06/2011

Name: MareNostrum
Vendor: IBM
#CPU’s: 10240
performance: 60 Tflops/sec

interconnect: Myrinet, ca. 2Gbit/sec

Computational Astrophysics
Computer Architectures

! architectures

! real machines

! computing concepts

! parallel programming

Computational Astrophysics
Computer Architectures

Computing Concepts

! GRID computing / Cloud computing?

Computational Astrophysics
Computer Architectures

! GRID computing:
• distributed computing where resources are linked together to solve a single problem

Computing Concepts

Computational Astrophysics
Computer Architectures

! GRID computing:
• distributed computing where resources are linked together to solve a single problem

! Cloud computing:
• use remote resources for your (personal) needs (music storage, email correspondence, ...)

Computing Concepts

Computational Astrophysics
Computer Architectures

! GRID computing:
• distributed computing where resources are linked together to solve a single problem

! Cloud computing:
• use remote resources for your (personal) needs (music storage, email correspondence, ...)

⇨ actually running simulations

⇨ access to results via databases

Computing Concepts

Computational Astrophysics
Computer Architectures

! GRID computing:
• distributed computing where resources are linked together to solve a single problem

! Cloud computing:
• use remote resources for your (personal) needs (music storage, email correspondence, ...)

⇨ access to results via databases

Computing Concepts

⇨ actually running simulations

first GRID computing?

Computational Astrophysics
Computer Architectures

! GRID computing:
• distributed computing where resources are linked together to solve a single problem

! Cloud computing:
• use remote resources for your (personal) needs (music storage, email correspondence, ...)

⇨ access to results via databases

Computing Concepts

⇨ actually running simulations

Computational Astrophysics
Computer Architectures

! GRID computing:
• distributed computing where resources are linked together to solve a single problem

! Cloud computing:
• use remote resources for your (personal) needs (music storage, email correspondence, ...)

⇨ access to results via databases

Computing Concepts

⇨ actually running simulations

• over 3.5 mio. computers participating

• (virtual) machine reaches ~0.8 Pflops !!!

• no signs of ET yet ...

• ...but distributed computing works well!

Computational Astrophysics
Computer Architectures

! GRID computing:
• distributed computing where resources are linked together to solve a single problem

! Cloud computing:
• use remote resources for your (personal) needs (music storage, email correspondence, ...)

⇨ access to results via databases

Computing Concepts

⇨ actually running simulations

• over 3.5 mio. computers participating

• (virtual) machine reaches ~0.8 Pflops !!!

• no signs of ET yet ...

• ...but distributed computing works well!

Computational Astrophysics
Computer Architectures

! GRID computing:
• distributed computing where resources are linked together to solve a single problem

! Cloud computing:
• use remote resources for your (personal) needs (music storage, email correspondence, ...)

⇨ access to results via databases

Computing Concepts

⇨ actually running simulations

there actually exists a GRID network with 21 x 106 Pflops* !!!!!!

*as of Oct 2016

Computational Astrophysics
Computer Architectures

! GRID computing:
• distributed computing where resources are linked together to solve a single problem

! Cloud computing:
• use remote resources for your (personal) needs (music storage, email correspondence, ...)

⇨ access to results via databases

Computing Concepts

⇨ actually running simulations

there actually exists a GRID network with 21 x 106 Pflops:

Bitcoin Network

Computational Astrophysics
Computer Architectures

! GRID computing:
• distributed computing where resources are linked together to solve a single problem

! Cloud computing:
• use remote resources for your (personal) needs (music storage, email correspondence, ...)

Computing Concepts

⇨ actually running simulations

⇨ access to results via databases

Computational Astrophysics
Computer Architectures

! architectures

! real machines

! computing concepts

! parallel programming

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

your algorithm must be parallel,
then it’s only a matter of using parallel libraries to distribute the work...

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

your algorithm must be parallel,
then it’s only a matter of using parallel libraries to distribute the work...

data parallelisation:
all CPUs execute the same code, but have different parts of the data

task parallelisation
all CPUs have the same data, but execute different calculations

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

your algorithm must be parallel,
then it’s only a matter of using parallel libraries to distribute the work...

data parallelisation:
all CPUs execute the same code, but have different parts of the data

task parallelisation
all CPUs have the same data, but execute different calculations

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 1D array

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 1D array

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

CPU #1 CPU #2 CPU #3

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

serial algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

}

1D array

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

serial algorithm

⇨ not parallelizable as a[i]
depends on all previous a[]’s!

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

}

1D array

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

serial algorithm

⇨ not parallelizable as a[i]
depends on all previous a[]’s!

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

}

general remark:
recursion is elegant yet not parallelizable...

1D array

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

serial algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

}

parallel algorithm

1D array

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

serial algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

}

parallel algorithm

1D array

each CPU runs the same code,

but on a different part of the problem...

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

serial algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);

}

parallel algorithm

1D array

example:
shared memory architecture

(i.e. all CPU’s can access the same memory)

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

serial algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);
}

parallel algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

1D array

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

serial algorithm parallel algorithm

the i-loop can now be parallelized as
all a[i] are calculated independently

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

1D array

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);
}

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

serial algorithm parallel algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

we eliminated the recursion/dependence
by expanding it explicitly.

(by introducing yet another recursion, but c’est la vie...)

1D array

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);
}

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

serial algorithm parallel algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

1D array

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);
}

#pragma omp parallel for private(i,j,b) shared(a)

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

serial algorithm parallel algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

1D array

each CPU gets its own private copy of these variables

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);
}

#pragma omp parallel for private(i,j,b) shared(a)

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

serial algorithm parallel algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

1D array

these variables remain where they are in RAM and
can be accessed by each CPU

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);
}

#pragma omp parallel for private(i,j,b) shared(a)

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

serial algorithm parallel algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

1D array

N: shared or private?

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);
}

#pragma omp parallel for private(i,j,b) shared(a)

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines?

serial algorithm parallel algorithm

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

1D array

a[0] = STARTVALUE;

for(i=1; i<N; i++) {

a[i] = function(a[i-1]);
}

#pragma omp parallel for private(i,j,b) shared(a,N)

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

STARTVALUE = 1.35;
N = 8;
a = (float *) calloc(N, sizeof(float));
a[0] = STARTVALUE;

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

STARTVALUE = 1.35;
N = 8;
a = (float *) calloc(N, sizeof(float));
a[0] = STARTVALUE;

N=8, a[0]=1.35, a[1:7]=0

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

STARTVALUE = 1.35;
N = 8;
a = (float *) calloc(N, sizeof(float));
a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)

double calc_b(int i, double sv)
{

double b;
int j;

b = sv;

for(j=0; j<i; j++) {
b = function(b);

}

return(b);
}

N=8, a[0]=1.35, a[1:7]=0

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

STARTVALUE = 1.35;
N = 8;
a = (float *) calloc(N, sizeof(float));
a[0] = STARTVALUE;

i=1,2
j,b only known to CPU #1
a[0:7] fully accessible
N fully accessible

i=3,4
j,b only known to CPU #2
a[0:7] fully accessible
N fully accessible

i=5,6,7
j,b only known to CPU #3
a[0:0] fully accessible
N fully accessible

#pragma omp parallel for private(i,j,b) shared(a,N)

N=8, a[0]=1.35, a[1:7]=0

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

STARTVALUE = 1.35;
N = 8;
a = (float *) calloc(N, sizeof(float));
a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

no communicationno communication

#pragma omp parallel for private(i,j,b) shared(a,N)

N=8, a[0]=1.35, a[1:7]=0

i=1,2
j,b only known to CPU #1
a[0:7] fully accessible
N fully accessible

i=3,4
j,b only known to CPU #2
a[0:7] fully accessible
N fully accessible

i=5,6,7
j,b only known to CPU #3
a[0:0] fully accessible
N fully accessible

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

STARTVALUE = 1.35;
N = 8;
a = (float *) calloc(N, sizeof(float));
a[0] = STARTVALUE;

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}
a[i] = b;

}

no communicationno communication

N=8
a[0:7] filled with desired values
i, j, b undefined values

...

#pragma omp parallel for private(i,j,b) shared(a,N)

N=8, a[0]=1.35, a[1:7]=0

i=1,2
j,b only known to CPU #1
a[0:7] fully accessible
N fully accessible

i=3,4
j,b only known to CPU #2
a[0:7] fully accessible
N fully accessible

i=5,6,7
j,b only known to CPU #3
a[0:0] fully accessible
N fully accessible

Computational Astrophysics
Computer Architectures

parallel programming

#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

Computational Astrophysics
Computer Architectures

parallel programming

#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

start parallel environment
(can be started everywhere in code...)

Computational Astrophysics
Computer Architectures

parallel programming

#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

start parallel environment
(can be started everywhere in code...)

parallel environment
only for next for-loop

Computational Astrophysics
Computer Architectures

parallel programming

#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

start parallel environment
(can be started everywhere in code...)

parallel environment
only for next for-loop

each thread stores its own
local copy of these variables

Computational Astrophysics
Computer Architectures

parallel programming

#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

start parallel environment
(can be started everywhere in code...)

parallel environment
only for next for-loop

each thread stores its own
local copy of these variables

variables accessible
by each thread

Computational Astrophysics
Computer Architectures

parallel programming

#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

start parallel environment
(can be started everywhere in code...)

parallel environment
only for next for-loop

each thread stores its own
local copy of these variables

variables accessible
by each thread

Note:
• if you only read the value of a variable, it can be ‘shared’
• if you write into a variable, think carefully about its status!

Computational Astrophysics
Computer Architectures

parallel programming

#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

start parallel environment
(can be started everywhere in code...)

parallel environment
only for next for-loop

each thread stores its own
local copy of these variables

variables accessible
by each thread

Note:
• the loop-counter has to be private
• if you only read the value of a variable, it can be ‘shared’
• if you write into a variable, think carefully about its status

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);

}
a[i] = b;

}

#pragma omp parallel for private(i,j,b) shared(a,N)

Computational Astrophysics
Computer Architectures

parallel programming

#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

start parallel environment
(can be started everywhere in code...)

parallel environment
only for next for-loop

each thread stores its own
local copy of these variables

variables accessible
by each thread

Note:
• the loop-counter has to be private
• if you only read the value of a variable, it can be ‘shared’
• if you write into a variable, think carefully about its status

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);

}
a[i] = b;

}

#pragma omp parallel for private(i,j,b) shared(a,N)

j?

Computational Astrophysics
Computer Architectures

parallel programming

#pragma omp parallel for private() shared()

! how to program such machines (OpenMP standard):

start parallel environment
(can be started everywhere in code...)

parallel environment
only for next for-loop

each thread stores its own
local copy of these variables

variables accessible
by each thread

Note:
• the loop-counter has to be private
• if you only read the value of a variable, it can be ‘shared’
• if you write into a variable, think carefully about its status

for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);

}
a[i] = b;

}

#pragma omp parallel for private(i,j,b) shared(a,N)

j?
there is a far more elegant way to write this code!

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines (OpenMP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)
for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}

a[i] = b;
}

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines (OpenMP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)
for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}

a[i] = b;
}

put this into a function!

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines (OpenMP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)
for(i=1; i<N; i++) {

b = a[0];
for(j=0; j<i; j++) {
b = function(b);
}

a[i] = b;
}

put this into a function: double calc_b(int i, double sv)
{

double b;
int j;

b = sv;

for(j=0; j<i; j++) {
b = function(b);

}

return(b);
}

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines (OpenMP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc_b(i, a[0]);
}

double calc_b(int i, double sv)
{

double b;
int j;

b = sv;

for(j=0; j<i; j++) {
b = function(b);

}

return(b);
}

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines (OpenMP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i,j,b) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc_b(i, a[0]);
}

double calc_b(int i, double sv)
{

double b;
int j;

b = sv;

for(j=0; j<i; j++) {
b = function(b);

}

return(b);
}

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines (OpenMP standard):

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc_b(i, a[0]);
} double calc_b(int i, double sv)

{
double b;
int j;

b = sv;

for(j=0; j<i; j++) {
b = function(b);

}

return(b);
}

Computational Astrophysics
Computer Architectures

double calc_b(int i, double sv)
{

double b;
int j;

b = sv;

for(j=0; j<i; j++) {
b = function(b);

}

return(b);
}

parallel programming

! how to program such machines (OpenMP standard):

? #pragma omp parallel for...

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc_b(i, a[0]);
}

Computational Astrophysics
Computer Architectures

double calc_b(int i, double sv)
{

double b;
int j;

b = sv;

for(j=0; j<i; j++) {
b = function(b);

}

return(b);
}

parallel programming

! how to program such machines (OpenMP standard):

2 reasons for not parallelizing this for-loop...

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc_b(i, a[0]);
}

? #pragma omp parallel for...

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines (OpenMP standard):

2 reasons for not parallelizing this for-loop:
• it is a recursion
• we already parallelized outside of calc_b()

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc_b(i, a[0]);
} double calc_b(int i, double sv)

{
double b;
int j;

b = sv;

for(j=0; j<i; j++) {
b = function(b);

}

return(b);
}

? #pragma omp parallel for...

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines (OpenMP standard):

general advise:
• make your code modular, i.e. use functions

• modular code is easier to parallelize

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc_b(i, a[0]);
} double calc_b(int i, double sv)

{
double b;
int j;

b = sv;

for(j=0; j<i; j++) {
b = function(b);

}

return(b);
}

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines (OpenMP standard):

general advise:
• make your code modular, i.e. use functions

• modular code is easier to parallelize

CPU #1 CPU #2 CPU #3

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

...but which CPU gets what i values?

a[0] = STARTVALUE;

#pragma omp parallel for private(i) shared(a,N)
for(i=1; i<N; i++) {

a[i] = calc_b(i, a[0]);
} double calc_b(int i, double sv)

{
double b;
int j;

b = sv;

for(j=0; j<i; j++) {
b = function(b);

}

return(b);
}

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

but how to divide the domain?

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 1D array

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

CPU #1 CPU #2 CPU #3

but how to divide the domain?

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 1D array

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

CPU #1 CPU #2 CPU #3

but how to divide the domain?

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 1D array

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

CPU #1 CPU #2 CPU #3

but how to divide the domain?

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

but how to divide the domain:
distribute the work evenly!

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

but how to divide the domain:
distribute the work evenly!

=> CPU’s dealing with higher i ’s have more work to do!

b = a[0];
for(j=0; j<i; j++) {
b = function(b);

}

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 1D array

CPU #1 CPU #2 CPU #3

but how to divide the domain:
distribute the work evenly!

=> CPU’s dealing with higher i ’s have more work to do!

b = a[0];
for(j=0; j<i; j++) {
b = function(b);

}

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

OpenMP work distribution:

schedule(dynamic): loop index = 0-Nthreads-1 ⤻ Nthreads ⤻ Nthreads+1 ⤻ etc.

schedule (static): evenly divide loop index amongst Nthreads

usage:

#pragma omp parallel for private(...) shared(...) schedule(...)

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 2D array

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 2D array

domain decomposition* needs to ensure...
• data locality
• optimized load-balancing
• minimal communication

*this is not to be confused with domain discretisation!

Computational Astrophysics
Computer Architectures

parallel programming

! how to program such machines? 3D array

Computational Astrophysics
Computer Architectures

parallel programming

! how to check the speed-up of your program?

Computational Astrophysics
Computer Architectures

parallel programming

! how to check the speed-up of your program?

strong scaling weak scaling

Computational Astrophysics
Computer Architectures

parallel programming

! how to check the speed-up of your program?

strong scaling weak scaling

you keep the number of CPU’s fixed,
but increase the problem size

you keep the problem size fixed,
but increase the number of CPU’s

Computational Astrophysics
Computer Architectures

parallel programming

! how to check the speed-up of your program?

strong scaling weak scaling

you keep the problem size fixed,
but increase the number of CPU’s

you aim at running a given problem
as fast as possible...

you keep the number of CPU’s fixed,
but increase the problem size

you aim at running the largest possible
problem in a given amount of time...

Computational Astrophysics
Computer Architectures

parallel programming

! how to check the speed-up of your program?

strong scaling weak scaling

you keep the problem size fixed,
but increase the number of CPU’s

you aim at running a given problem
as fast as possible...

you keep the number of CPU’s fixed,
but increase the problem size

you aim at running the largest possible
problem in a given amount of time...

actually more important nowadays

Computational Astrophysics
Computer Architectures

parallel programming

! how to actually write a program?

Computational Astrophysics
Computer Architectures

parallel programming

! how to actually write a program?

• define the problem

• decide on organisation
o choose essential elements (variables, structures, etc.)
o shape relevant tasks
o design your algorithm to be parallelizable
o draw a flowchart

• code in your preferred language

• test code using simple/known test cases

Computational Astrophysics
Computer Architectures

parallel programming

! how to actually write a program?

• define the problem

• decide on organisation
o choose essential elements (variables, structures, etc.)
o shape relevant tasks
o design your algorithm to be parallelizable
o draw a flowchart

• code in your preferred language

• test code using simple/known test cases

try to break problem down into pieces/modules
that can be coded separately from each other...

Computational Astrophysics
Computer Architectures

parallel programming

! shaping relevant tasks?

Computational Astrophysics
Computer Architectures

parallel programming

! shaping relevant tasks – data

divide data into sub-sets,
and perform different calculation with each sub-set…

Computational Astrophysics
Computer Architectures

parallel programming

! shaping relevant tasks – data

divide data into sub-sets,
and perform different calculation with each sub-set…

Computational Astrophysics
Computer Architectures

parallel programming

divide data into sub-sets,
and perform different calculation with each sub-set…

! shaping relevant tasks – data

void Analyse(Data) {
for(Data) {
if(redData){

Calculation(Data)
}

else {
Calculation(Data)
}

} }

Analyse(Data)

Computational Astrophysics
Computer Architectures

parallel programming

divide data into sub-sets,
and perform different calculation with each sub-set…

! shaping relevant tasks – data

void Analyse(Data) {
for(Data) {
if(redData){

Calculation(Data)
}

else {
Calculation(Data)
}

} }

Analyse(Data)

Computational Astrophysics
Computer Architectures

parallel programming

! shaping relevant tasks – data

divide data into sub-sets,
and perform different calculation with each sub-set…

Computational Astrophysics
Computer Architectures

parallel programming

! shaping relevant tasks – data

SelectData

Calcuation(Data1)

Calculation(Data2)

Computational Astrophysics
Computer Architectures

parallel programming

! shaping relevant tasks – data

SelectData

Calcuation(Data1)

Calculation(Data2)

modular and hence more flexible!

Computational Astrophysics
Computer Architectures

parallel programming

! how to actually write a program?

• define the problem

• decide on organisation
o choose essential elements (variables, structures, etc.)
o shape relevant tasks
o design your algorithm to be parallelizable
o draw a flowchart

• code in your preferred language

• test code using simple/known test cases

each CPU runs the same code,
but on a different part of the problem...

Computational Astrophysics
Computer Architectures

parallel programming

SelectData

CPU#1

CPU#2

! design your algorithm to be parallelizable!

Calcuation(Data1)

Calculation(Data2)

Computational Astrophysics
Computer Architectures

parallel programming

SelectData

CPU#1

CPU#2

! design your algorithm to be parallelizable!

data parallelisation

task parallelisation

Calcuation(Data1)

Calculation(Data2)

Computational Astrophysics
Computer Architectures

parallel programming

SelectData

CPU#1

CPU#2

! design your algorithm to be parallelizable!

data parallelisation

task parallelisation

CPU#1

CPU#2

Calcuation1(Data1)

Calculation2(Data1)

Calcuation(Data1)

Calculation(Data2)

Computational Astrophysics
Computer Architectures

parallel programming

! some coding recommendations:

• make proper use of the Cache (see above)

o avoid complicated indices
o know how arrays are aligned in memory

• avoid conditions, I/O, and (sub-)routine calls inside loops

• avoid unnecessary operations inside loops in general

• use multiplications rather than divisions or powers

• keep it simple!

Computational Astrophysics
Computer Architectures

parallel programming

Computational Astrophysics
Computer Architectures

parallel programming

let’s put our knowledge into action:

write a code that calculates

𝜋 ≈ 12&
!"#

$

−
1
3

! 1
2𝑘 + 1

Computational Astrophysics
Computer Architectures

pi += pow(-1.0/3.0, (double)k) / (2.*(double)k+1.);

pi += pow(-1.0/3.0, (double)k) / (2.*(double)k+1.);

pi += pow(-1.0/3.0, (double)k) / (2.*(double)k+1.);

k=0,1,2,3,4

k=5,6,7,8,9

k=10,11,12,13

